首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Circular Dichroism (CD) spectra were collected as a function of sodium perchlorate concentration [NaClO4] for the set of DNA hairpins formed from the oligomer sequences d[(CG)3X4(CG)3] where X = A, T, G or C. Over the range in salt concentration from 0 to 4.0 M NaClO4, the CD spectra invert in a manner characteristic of the B to Z transition. A factor analysis routine is described and employed to determine the least number of basis spectra required to fit the measured spectra of each hairpin over the entire salt range examined. In every case, linear combinations of only two sub-spectra fit the experimental spectra of the hairpins with greater than 98% accuracy, indicating the spectrally monitored structural transitions are two-state. From the relative weights of the individual sub-spectra, B-Z transition curves are constructed. The transitions are analyzed in terms of a simple two-state equilibrium model which yields an evaluation of the transition free-energy, delta GB-Z, as a function of NaClO4 concentration. At 1.0 M NaClO4 and 21 degrees C, delta GB-Z = 5.4, 4.9, 3.6 and 2.3 kcal/mole for the G4, T4, A4 and C4 loop hairpins, respectively.  相似文献   

2.
We determined the melting temperatures (Tm) and thermodynamic parameters of 15 RNA and 19 DNA hairpins at 1 M NaCl, 0.01 M sodium phosphate, 0.1 mM EDTA, at pH 7. All these hairpins have loops of four bases, the most common loop size in 16S and 23S ribosomal RNAs. The RNA hairpins varied in loop sequence, loop-closing base pair (A.U, C.G, or G.C), base sequence of the stem, and stem size (four or five base pairs). The DNA hairpins varied in loop sequence, loop-closing base pair (C.G, or G.C), and base sequence of the four base-pair stem. Thermodynamic properties of a hairpin may be represented by nearest-neighbor interactions of the stem plus contributions from the loop. Thus, we obtained thermodynamic parameters for the formation of RNA and DNA tetraloops. For the tetraloops we studied, a free energy of loop formation (at 37 degrees C) of about +3 kcal/mol is most common for either RNA or DNA. There are extra stable loops with delta G degrees 37 near +1 kcal/mol, but the sequences are not necessarily the same for RNA and DNA. The closing base pair is also important; changing from C.G to G.C lowered the stability of several tetraloops in both RNA and DNA. These values will be useful in predicting RNA and DNA secondary structures.  相似文献   

3.
Expressions for the partition function Q (T) of DNA hairpins are presented. Calculations of Q (T), in conjunction with our previously reported numerically exact algorithm [T. M. Paner, M. Amaratunga, M. J. Doktycz, and A. S. Benight (1990) Biopolymers, 29, 1715-1734], yield a numerical method to evaluate the temperature dependence of the transition enthalpy, entropy, and free energy of a DNA hairpin directly from its optical melting curve. No prior assumptions that the short hairpins melt in a two-state manner are required. This method is then applied in a systematic manner to investigate the stability of the six basepair duplex stem 5'-GGATAC-3' having four-base dangling single-strand ends with the sequences (XY)2, where X, Y = A, T, G, C, on the 5' end and a T4 loop on the 3' end. Results show that all dangling ends of the sample set stabilize the hairpin against melting. Increases in transition temperatures as great as 4.0 degrees C above the blunt-ended control hairpin were observed. The hierarchy of the hairpin transition temperatures is dictated by the identity of the first base of the dangling end adjoining the duplex in the order: purine greater than T greater than C. Calculated melting curves of every hairpin were fit to experimental curves by adjustment of a single parameter in the numerically exact theoretical algorithm. Exact fits were obtained in all cases. Experimental melting curves were also calculated assuming a two-state melting process. Equally accurate fits of all dangling-ended hairpin melting curves were obtained with the two-state model calculation. This was not the case for the melting curve of the blunt-ended hairpin, indicating the presence of a four-base dangling-end drives hairpin melting to a two-state process. Q (T) was calculated as a function of temperature for each hairpin using the theoretical parameters that provided calculated curves in exact agreement with the experimentally obtained optical melting curves. From Q (T), the temperature dependence of the transition enthalpy delta H, entropy delta S, and free energy delta G were calculated for every hairpin providing a quantitative assessment of the effects of dangling ends on hairpin thermodynamics. Comparisons of our results are made with those of the Breslauer group [M. Senior, R. A. Jones, and K. J. Breslauer (1988) Biochemistry 27, 3879-3885] on the T2 5' dangling-ended d(GC)3 duplexes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
We have investigated loop-induced structural perturbation of the stem structure in hairpins d(GAATTCXnGAATTC) (X = A, T and n = 3, 4, 5 and 6) that contain an EcoRI restriction site in close proximity to the hairpin loop. Oligonucleotides containing either a T3 or a A3 loop were not hydrolyzed by the restriction enzyme and also showed only weak binding to EcoRI in the absence of the cofactor Mg2+. In contrast, hairpins with larger loops are hydrolyzed by the enzyme at the scission site next to the loop although the substrate with a A4 loop is significantly more resistant than the oligonucleotide containing a T4 loop. The hairpin structures with 3 loop residues were found to be thermally most stable while larger hairpin loops resulted in structures with lower melting temperatures. The T-loop hairpins are thermally more stable than the hairpins containing the same number of A residues in the loop. As judged from proton NMR spectroscopy and the thermodynamic data, the base pair closest to the hairpin loop did form in all cases studied. The hairpin loops did, however, affect the conformation of the stem structure of the hairpins. From 31P and 1H NMR spectroscopy we conclude that the perturbation of the stem structure is stronger for smaller hairpin loops and that the extent of the perturbation is limited to 2-3 base pairs for hairpins with T3 or A4 loops. Our results demonstrate that hairpin loops modulate the conformation of the stem residues close to the loop and that this in turn reduces the substrate activity for DNA sequence specific proteins.  相似文献   

