首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
《Journal of Asia》2023,26(1):102022
The sweet potato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), and the greenhouse whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), are important pests of protected crops grown in warm climates. We compared efficacy of a new strain of the entomopathogenic fungus Beauveria bassiana (ARP14) isolated from Riptortus pedestris (Hemiptera: Alydidae) with a commercial strain (GHA) against different life stages of both B. tabaci and T. vaporariorum. Eggs, nymphs, and adults were exposed to 1 × 108 conidia/mL of each strain using the leaf-dipping method. The mycosis rate of B. tabaci eggs (as a proportion) was relatively low (0.13 for B. bassiana ARP14 and 0.10 for B. bassiana GHA), while, for T. vaporariorum eggs, mycosis rate was 0.44 for B. bassiana GHA and 0.27 for B. bassiana ARP14. However, mycosis rate of 1st instars of both whiteflies was much higher than for eggs, for both strains (ARP14 and GHA). The developmental period of B. tabaci eggs exposed to ARP14 was significantly shorter than for either eggs treated with GHA or the control. For 2nd and 4th instar nymphs and adults of both whiteflies there were no differences in mycosis rates between the two B. bassiana strains. These results suggest that, B. bassiana ARP14 could be commercialized as a native biological control agent for control of B. tabaci and T. vaporariorum.  相似文献   

2.
The greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) is a polyphagous pest in greenhouse crops. The efficacy of two entomopathogenic nematodes (EPN), Steinernema feltiae and Heterorhabditis bacteriophora, as biological control agents against T. vaporariorum was evaluated using two model crops typical of vegetable greenhouse productions: cucumber and pepper. Laboratory tests evaluated adults and second nymphal instars for pest susceptibility to different EPN species at different concentrations of infective juveniles (IJ; 0, 25, 50, 100, 150, 200, and 250 IJ per cm2); subsequent greenhouse trials against second nymphal instars on cucumber and pepper plants evaluated more natural conditions. Concentrations were applied in combination with Triton X-100 (0.1% v/v), an adjuvant for increasing nematode activity. In laboratory studies, both life stages were susceptible to infection by the two nematode species, but S. feltiae recorded a lower LC50 than H. bacteriophora for both insect stages. Similarly, in greenhouse experiments, S. feltiae required lower concentrations of IJ than H. bacteriophora to reach the same mortality in nymphs. In greenhouse trials, a significant difference was observed in the triple interaction among nematode species × concentration × plant. Furthermore, the highest mortality rate of the second nymphal instars of the T. vaporariorum was obtained from the application of S. feltiae concentrated to 250 IJ/cm2 on cucumber (49 ± 1.23%). The general mortality caused by nematodes was significantly higher in cucumber than in pepper. These promising results support further investigation for the optimization of the best EPN species/concentration in combination with insecticides or adjuvants to reach a profitable control of this greenhouse pest.  相似文献   

3.
The effect of the combined use of Encarsia formosa or Macrolophus caliginosus and one of three marketed mycoinsecticides, Mycotal® (Leucanicillium muscarium-based), Naturalis-L™ (Beauveria bassiana-based) and PreFeRal® (Isaria fumosorosea-based), on the control of the whitefly, Trialeurodes vaporariorum, was studied under laboratory and greenhouse conditions. The results of both types of tests, the bioassays and the greenhouse trials, for all combinations of E. Formosa with each of the three mycoinsecticides showed that the total mortality of larval populations of T. vaporariorum was not affected. The mortality of T. vaporariorum larvae treated in the second instar revealed the capacity for both B. bassiana- and L. muscarium-based formulations and E. formosa to kill the host either separately or in association. Because of its higher pathogenic activity (under our test conditions), L. muscarium provoked a large proportion of mycoses in larvae exposed to parasitization. In contrast, the efficacy of parasitization was higher in larvae treated with B. bassiana and exposed to E. formosa because of a lower pathogenic activity of the fungus. Bioassays carried out with third-instar larvae of T. vaporariorum showed a low susceptibility to both tested fungi. Consequently, mortalities recorded in larvae subjected to the combined treatments by consecutive exposures or at 2-4 days post-parasitization were mainly caused by the development of the parasitoid. Greenhouse trials showed that fungus-induced mortality of T. vaporariorum in plants treated with L. muscarium, I. fumosorosea, and B. Bassiana was significant compare to control. L. muscarium, B. bassiana and I. fumosorosea killed young whitefly larvae and limited parasitization to 10% or less. Second-instar larvae of M. caliginosus were not susceptible to L. muscarium and B. bassiana formulations with any mode of contamination: direct spraying of larvae, spraying on the foliar substrate or by contaminated T. vaporariorum prey. In greenhouse trials, M. caliginosus populations treated with fungi were not significantly affected compared to controls.  相似文献   

