首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human gamma delta T cells with the TCR variable region V(delta)1 occur mainly in epithelia and respond to stress-induced expression of the MHC class I-related chains A and B, which have no function in Ag presentation. MIC function as ligands for NKG2D-DAP10, an activating receptor complex that triggers NK cells, costimulates CD8 alpha beta and V(gamma)9V(delta)2 gamma delta T cells, and is required for stimulation of V(delta)1 gamma delta T cells. It is unresolved, however, whether triggering of V(delta)1 gamma delta TCRs is also mediated by MIC or by unidentified cell surface components. Soluble MICA tetramers were used as a binding reagent to demonstrate specific interactions with various V(delta)1 gamma delta TCRs expressed on transfectants of a T cell line selected for lack of NKG2D. Tetramer binding was restricted to TCRs derived from responder T cell clones classified as reactive against a broad range of MIC-expressing target cells and was abrogated when TCRs were composed of mismatched gamma- and delta-chains. These results and the inability of V(delta)1 gamma delta T cells to respond to target cells expressing the ULBP/N2DL ligands of NKG2D, which are highly divergent from MIC, indicate that MIC delivers both the TCR-dependent signal 1 and the NKG2D-dependent costimulatory signal 2. This dual function may serve to prevent erroneous gamma delta T cell activation by cross-reactive cell surface determinants.  相似文献   

2.
The influence of MHC antigens on TCR gamma delta usage in CD8+ intraepithelial lymphocytes (IELs) was examined using a pan-reactive and V delta 4 region-specific MAb. While an average of 30% of IELs from the majority of mice of various MHC haplotypes were V delta 4+, a 2-fold or greater percentage of IELs from H-2k mice were V delta 4+. Analysis of IELs from F1 mice indicated that the increase in TCRs using V delta 4 was likely to be the result of positive selection. The V delta 4 usage patterns of IELs from recombinant inbred strains and from mice recombinant within H-2 revealed that the increase in V delta 4 usage mapped to H-2 and required I-E expression. Moreover, selection of TCRs using V delta 4 occurred in chimeric mice in the absence of a thymus. The results demonstrate an extrathymic selective mechanism for gamma delta TCRs of CD8+ IELs and suggest that these cells may exhibit MHC class II-restricted antigen recognition.  相似文献   

3.
The gamma delta T cell clone LBK5 recognizes the MHC molecule IEk. Here, we demonstrate that the affinity of this interaction is weaker than those typically reported for alpha beta TCRs that recognize peptide/MHC complexes. Consistent with our previous finding that peptide bound to the IE molecule does not confer specificity, we show that the entire epitope for LBK5 is contained within the polypeptide chains of the molecule, centered around the polymorphic residues 67 and 70 of the IE beta-chain. However, LBK5 recognition is profoundly influenced by the N-linked glycosylation at residue 82 of the IE alpha-chain. Since infected, stressed, or transformed cells often change the posttranslational modifications of their surface glycoproteins, this finding suggests a new way in which gamma delta T cell Ag recognition can be regulated.  相似文献   

4.
BACKGROUND: Human V gamma 9/V delta 2 T lymphocytes recognize nonpeptidic antigens in a manner distinct from the classical antigen recognition by alpha beta T cells. The apparent lack of major histocompatibility (MHC) restriction and antigen processing allows very fast responses against pathogenic insults. To address the potential functional requirement for accessory molecules, we investigated the roles of the CD2 and lymphocyte function-associated antigen (LFA)-1 T-cell co-receptors in antigen-induced activities of human V gamma 9/V delta 2 T-cell clones. MATERIALS AND METHODS: Human peripheral blood V gamma 9/V delta 2 T lymphocytes were cloned and their cytotoxicity against Daudi lymphoma was measured by a standard 51Cr-release assay. The responses of V gamma 9/V delta 2 T lymphocytes to nonpeptidic antigens were assessed using DNA synthesis and cytokine ELISA assays. Monoclonal antibodies specific for various molecules with potential T-cell accessory functions were utilized in blocking assays. RESULTS: All of our V gamma 9/V delta 2 T-cell clones displayed the Th1 phenotype. The anti-LFA-1 antibody strongly inhibited the cytotoxicity of V gamma 9/V delta 2 T cells against Daudi B-cell lymphoma; whereas, it had no influence on the antigen-induced cytokine release or proliferation. In contrast, antibodies against CD2 and LFA-3 had no effect on the lytic activity of V gamma 9/V delta 2 T cells, but strongly inhibited the cytokine release and proliferation. However, the CD2-LFA-3 interaction was not an absolute requirement for the cytokine release and the DNA synthetic activity of antigen-stimulated V gamma 9/V delta 2 T cells, since the inhibitory effect could be reversed by addition of exogenous interleukin 2 (IL-2). CONCLUSIONS: These novel observations indicate that the signals generated by different accessory molecules and IL-2 can contribute in an integrated fashion to the regulation of V gamma 9/V delta 2 T cells. These interactions may be important for the effectiveness of V gamma 9/V delta 2 T-cell responses.  相似文献   