5.
NMR and CD data have previously shown the formation of the T(4) tetraloop hairpin in aqueous solutions, as well as the possibility of the B-to-Z transition in its stem in high salt concentration conditions. It has been shown that the stem B-to-Z transition in T(4) hairpins leads to S (south)- to N (north)-type conformational changes in the loop sugars, as well as anti to syn orientations in the loop bases. In this article, we have compared by means of UV absorption, CD, Raman, and Fourier transform infrared (FTIR), the thermodynamic and structural properties of the T(4) and A(4) tetraloop hairpins formed in 5'-d(CGCGCG-TTTT-CGCGCG)-3' and 5'-d(CGCGCG-AAAA-CGCGCG)-3', respectively. In presence of 5M NaClO(4), a complete B-to-Z transition of the stems is first proved by CD spectra. UV melting profiles are consistent with a higher thermal stability of the T(4) hairpin compared to the A(4) hairpin. Order-to-disorder transition of both hairpins has also been analyzed by means of Raman spectra recorded as a function of temperature. A clear Z-to-B transition of the stem has been confirmed in the T(4) hairpin, and not in the A(4) hairpin. With a right-handed stem, Raman and FTIR spectra have confirmed the C2'-endo/anti conformation for all the T(4) loop nucleosides. With a left-handed stem, a part of the T(4) loop sugars adopt a N-type (C3'-endo) conformation, and the C3'-endo/syn conformation seems to be the preferred one for the dA residues involved in the A(4) tetraloop.  相似文献   

6.
Three-dimensional structures of the fragile X triplet repeats (GCC)n and (GGC)n are derived by using one- dimensional/two-dimensional NMR. Under a wide range of solution conditions (10-150 mM NaCl,pH6-7)(GCC)5-7 strands form exclusively slipped hairpins with a 3' overhanging C. The slipped hairpins of (GCC)n strands show the following structural characteristics: (i) maximization of Watson-Crick G.C pairs; (ii) formation of C.C mispairs at the CpG steps in the stem; (iii) C2'-endo, anti conformations for all the nucleotides. The ability of (GCC)n strands to form hairpin structures more readily than complementary (GGC)n strands suggests preferential slippage during replication and subsequent expansion of the (GCC)n strands. In addition, the C.C. mispairs at the CpG site of (GCC)n hairpins account for their exceptional substrate efficiencies for human methyltransferase. Gel electrophoresis data show that (GGC)n strands form both hairpin and mismatched duplex structures in 10-150 mM NaCl (ph 6-7) for n < 10, but for n > or + 11 hairpin structures are exclusively present. However, (GGC)n strands remain predominantly in the duplex state for n=4-11 under NMR solution conditions, which require DNA concentrations 100- to 1000-fold higher than in gel electrophoresis. NMR analyses of [(GGC)n]2 duplexes for n=4-6 show the presence of Watson-Crick G.C and mismatched G anti G syn pairs. The mismatches adjacent to the CpG step introduce local structural flexibility in these duplexes. Similar structural properties are also expected in the stem of the hairpins formed by (GGC)n strands.  相似文献   