4.
The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), is a pest of various fruit, vegetable, fiber, and seed crops; including cotton. Lygus spp. populations often build on alternate host plants before moving to cotton, and in the midsouthern U.S. wild host plants, such as pigweed (Amaranthus spp.), play a major role in L. lineolaris population development. Three isolates of the entomopathogenic fungus Beauveria bassiana (Balsamo) were evaluated for L. lineolaris control in redroot pigweed (Amaranthus retroflexus L.): one from L. lineolaris in Mississippi (TPB3); one from Lygus hesperus (Knight) in California (WTPB2); and one commercial isolate from Mycotrol® (GHA). Fungal applications resulted in moderate to high mycosis in adults (33 to 80%) and moderate mycosis in nymphs (36 to 53%) that were collected from field plots at 2 days post-treatment and incubated under laboratory conditions. Although TPB3 was previously found to be more pathogenic in laboratory bioassays, there was not a consistent separation of this isolate from the other two isolates in field trials. Where differences in adult mycosis or mortality were observed, TPB3 was the most pathogenic. However, in one field trial 7 day mortality for nymphs treated with GHA was higher than those treated with TPB3 or WTPB2. Infection rates at 2, 7, and 14 days post-treatment from caged and non-caged adults suggested that movement of adults among plots occurred, which could have masked some treatment effects. Fungal treatments did not significantly reduce populations relative to controls. This may have been caused by delayed mortality rates under field conditions and/or difficulties with estimating population change under field conditions characteristic of wild host plant populations (e.g., heterogeneous populations, adult movement, and small plot size). Further work evaluating time–dose–mortality over dynamic temperatures, spring and fall field trials on this and other wild hosts, and improved methods for estimating populations on wild hosts are needed.  相似文献   

5.
An ongoing debate in biological control consists of whether interference between biological agents can disrupt pest control. This study investigated the outcome of interactions between the entomopathogen Beauveria bassiana with the whitefly predator Dicyphus hesperus and the parasitoid Encarsia formosa, as well as their effect on the control of the greenhouse whitefly Trialeurodes vaporariorum on greenhouse tomato crops. Our objective was to determine whether the generalist B. bassiana would disrupt biological control by interfering with D. hesperus or E. formosa. In experimental greenhouses, whitefly, parasitoid and predator populations were established, and over 27 days, tomato plants were sprayed with three applications of the B. bassiana based product BotaniGard® (5.13×103 conidia/mm2) or water (control). Populations of greenhouse whitefly and biological control organisms were regularly monitored in control and B. bassiana-treated compartments. Overall, 10.6% of all whiteflies in treated compartments were infected, and 0.98% were both infected and parasitized. There were 31.7 and 22.3% fewer immature and adult whiteflies, respectively, on B. bassiana-treated plants relative to controls. Parasitism by E. formosa and predation by D. hesperus occurred at rates of 7.5 and 2.5%, respectively, in B. bassiana-treated compartments, and 5 and 6%, respectively in control compartments. Our study suggests that applications of B. bassiana for short-term biological control of greenhouse whiteflies are compatible with the concurrent use of E. formosa and D. hesperus on greenhouse tomato crops.  相似文献   