5.
Cytotoxic T lymphocytes (CTL) recognize virus peptide fragments complexed with class I major histocompatibility complex (MHC) molecules on the surface of virus-infected cells. Recognition is mediated by a membrane-bound T-cell receptor (TCR) composed of alpha and beta chains. Studies of the CTL response to lymphocytic choriomeningitis virus (LCMV) in H-2b mice have revealed that three distinct viral epitopes are recognized by CTL of the H-2b haplotype and that all of the three epitopes are restricted by the Db MHC molecule. The immunodominant Db-restricted CTL epitope, located at LCMV glycoprotein amino acids 278 to 286, was earlier noted to be recognized by TCRs that consistently contained V alpha 4 segments but had heterogeneous V beta segments. Here we show that CTL clones recognizing the other two H-2Db-restricted epitopes, LCMV glycoprotein amino acids 34 to 40 and nucleoprotein amino acids 397 to 407 (defined in this study), utilize TCR alpha chains which do not belong to the V alpha 4 subfamily. Hence, usage of V alpha and V beta in the TCRs recognizing peptide fragments from one virus restricted by a single MHC molecule is not sufficiently homogeneous to allow manipulation of the anti-viral CTL response at the level of TCRs. The diversity of anti-viral CTL likely provides the host with a wider option for attacking virus-infected cells and prevents the emergence of virus escape mutants that might arise if TCRs specific for the virus were homogeneous.  相似文献   

6.
The evolution of vertebrate antigen receptors: a phylogenetic approach   总被引:4,自引:0,他引:4  
Classical T cells, those with alpha beta T-cell receptors (TCRs), are an important component of the dominant paradigm for self-nonself immune recognition in vertebrates. alpha beta T cells recognize foreign peptide antigens when they are bound to MHC molecules on the surfaces of antigen-presenting cells. gamma delta T cells bear a similar receptor, and it is often assumed that these T cells also require specialized antigen-presenting molecules for immune recognition, which we term "indirect antigen recognition." B-cell receptors, or immunoglobulins, bind directly to antigens without the help of a specialized antigen-presenting molecule. Phylogenetically, it has been assumed that T-cell receptors and the genes that encode them are a monophyletic group, and that "indirect" antigen recognition evolved before the split into two types of TCR. Recently, however, it has been proposed that gamma delta-TCRs bind directly to antigens, as do immunoglobulins (Ig's). This calls into question the null hypothesis that indirect antigen recognition is a common characteristic of TCRs and, by extension, the hypothesis that all TCR gene sequences form a monophyletic group. To determine whether alternative explanations for antigen recognition and other historical relationships among TCR genes might be possible, we performed phylogenetic analyses on amino acid sequences of the constant and variable regions which encode the basic subunits of TCR and Ig molecules. We used both maximum-parsimony and genetic distance-based methods and could find no strong support for the hypothesis of TCR monophyly. Analyses of the constant region suggest that TCR gamma or delta sequences are the most ancient, implying that the ancestral immune cell was like a modern gamma delta T cell. From this gamma delta-like ancestor arose alpha beta T cells and B cells, implying that indirect antigen recognition is indeed a derived property of alpha beta-TCRs. Analyses of the variable regions are complicated by strong selection on antigen-binding sequences, but imply that direct antigen binding is the ancestral condition.  相似文献   

7.
Expression of a beta-chain, as a pre-TCR, in T cell precursors prevents further rearrangements on the alternate beta allele through a strict allelic exclusion process and enables precursors to undergo differentiation. However, whether allelic exclusion applies to the TCR delta locus is unknown and the role of the gamma delta TCR in gamma delta lineage commitment is still unclear. Through the analysis of the rearrangement status of the TCR gamma, delta, and beta loci in human gamma delta T cell clones, expressing either the TCR V delta 1 or V delta 2 variable regions, we show that the rate of partial rearrangements at the delta locus is consistent with an allelic exclusion process. The overrepresentation of clones with two functional TCR gamma chains indicates that a gamma delta TCR selection process is required for the commitment of T cell precursors to the gamma delta lineage. Finally, while complete TCR beta rearrangements were observed in several V delta 2 T cell clones, these were seldom found in V delta 1 cells. This suggests a competitive alpha beta/gamma delta lineage commitment in the former subset and a precommitment to the gamma delta lineage in the latter. We propose that these distinct behaviors are related to the developmental stage at which rearrangements occur, as suggested by the patterns of accessibility to recombination sites that characterize the V delta 1 and V delta 2 subsets.  相似文献   