7.
A thermodynamic study of unusually stable RNA and DNA hairpins.   总被引:11,自引:0,他引:11       下载免费PDF全文
V P Antao  S Y Lai    I Tinoco  Jr 《Nucleic acids research》1991,19(21):5901-5905
About 70% of the RNA tetra-loop sequences identified in ribosomal RNAs from different organisms fall into either (UNCG) or (GNRA) families (where N = A, C, G, or U; and R = A or G). RNA hairpins with these loop sequences form unusually stable tetra-loop structures. We have studied the RNA hairpin GGAC(UUCG)GUCC and several sequence variants to determine the effect of changing the loop sequence and the loop-closing base pair on the thermodynamic stability of (UNCG) tetra-loops. The hairpin GGAG(CUUG)CUCC with the conserved loop G(CUUG)C was also unusually stable. We have determined melting temperatures (Tm), and obtained thermodynamic parameters for DNA hairpins with sequences analogous to stable RNA hairpins with (UNCG), C(GNRA)G, C(GAUA)G, and G(CUUG)C loops. DNA hairpins with (TTCG), (dUdUCG), and related sequences in the loop, unlike their RNA counterparts, did not form unusually stable hairpins. However, DNA hairpins with the consensus loop sequence C(GNRA)G were very stable compared to hairpins with C(TTTT)G or C(AAAA)G loops. The C(GATA)G and G(CTTG)C loops were also extra stable. The relative stabilities of the unusually stable DNA hairpins are similar to those observed for their RNA analogs.  相似文献   

8.
Fourteen RNA hairpins containing a four-membered loop and a bulge nucleotide were synthesized and their thermal stabilities determined. The combined contribution of a four-membered loop and bulge A to the free energy of a hairpin is calculated to be 9.3 kcal/mol at 37 degrees C and successfully predicts the stability of an independent RNA hairpin. The introduction of a bulge nucleotide to the helical stem of an RNA hairpin destabilizes the molecule in a sequence-dependent manner. The individual thermodynamic contributions of a four-membered loop and bulge A, G, and U residues to the stability of an RNA hairpin loop are presented.  相似文献   

9.
Hairpin formation in synthetic oligonucleotides   总被引:19,自引:0,他引:19  
The structure and dynamics of the homologous series of the (partly) self-complementary DNA fragments, d(ATCCTATnTAGGAT) n = 0-7, were investigated in a combined NMR, T-jump, and optical melting study. It is shown that all compounds in the series may adopt hairpin like conformations, even for n less than 3, although for these smaller n values this only occurs in significant amounts at relatively low concentrations (approximately 10 microM). The enthalpy change accompanying the hairpin-coil melting transition turns out to depend on the number of intervening thymidines, n. It is shown that this does not mean that the enthalpy of loop closure is significantly different from zero, but that loop formation stabilizes the base pair closing the loop. The results indicate that for DNA the optimal loop consists of four or five residues. The observation that hairpins are formed for n less than 3 and that the stability of DNA hairpins is at its maximum for loop lengths of four to five residues is at variance with earlier findings for RNA. In the latter case the optimal loop size consists of six to seven residues, whereas for less than three intervening residues only, dimer, and no hairpin formation, was observed [17, 20]. A direct comparison with RNA behaviour was made by studying r(AUCCUAUT4UAGGAU), T = ribothymidine. In contrast to its DNA analogue, d(ATCCTAT4TAGGAT), the ribo-fragment forms a dimer as well as a hairpin at low (10 microM) concentrations. With the thermodynamic melting parameters deduced from the present experiments the differences between DNA and RNA melting behaviour can be explained.  相似文献   