6.
Biocontrol of the whitefly Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) using entomopathogenic fungi has been a difficult challenge under greenhouse conditions. In order to select fungal isolates adapted to high temperature and extremely low moisture nine isolates of Lecanicillium lecanii (Zimmerman) Zare & W. Gams, L. attenuatum Zare & W. Gams and L. longisporum (Petch) Zare & W. Gams (Hypocreales: Clavicipitaceae) were evaluated. In vitro assays were performed to determine colony radial growth, conidial production and conidial germination in three water activity media (aw = 0.97, 0.98 and 1.00) at 28 and 32 °C. Virulence of Lecanicillium spp. isolates was evaluated against third instar T. vaporariorum on tomato plants at 23 °C. Colony radial growth, conidial production and germination decreased with the reduction in water activity, while 32 °C was extremely detrimental for all fungal isolates. However, some isolates were able to grow and produce conidia at low water activity and high temperature. Additionally, mortality above 60 % was recorded for one of these isolates. Practical implementation of biocontrol of T. vaporariorum under greenhouse production systems should consider the selection of those Lecanicillium isolates that show tolerance to the adverse environmental conditions in greenhouses.  相似文献   

7.
Peristenus digoneutis Loan (Hymenoptera: Braconidae) was introduced to the US for biological control of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae), and has since spread through much of the northeast. The purpose of this study was to determine if P. digoneutis and a native congener, Peristenus pallipes (Curtis), parasitize L. lineolaris in strawberry (where it is a key pest), and what factors relate to parasitism levels. During 1997–1999 we monitored parasitism on 17 strawberry farms in 14 counties in eastern and western New York State. We found that in eastern NY (where P. digoneutis has been established since the early 1990s), overall mean parasitism was 19.7% (ranging from 0 to 70%), mostly by P. digoneutis. Mean parasitism was significantly lower (12.3%, ranging from 0 to 58%) in western NY (where P. digoneutis was first recorded in 1999), and was mostly by P. pallipes. P. pallipes parasitism was significantly lower in eastern than western NY, suggesting the potential for competitive interaction with P. digoneutis. The insecticide regime of a farm was an important factor influencing parasitism rate, which was 5- to 6.5-fold higher on organic or casually sprayed farms than on intensely treated farms, though pest density under these three regimes was not significantly different. L. lineolaris density, and parasitism rate in nearby alfalfa and abandoned fields were also significant factors for parasitism in strawberry.  相似文献   

8.
As part of a 3-fold approach to select potential mycoinsecticides for whitefly control, we evaluated infectivity, thermal requirements, and toxicogenic activity of the entomopathogenic fungus Beauveria bassiana (Ascomycota: Clavicipitaceae) under laboratory conditions. Twenty-five native B. bassiana isolates and a commercially available mycoinsecticide (based on B. bassiana) were evaluated for virulence to fourth instar nymphs of sweetpotato whitefly, Bemisia tabaci, and greenhouse whitefly, Trialeurodes vaporariorum, at a concentration of 1 × 107 conidia/ml. All isolates were pathogenic for both whitefly species, whereas mortality rates varied from 3 to 85%. A second series of bioassays was conducted on 10 selected isolates using four 10-fold concentrations ranging from 1 × 105 to 1 × 108 conidia/ml. Median lethal concentrations (LC50) of the four most virulent isolates varied from 1.1 × 105 to 6.2 × 106 conidia/ml and average survival time (AST) of treated nymphs from 5.9 to 7.4 days. T. vaporariorum were significantly more susceptible to all B. bassiana isolates than B. tabaci. The thermal biology of the eight most virulent isolates to both whitefly species was investigated at six temperatures (10–35 °C). The colony radial growth rate was estimated from the slope of the linear regression of colony radius on time and data were then fitted to a modified generalized β function that accounted for 90.5–99.3% of the data variance. Optimum temperatures for extension rate ranged from 23.1 to 27.1 °C, whereas maximum temperatures for fungal growth varied from 31.8 to 36.6 °C. On the basis of their virulence and thermal requirements, three isolates showed promise as candidates for whitefly management in Mediterranean greenhouses. Whilst in vitro production of macromolecular compounds toxic to Galleria mellonella larvae was not a requisite for virulence, ASTs of larvae injected with Sephadex G-25 fractions from candidate isolates ranged from 1.4 to 3.7 days compared with 5–6 days for non-toxic G-25 fractions. In addition, proteinase K treatment significantly reduced their toxic activity suggesting that they were proteins and revealing the potential of these isolates to be further improved through biotechnology to kill the pest more quickly.  相似文献   