10.
A combination of calorimetric and spectroscopic techniques was used to evaluate the thermodynamic behavior of a set of DNA hairpins with the sequence d(GCGCTnGCGC), where n = 3, 5 and 7, and the interaction of each hairpin with ethidium. All three hairpins melt in two-state monomolecular transitions, with tm's ranging from 79.1 degrees C (T3) to 57.5 degrees C (T7), and transition enthalpies of approximately 38.5 kcal mol-1. Standard thermodynamic profiles at 20 degrees C reveal that the lower stability of the T5 and T7 hairpins corresponds to a delta G degree term of +0.5 kcal mol-1 per thymine residue, due to the entropic ordering of the thymine loops and uptake of counterions. Deconvolution of the ethidium-hairpin calorimetric titration curves indicate two sets of binding sites that correspond to one ligand in the stem with binding affinity, Kb, of approximately 1.8 x 10(6) M-1, and two ligands in the loops with Kb of approximately 4.3 x 10(4) M-1. However, the binding enthalpy, delta Hb, ranges from -8.6 (T3) to -11.6 kcal mol-1 (T7) for the stem site, and -6.6 (T3) to -12.7 kcal mol-1 (T7) for the loop site. Relative to the T3 hairpin, we obtained an overall thermodynamic contribution (per dT residue) of delta delta Hb = delta(T delta Sb) = -0.7(5) kcal mol-1 for the stem sites and delta delta Hb = delta(T delta Sb) = -1.5 kcal mol-1 for the loop sites. Therefore, the induced structural perturbations of ethidium binding results in a differential compensation of favorable stacking interactions with the unfavorable ordering of the ligands.  相似文献   

11.
In an effort to evaluate the relative contributions of sequence, ion binding, and hydration to the thermodynamic stability of nucleic acids, we have investigated the melting behavior of a double hairpin and that of its component single hairpins. Temperature-dependent UV absorption and differential scanning calorimetry techniques have been used to characterize the helix-coil transitions of three deoxyoligonucleotides: d(GTACT5GTAC), d(GCGCT5GCGC), and d(GCGCT5GCGCGTACT5GTAC). The first two oligomers melt with transition temperatures equal to 28 and 69 degrees C, respectively, in 10 mM dibasic sodium phosphate at pH 7.0. The Tm's are independent of strand concentration, strongly indicating the presence of single-stranded hairpin structures at low temperatures. The third oligomer, with a sequence corresponding to the joined sequences of the first two oligomers, melts with two apparently independent monomolecular transitions with Tm's of 41 and 69 degrees C. These transitions correspond to the melting of a double hairpin. In the salt range of 10-100 mM in NaCl, we obtain average enthalpies of 24 and 38 kcal/mol for the transitions in the single-hairpin molecules. Each transition in the double hairpin has an enthalpy of 32 kcal/mol. In addition, dtm/d log [Na+] for the transitions are 4.1 and 4.7 degrees C for the single hairpins and 12.6 and 11.2 degrees C for each transition in the double hairpin. The differential ion binding parameter between the double hairpin and that of the sum of single hairpins is roughly equal to 1.1 mol of Na+ ions/mol of double hairpin and is consistent with an increase in the electrostatic behavior of the stem phosphates of this molecule.  相似文献   

12.
Vecenie CJ  Morrow CV  Zyra A  Serra MJ 《Biochemistry》2006,45(5):1400-1407
Thermodynamic parameters are reported for hairpin formation in 1 M NaCl by RNA sequence of the types GCGXUAAUYCGC and GGUXUAAUYACC with Watson-Crick loop closure, where XY is the set of 10 possible mismatch base pairs. A nearest-neighbor analysis of the data indicates the free energy of loop formation at 37 degrees C varies from 3.1 to 5.1 kcal/mol. These results agree with the model previously developed [Vecenie, C. J., and Serra, M. J. (2004) Biochemistry 43, 11813] to predict the stability of RNA hairpin loops: DeltaG degrees (37L(n) = DeltaG degrees (37i(n) + DeltaG degrees (37MM) - 0.8 (if first mismatch is GA or UU) - 0.8 (if first mismatch is GG and loop is closed on the 5' side by a purine). Here, DeltaG degrees (37i(n) is the free energy for initiating a loop of n nucleotides, and DeltaG degrees (37MM) is the free energy for the interaction of the first mismatch with the closing base pair. Thermodynamic parameters are also reported for hairpin formation in 1 M NaCl by RNA sequence of the types GACGXUAAUYUGUC and GGUXUAAUYGCC with GU base pair closure, where XY is the set of 10 possible mismatch base pairs. A nearest-neighbor analysis of the data indicates the free energy of loop formation at 37 degrees C varies from 3.6 to 5.3 kcal/mol. These results allow the development of a model for predicting the stability of hairpin loops closed by GU base pairs. DeltaG degrees (37L(n) (kcal/mol) = DeltaG degrees (37i(n) - 0.8 (if the first mismatch is GA) - 0.8 (if the first mismatch is GG and the loop is closed on the 5' side by a purine). Note that for these hairpins, the stability of the loops does not depend on DeltaG degrees (37MM). For hairpin loops closed by GU base pairs, the DeltaG degrees (37i(n) values, when n = 4, 5, 6, 7, and 8, are 4.9, 5.0, 4.6, 5.0, and 4.8 kcal/mol, respectively. The model gives good agreement when tested against six naturally occurring hairpin sequences. Thermodynamic values for terminal mismatches adjacent to GC, GU, and UG base pairs are also reported.  相似文献   

13.
A statistical mechanical "zipper" model is applied to describe the equilibrium melting of short DNA hairpins with poly(dT) loops ranging from 4 to 12 bases in the loop. The free energy of loop formation is expressed in terms of the persistence length of the chain. This method provides a new measurement of the persistence length of single-stranded DNA, which is found to be approximately 1.4 nm for poly(dT) strands in 100 mM NaCl. The free energy of the hairpin relative to the random coil state is found to scale with the loop size with an apparent exponent of > or = 7, much larger than the exponent of approximately 1.5-1.8 expected from considerations of loop entropy alone. This result indicates a strong dependence of the excess stability of the hairpins, from stacking interactions of the bases within the loop, on the size of the loop. We interpret this excess stability as arising from favorable hydrophobic interactions among the bases in tight loops and which diminish as the loops get larger. Free energy profiles along a generalized reaction coordinate are calculated from the equilibrium zipper model. The transition state for hairpin formation is identified as an ensemble of looped conformations with one basepair closing the loop, and with a lower enthalpy than the random coil state. The equilibrium model predicts apparent activation energy of approximately -11 kcal/mol for the hairpin closing step, in remarkable agreement with the value obtained from kinetics measurements.  相似文献   

14.
Spectroscopic and calorimetric melting studies of 28 DNA hairpins were performed. These hairpins form by intramolecular folding of 16 base self‐complementary DNA oligomer sequences. Sequence design dictated that the hairpin structures have a six base pair duplex linked by a four base loop and that the first five base pairs in the stem are the same in every molecule. Only loop sequence and identity of the duplex base pair closing the loop vary for the set of hairpins. For these DNA samples, melting studies were carried out to investigate effects of the variables on hairpin stability. Stability of the 28 oligomers was ascertained from their temperature‐induced melting transitions in buffered 115 mM Na+ solvent, monitored by ultraviolet absorbance and differential scanning calorimetry (DSC). Experiments revealed the melting temperatures of these molecules range from 32.4 to 60.5°C and are concentration independent over strand concentrations of 0.5 to 260 μM; thus, as expected for hairpins, the melting transitions are apparently unimolecular. Model independent thermodynamic transition parameters, ΔHcal, ΔScal, and ΔGcal, were determined from DSC measurements. Model dependent transition parameters, ΔHvH, ΔSvH, and ΔGvH were estimated from a van't Hoff (two‐state) analysis of optical melting transitions. Results of these studies reveal a significant sequence dependence to DNA hairpin stability. Thermodynamic parameters evaluated by either procedure reveal the transition enthalpy, ΔHcalHvH) can differ by as much as 20 kcal/mol depending on sequence. Similarly, values of the transition entropy ΔScalSvH) can differ by as much as 60 cal/Kmol (eu) for different molecules. Differences in free energies ΔGcalGvH) are as large as 4 kcal/mol for hairpins with different sequences. Comparisons between the model independent calorimetric values and the thermodynamic parameters evaluated assuming a two‐state model reveal that 10 of the 28 hairpins display non‐two‐state melting behavior. The database of sequence‐dependent melting free energies obtained for the hairpins was employed to extract a set of n‐n (nearest‐neighbor) sequence dependent loop parameters that were able to reproduce the input data within error (with only two exceptions). Surprisingly, this suggests that the thermodynamic stability of the DNA hairpins can in large part be reasonably represented in terms of sums of appropriate nearest‐neighbor loop sequence parameters. © 1999 John Wiley & Sons, Inc. Biopoly 50: 425–442, 1999  相似文献   