9.
Beauveria bassiana has a high insecticidal potential to control the tarnished plant bug, Lygus lineolaris, a significant pest of strawberries. Screening experiments showed that L. lineolaris adults were susceptible to several B. bassiana isolates. Another screening test with Coleomegilla maculata, a natural enemy found in strawberries, was also performed in order to select the isolate having lower entomopathogenic impact on this insect. Based on data obtained from both insect species and on the ecozone origin of the B. bassiana isolates, INRS‐IP and INRS‐CFL isolates were selected for further experiments. The LC50 values of these two isolates against L. lineolaris adults were 7.8 × 105 and 5.3 × 105 conidia/ml, and average survival time (AST) values were 4.46 and 4.37 days at a concentration of 1 × 108 conidia/ml respectively. Results also indicated that L. lineolaris nymphs are susceptible to the selected isolates. During field experiments, using a randomized block design with four replicates, INRS‐IP and INRS‐CFL isolates were applied at two rates (1 × 1011 and 1 × 1013 conidia/ha) weekly during a period of 4 weeks. These multiple applications triggered a significant reduction of L. lineolaris nymphal populations in strawberries. Twenty‐four days after the first application, a significant difference was observed between the mean population densities of surviving nymphs in all B. bassiana‐treated plots (less than one insect per five plants) compared with those in control plots (four insects per five plants). During the field experiment, persistence of insecticidal activity and viability of B. bassiana conidia were also monitored. The results showed the presence of viable and infective conidia up to 6 days after each application on strawberry foliage. Moreover, the multiple applications of B. bassiana at the rate of 1 × 1013 conidia/ha triggered a significant reduction in strawberry fruit injuries induced by L. lineolaris feeding behaviour compared with the control plots.  相似文献   

10.
Preliminary screening assays were carried out on 17 isolates from five fungal species Beauveria bassiana, Lecanicillium muscarium, Metarhizium anisopliae, Isaria farinosa, and I. fumosorosea. The three most effective isolates against Peregrinus maidis (Hemiptera: Delphacidae) were B. bassiana CEP 147, CEP 150, and CEP 189. There were no consistent differences found in males and females regarding fungal susceptibility. However, more females than males were proportionally infected. There was not a correlation between the percentage of conidial germination and the percentage of mortality caused by fungal infection in any of the treatments. Only B. bassiana CEP 147, which caused a cumulative mortality of 69.8 ± 6.4% after 7 days post-inoculation, was selected to be assayed against adults of P. maidis, Delphacodes kuscheli (Hemiptera: Delphacidae), and Dalbulus maidis (Hemiptera: Cicadellidae). In pathogenicity tests significant differences were observed among treatments. After 2 weeks post-inoculation, both D. kuscheli (cumulative mortality of 73.3 ± 9.0%) and P. maidis (cumulative mortality of 68.6 ± 6.7%) were significantly more susceptible than D. maidis (cumulative mortality of 49.9 ± 9.7%) to the selected isolate.  相似文献   

11.
The effects of intraguild interactions between Dicyphus hesperus Knight (Hemiptera: Miridae) and Paecilomyces fumosoroseus Apopka-97 (PFR-97TM) (Wize) Brown and Smith (Ascomycota: Hypocreales) on Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) populations were investigated in tomato greenhouse microcosms. Conditions were established in which interference or synergy would most likely occur; namely, a high number of available whiteflies were combined with large numbers of both D. hesperus and PFR-97TM. We measured live whitefly density in a factorial repeated measures experiment where plants were provided or withheld releases of D. hesperus and/or applications of PFR-97TM for 6 weeks. Releases of D. hesperus were made at a rate of 10 adults/plant during the first and third week and PFR-97TM suspensions were applied with a backpack sprayer at a rate of 18 × 107, 1.3 × 107 and 1.2 × 107 viable blastospores/ml during the first, third and fourth week, respectively. Results revealed a non-significant interaction effect between D. hesperus and PFR-97TM, indicating that their actions were independent. Individual whitefly reductions of 48% and 35% were achieved by PFR-97TM and D. hesperus, respectively. Collectively, the natural enemies reduced whitefly densities by 62% relative to the controls. The density of D. hesperus adults was unaffected by multiple applications of PFR-97TM. These results suggest that the combination of generalist entomopathogenic fungi and generalist predators has the potential to cause increased pest mortality despite evidence of minimal interference.  相似文献   