15.
Optical melting curves of seven DNA dumbbells with the 16 base-pair duplex sequence 5'G-C-A-T-A-G-A-T-G-A-G-A-A-T-G-C3' linked on both ends by Tn (n = 2, 3, 4, 6, 8, 10, and 14) loops measured in 30, 70, and 120 mM Na+ are analyzed in terms of the numerically exact statistical thermodynamic model of DNA melting. The construction and characterization of these molecules were described in the previous paper (Amaratunga et al., 1992). As was recently reported for hairpins (T. M. Paner, M. Amaratunga, M. J. Doktycz, and A. S. Benight, 1990, Biopolymers, Vol. 29, pp. 1715-1734) theoretically calculated melting curves were fitted to experimental curves by simultaneously adjusting the parameters representing loop and circle formation to optimize the fits. The systematically determined empirical parameters provide evaluations of the free energies of hairpin loop formation delta Gloop (n) and single-strand circles delta Gcircle (N), as a function of end loop size, n = 2-14, and circle size, N = 32 + 2n. The dependence of these quantities on solvent ionic strength over the range from 30 to 120 mM Na+ was evaluated. An approximately analytical expression for the partition function Q(T) of the dumbbells was formulated that allowed a means for determining the transition enthalpy delta H degrees and entropy delta S degrees for every dumbbell, revealing the dependence of these quantities on loop size. In this multistate approach a manifold of partially melted intermediate microstates are considered and therefore no assumptions regarding the nature of the melting transitions (that they are two-state) are required. The transition thermodynamic parameters were also determined from a van't Hoff analysis of the melting curves. Comparisons between the results of the multistate analysis and the two-state van't Hoff analysis revealed significant differences for the dumbbells with larger end loops, indicating that the melting transitions of the larger looped dumbbells deviate considerably from two-state behavior. Results are then compared with published melting studies of much larger DNA dumbbells (D. B. Naritsin and Y. L. Lyubchenko, 1990, Journal of Biomolecular Structure and Dynamics, Vol. 8, pp. 1-13), of small hairpins (Paner et al., 1990; M. J. Doktycz, T. M. Paner, M. Amaratunga and A. S. Benight, 1990, Biopolymers, Vol. 30, pp. 829-845) and another dumbbell (A. S. Benight, J. M. Schurr, P. F. Flynn, B. R. Reid, and D. E. Wemmer, 1988) Journal of Molecular Biology, Vol. 200, pp. 377-399).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Chang CY  Stellwagen NC 《Biochemistry》2011,50(42):9148-9157
The free solution electrophoretic mobilities and thermal stabilities of hairpins formed by two complementary 26-nucleotide oligomers have been measured by capillary electrophoresis. The oligomers are predicted to form molecular beacon-like hairpins with 5 bp stems and 16 nucleotides in the loop. One hairpin, called hairpin2 (hp2), migrates with a relatively fast free solution mobility and exhibits melting temperatures that are reasonably well predicted by the popular structure-prediction program Mfold. Its complement, called hairpin1 (hp1), migrates with a slower free solution mobility and forms a stable hairpin only in solutions containing ≥200 mM Na(+). The melting temperatures observed for hp1 are ~18 °C lower than those observed for hp2 and ~20 °C lower than those predicted by Mfold. The greater thermal stability of hp2 is due to the presence of tandem GA residues on opposite sides of the loop. If the corresponding TC residues in the hp1 loop are replaced by tandem GA residues, the melting temperatures of the modified hairpin are close to those observed for hp2. Eliminating the tandem GA residues in the hp2 loop significantly decreases the thermal stability of hp2. If the loops are replaced by a loop of 16 thymine residues, the free solution mobilities and thermal stabilities of the T-loop hairpin are equal to those observed for hp1. Hence, the loop of hp1 appears to be relatively unstructured, with few base-base stacking interactions. Interactions between tandem GA residues on opposite sides of the hp2 loop appear to compact the loop and increase hairpin stability.  相似文献   