12.
Lygus hesperus (Knight) (Hemiptera: Miridae) is a particularly damaging pest of many crops in the Western United States. Current control tactics are chemically based and there is some concern over resistance building up in populations. Based on previous laboratory studies conducted in California and Mississippi, USA, two new isolates of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Deuteromycotina: Hyphomycetes) were selected for field-testing against L. hesperus in California. Alfalfa plots were treated with one of three isolates of B. bassiana (a commercial isolate, an isolate from CA (WTPB2) or an isolate from MS (TPB3)) or the chemical pesticide Warrior T. More than 75% of the adults collected from plots 3 days after application with B. bassiana were infected but no differences in percentage infection occurred among fungal treatments. In addition, approximately 30% of the insects collected from control plots or plots treated with Warrior T were also infected. PCR analysis using SSR markers revealed that the isolate causing most of the infections in fungus treated plots was the isolate applied. A mix of infections was found in control plots and plots treated with Warrior T. Despite high levels of infection, no significant reductions of adult populations occurred until 10–14 days after application when plots treated with Warrior T or B. bassiana had about half the numbers of adult L. hesperus as the control plots.  相似文献   

13.
The Mediterranean fruit fly, Ceratitis capitata Wiedemann (Diptera: Tephritidae), is the major tephritid pest in Morocco. This pest survives in Moroccan forests Argania spinosa and continually invades the nearest agricultural areas. Entomopathogenic fungi are an interesting tool for fruit fly control and hold a useful alternative to conventional insecticides. However, primary selection of effective pathogens should be taken in laboratory condition prior to applying them in the field. Here, we used third late instar larvae of C. capitata to investigate the effectiveness of 15 local Beauveria bassiana isolates. Results showed that all isolates were able to infect the larval stage, producing a large mortality rate in puparia ranging from 65 to 95 % and caused significant reduction in adult emergence. The fungal treatments revealed that the mycosis occurred also in adults escaping infection as pupariating larvae. The percentage of mycosed puparia was highest in strain TAM6.2 (95 %) followed by ERS4.16 (90 %), therefore they were the most virulent. Median lethal concentration (LC50) was studied for five isolates at four concentrations ranging from 105 to 108 conidia ml?1. The results showed that the slopes of regression lines for B. bassiana ERS4.16 (slope = 0.386) and TAM6.2 (slope = 0.41) were the most important and had the lowest LC50 values (2.85 × 103 and 3.16 × 103 conidia ml?1 respectively). This investigation suggests that the soil of Argan forests contains pathogenic B. bassiana isolates and highlights for the first time their potential as biological control toward C. capitata larval stage in Morocco.  相似文献   

14.
Pepino mosaic virus (PepMV) has become an important viral disease of greenhouse tomatoes worldwide. The ability of bumble‐bees (Bombus impatiens), used for pollination, to acquire and transmit PepMV was investigated, and the prevalence of PepMV in plants and bumble‐bees in commercial tomato greenhouses was determined. PepMV infection in plants was determined using enzyme‐linked immunosorbent assay, while in bumble‐bees direct real‐time PCR was used. In the first experiment, the bumble‐bees were exposed for 14 days to PepMV‐infected plants. After 14 days, almost all bumble‐bees were PepMV positive both in the hive (78.5 ± 17.5%) and in the flowers (96.3 ± 3.6%). In the second experiment, bumble‐bees were released into a greenhouse with both PepMV‐infected source plants and healthy non‐infected target plants for 14 days. At the end of the experiment, 61.0 ± 19.5% of the bees collected from the hive and 83.3 ± 16.7% of the bees sampled from the flowers were PepMV positive. Bumble‐bees transmitted PepMV from the infected to the healthy non‐infected tomato plants. Two weeks after bumble‐bee release, the virus was detected in leaf, fruit and flower samples of formerly healthy plants. After 6 weeks, the percentage of PepMV positive samples from the target plants increased to 52.8 ± 2.8% of the leaves and 80.6 ± 8.4% of the fruits. In the control greenhouse without bumble‐bees, the target plants did not become infected. Based on the infection levels in flowers, fruits and leaves, the PepMV infection occurred possibly first in the pollinated flowers, and then spread from the fruit that developed from the flowers to other parts of the plant. In commercial greenhouses where PepMV was present, 92–100% of the plants and 88–100% of the bumble‐bees were PepMV positive. No infected plant samples were found in the control commercial greenhouse, but a small number of bumble‐bees (10%) tested PepMV positive.  相似文献   

15.
《Journal of Asia》2020,23(4):1181-1187
The greenhouse whitefly, Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae), is one of the most important pests of greenhouse crops. The intensive use of chemical insecticides has resulted in insecticide resistance in T. vaporariorum and the critical level of pesticides residue in crops. It is therefore necessary to develop new control methods based on ecological pest management. The present study was designed to control greenhouse whitefly by finding and using insect repellent wavelengths. The repellent wavelength experiment was conducted by a two-way phototactic apparatus given a choice between darkness and visible wavelength spectrum from violet (380–450 nm) to red (620–750 nm). The phototactic responses of the greenhouse whitefly were then investigated in a four-way phototactic apparatus given a choice between two light regimes, light-emitting diode (LED) and sunlight. The results indicated that the lowest (69.2%) and highest (97.8%) number of whiteflies were attracted to violet and orange (590–625 nm) spectra, respectively. In addition, the present study indicated a significant attraction of T. vaporariorum adults to sunlight compared with LED. Furthermore, the eggplants grown under growth LEDs showed a significantly higher growth rate than the plants grown under sunlight. These findings suggest that this type of LED not only has positive effects on plant growth but it also has a repellent activity on T. vaporariorum adults, leading us to develop an effective behavioral control of the greenhouse whitefly.  相似文献   

16.
The cherry slugworm Caliroa cerasi is a significant destructive pest of sour cherries (Prunus cerasus) in Turkey. The potential of entomopathogenic fungi for controlling C. cerasi was evaluated. The effects of exposure methods and conidial concentrations (1 × 106, 1.5 × 106, 1 × 107 and 1.5 × 107 conidia/ml) on mature larvae of C. cerasi infected by Beauveria bassiana were investigated under laboratory conditions. Larvae sprayed directly with B. bassiana conidial suspensions and larvae exposed to B. bassiana-treated leaves resulted in 100% mortality within 2.90 and 2.77 days, respectively. The median lethal time (LT50) and days to mortality were highest in the 1.0 × 107 concentrations of conidia for both direct spray and leaf exposure. The present study suggests that B. bassiana has good potential for control of the cherry slugworm, C. cerasi.  相似文献   

17.
Greenhouse whitefly Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) is one of the most injurious pests of greenhouse crops and ornamental plants in worldwide, both outdoor and indoor. This insect, feeding on plant sap, producing honeydew and transmitting plant viruses, causes quantitative and qualitative damages in plants. For controlling this pest in greenhouse, plant essential oils are mentioned instead of chemical insecticidal. So, in this research, fumigant toxicity of Carum copticum L. (Fam.: Apiaceae) plant oil on mentioned adult pest was surveyed. Dry ground seeds were subjected to hydrodistillation using a modified Clevenger-type apparatus and the resulting oil contained Thymol (50.07%), Gama-Terpinene (23.99%), P-Cymene (22.9%), Myrcene (0.51%) and 1,8-Cineole (0.5%). All bioassay tests were conducted at 27?±?2?°C, 65?±?5 RH and a photoperiod of 16:8?h (light: dark). This research was performed with a completely random design with six treatments (five different concentrations of essential oils plus control). Each concentration includes of three replicates and each replicate consisted of 20 adult of pests. The results showed that aforementioned essential oil shows significant mortality of adults 24?h after exposure. The value LC50 of mentioned plant oil on T. vaporariorum was 1.03?μl?L/L air. And mortality percentage shows higher sensitivity of T. vaporariorum against application of essential oil. The value LT50 estimated for T. vaporariorum in concentration of 1.03?μl?L/L air was 7.18?h. Fumigant toxicity this essential oil has had an ordered relationship with the concentration and time exposure. The results of this research showed that mentioned plant oil had appropriate insecticidal effects on these greenhouse pests. The findings showed that C. copticum L. oil has high impact on the above-mentioned pests and it is suggested because of its high potential in fumigant toxicity and its use in integrated pest management programmes in greenhouses is mentioned.  相似文献   