17.
The CGG triplet repeat found within the 5'UTR of the FMR1 gene is involved in the pathogenesis of both fragile X syndrome and fragile X-associated tremor/ataxia syndrome (FXTAS). The repeat has been shown to form both hairpins and tetraplexes in DNA; however, the secondary structure of CGG-repeat RNA has not been well defined. To this end, we have performed NMR spectroscopy on in vitro transcribed CGG-repeat RNAs and see clear evidence of intramolecular hairpins, with no evidence of tetraplex structures. Both C*G and G*G base pairs form in the hairpin stem, though in a dynamic equilibrium of conformations. In addition, we investigated the effect of an AGG repeat interruption on hairpin stability; such interruptions are often interspersed within the CGG repeat element and are thought to modulate secondary structure of the RNA. While the AGG repeat lowers the Tm of the hairpin at low Mg2+ concentrations, this difference disappears at physiological Mg2+ levels.  相似文献   

18.
On loop folding in nucleic acid hairpin-type structures   总被引:14,自引:0,他引:14  
In a series of studies, combining NMR, optical melting and T-jump experiments, it was found that DNA hairpins display a maximum stability when the loop part of the molecule comprises four or five nucleotide residues. This is in contrast with the current notion based on RNA hairpin studies, from which it had been established that a maximum hairpin stability is obtained for six or seven residues in the loop. Here we present a structural model to rationalize these observations. This model is based on the notion that to a major extent base stacking interactions determine the stability of nucleic acid conformations. The model predicts that loop folding in RNA is characterized by an extension of the base stacking at the 5'-side of the double helix by five or six bases; the remaining gap can then easily be closed by two nucleotides. Conversely, loop folding in DNA is characterized by extending base stacking at the 3'-side of the double helical stem by two or three residues; again bridging of the remaining gap can then be achieved by one or two nucleotides. As an example of loop folding in RNA the anticodon loop of yeast tRNAPhe is discussed. For the DNA hairpin formed by d(ATCCTAT4TAGGAT) it is shown that the loop structure obtained from molecular mechanics calculations obeys the above worded loop folding principles.  相似文献   

19.
Thermodynamic parameters and circular dichroism spectra are presented for RNA hairpins containing single internal mismatches in the stem regions. Three different sequence contexts for the G*U mismatch and two contexts for C*A, G*A, U*U, A*C and U*G mismatches were examined and compared with Watson-Crick base-pair stabilities. The RNA hairpins employed were a microhelix and tetraloop representing the Escherichia coli tRNAAlaacceptor stem and sequence variants that have been altered at the naturally occurring G*U mismatch site. UV melting studies were carried out under different conditions to evaluate the effects of sodium ion concentration and pH on the stability of mismatch-containing hairpins. Our main findings are that single internal mismatches exhibit a range of effects on hairpin stability. In these studies, the size and sequence of the loop and stem are shown to influence the overall stability of the RNA, and have a minor effect on the relative mismatch stabilities. The relationship of these results to RNA-ligand interactions involving mismatch base-pairs is discussed.  相似文献   

20.
The 3'-terminal colicin fragments of 16S ribosomal RNA were isolated from Bacillus stearothermophilus and from its kasugamycin-resistant (ksgA) derivative lacking N6-dimethylation of the two adjacent adenosines in a hairpin loop. The fragment from the ksgA strain still contains a naturally occurring N2-methylguanosine in the loop. An RNA molecule resembling the B. stearothermophilus colicin fragment but without modified nucleosides was synthesized in vitro using a DNA template and bacteriophage T7 RNA polymerase. Proton-NMR spectra of the RNAs were recorded at 500 MHz. The imino-proton resonances of base-paired G and U residues could be assigned on the basis of previous NMR studies of the colicin fragment of Escherichia coli and by a combination of methylation-induced shifts and thermal melting of base pairs. The assignments were partly confirmed by NOE measurements. Adenosine dimethylation in the loop has a distinct conformational effect on the base pairs adjoining the loop. The thermal denaturation melting curve of the enzymatically synthesized RNA fragment was also determined and the transition midpoint (tm) was found to be 73 degrees C at 15 mM Na+. A comparison with previously determined thermodynamic parameters for various colicin fragments demonstrates that base methylations in the loop lead to a relatively strong destabilization of the hairpin helix. In terms of free energy the positive contribution of the methylations are in the order of the deletion of one base pair from the stem. Other data show that recently published free-energy parameters do not apply for certain RNA hairpins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号