18.
Fungal entomopathogens, especially Beauveria bassiana, are often studied within the context of their use in biological pest control; however, there is limited knowledge of their distributions in host plants and soil ecosystem. We examined the distribution of B. bassiana and its influence on rice plants and paddy soils. B. bassiana could only be detected on the foliar surfaces of rice plants within 15 days under Bb-4 (7.5 × 104 conidia/mL) and Bb-7 (7.5 × 107 conidia/mL) treatments. The endophytic colonization of B. bassiana could not be found in stems, roots, or seeds of rice plants under Bb-4 and Bb-7 treatments. The fungus was found only in the leaves of rice plants under Bb-4 and Bb-7 treatments at 15 days after inoculation. Moreover, B. bassiana was absent from paddy soils under Bb-4 and Bb-7 treatments at all times. Enzyme activity (urease and phosphatase) in the paddy soils of Bb-4 and Bb-7 treatments showed no significant difference from the control. It is possible that B. bassiana was not able to colonize paddy soil. Detailed understanding of distribution and ecological interactions of B. bassiana is helpful for understanding and predicting the effects of fungal entomopathogens on host populations, and the interactions among fungal entomopathogens and other organisms in the community.  相似文献   

19.
This study compared the insecticidal activity of liquid culture-produced blastospores and solid substrate-produced aerial conidia of Beauveria bassiana GHA and Isaria fumosorosea ARSEF3581 strains against Diaphorina citri adults. Insects exposed to 107 propagules/ml in a spray residue contact leaf bioassay died within 6 days at 25°C, with no significant differences between fungal treatments. At higher concentrations (108 propagules/ml), I. fumosorosea conidia killed psyllids faster compared to its blastospore formulation, i.e. 4 versus 5 days, respectively. In greenhouse tests, the same treatments applied to infested citrus plants (2?×?106 spores/ml) all significantly reduced the number of nymphs compared with the untreated controls over 3 weeks; however, only I. fumosorosea blastospores significantly reduced the number of F1 adult psyllids when compared with controls. Similar results were observed in the follow-up greenhouse test, where I. fumosorosea blastospores were the most effective treatment overall, reducing D. citri populations by about 60% after 21 days; by contrast, imidacloprid killed almost 100% of psyllids within a week in both tests. Fewer psyllids exhibited mycosis in the greenhouse (i.e. ≈20 versus?≥?87% in the laboratory). This is the first report comparing both conidial and blastospore formulations of B. bassiana and I. fumosorosea for the control of a psyllid pest. Field testing is required to determine how successful different spore formulations might be under various environmental conditions.  相似文献   

20.
The whiteflies Bemisia tabaci (Gennadius) and Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) are major crop pests throughout the world. Although extensive research about biological control of whitefly by parasitoids and predators has been conducted, also entomopathogenic fungi can be considered as potential biological control agents. Surveys for entomopathogenic fungi were carried out in organic and conventional horticultural crops in greenhouses and open fields in Buenos Aires and Corrientes provinces, Argentina. These surveys resulted in the recovery and isolation of the following fungi from whiteflies: Lecanicillium lecanii (Zimmerm.) Zare & W. Gams, L. muscarium (Petch) Zare & W. Gams, L. longisporum (Petch) Zare & W. Gams, Isaria fumosorosea Wize and I. javanica (Frieder. & Bally) Samson & Hywel-Jones. Pathogenicity tests were conducted against T. vaporariorum nymphs using a conidial suspension (1 × 107 conidia/ml) of the fungi. A mortality rate between 26.6% and 76.6% was obtained at 7 days post-infection. These are the first records of natural infections in the southernmost region of the South American continent of L. lecanii, L. muscarium, L. longisporum and Isaria javanica (Ascomycota: Hypocreales) on T. vaporariorum and also the first report of I. fumosorosea on B. tabaci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号