8.
T cells can be divided into two groups on the basis of the expression of either alpha beta or gamma delta T-cell receptors (TCRs). Because the TCR delta chain locus lies within the larger TCR alpha chain locus, control of the utilization of these two receptors is important in T-cell development, specifically for determination of T-cell type: rearrangement of the alpha locus results in deletion of the delta coding segments and commitment to the alpha beta lineage. In the developing thymus, a relative site-specific recombination occurs by which the TCR delta chain gene segments are deleted. This deletion removes all D delta, J delta, and C delta genes and occurs on both alleles. This delta deletional mechanism is evolutionarily conserved between mice and humans. Transgenic mice which contain the human delta deleting elements and as much internal TCR delta chain coding sequence as possible without allowing the formation of a complete delta chain gene were developed. Several transgenic lines showing recombinations between deleting elements within the transgene were developed. These lines demonstrate that utilization of the delta deleting elements occurs in alpha beta T cells of the spleen and thymus. These recombinations are rare in the gamma delta population, indicating that the machinery for utilization of delta deleting elements is functional in alpha beta T cells but absent in gamma delta T cells. Furthermore, a discrete population of early thymocytes containing delta deleting element recombinations but not V alpha-to-J alpha rearrangements has been identified. These data are consistent with a model in which delta deletion contributes to the implementation of a signal by which the TCR alpha chain locus is rearranged and expressed and thus becomes an alpha beta T cell.  相似文献   

9.
Random heterocopolymers of glutamic acid and tyrosine (pEY) evoke strong, genetically controlled immune responses in certain mouse strains. We found that pE50Y50 also stimulated polyclonal proliferation of normal gamma delta, but not alpha beta, T cells. Proliferation of gamma delta T cells did not require prior immunization with this Ag nor the presence of alpha beta T cells, but was enhanced by IL-2. The gamma delta T cell response proceeded in the absence of accessory cells, MHC class II, beta 2-microglobulin, or TAP-1, suggesting that Ag presentation by MHC class I/II molecules and peptide processing are not required. Among normal splenocytes, as with gamma delta T cell hybridomas, the response was strongest with V gamma 1+ gamma delta T cells, and in comparison with related polypeptides, pE50Y50 provided the strongest stimulus for these cells. TCR gene transfer into a TCR-deficient alpha beta T cell showed that besides the TCR, no other components unique to gamma delta T cells are needed. Furthermore, interactions between only the T cells and pE50Y50 were sufficient to bring about the response. Thus, pE50Y50 elicited a response distinct from those of T cells to processed/presented peptides or superantigens, consistent with a mechanism of Ig-like ligand recognition of gamma delta T cells. Direct stimulation by ligands resembling pE50Y50 may thus selectively evoke contributions of gamma delta T cells to the host response.  相似文献   

10.
Organization of the human T-cell receptor genes   总被引:1,自引:0,他引:1  
T lymphocytes recognize antigens through their membrane bound T-cell receptors. Whereas the conventional T-cell receptors are heterodimers of alpha and beta chains, expressed at the surface of CD3+ CD4+ and CD3+ CD8+ T lymphocytes, the gamma delta T-cell receptors are found at the surface of a subset of T-lymphocytes of phenotype CD3+ CD4- CD8-. The synthesis of the T-cell receptor chains results from the junction (or rearrangement) of DNA segments: Variable (V) gene and joining (J) segment for the alpha and gamma chains, V gene, D (diversity) and J segments for the beta and delta chains. In this review, we summarize the recent findings on the genomic organization of the alpha, beta, gamma and delta T-cell receptor loci in human.  相似文献   

11.
Human V gamma 9/V delta 2 T cells, the major subset of gamma/delta T cells in peripheral blood of adults, mediate proliferative and cytotoxic responses to Daudi Burkitt's lymphoma cells without previous in vitro exposure to Daudi. Our experiments show that some gamma/delta T cells coexpressing V gamma 9 and V delta 1 genes also react to Daudi cells in cytotoxic and proliferative assays. Expression of V gamma 9 is not sufficient for the recognition of Daudi cells because most gamma/delta T cells expressing V delta 1 paired with V gamma 9 or other V gamma genes neither kill Daudi cells nor proliferate to Daudi. V gamma 9/V delta 2 T cells do not proliferate to other cell lines such as K562 or Molt4 that are sensitive to MHC-unrestricted cytolysis by NK cells and by most IL-2-activated gamma/delta T cell clones. Cold target inhibition assays demonstrate that Daudi cells are stronger inhibitors than K562 and Molt4 of MHC-unrestricted lysis by V gamma 9/V delta 2 clones. However, cold Daudi cells are relatively weaker inhibitors of MHC-unrestricted lysis by NK cell clones, most gamma/delta T cell clones expressing V delta 1 and alpha/beta T cell clones. Thus, recognition by V gamma 9/V delta 2 T cells and certain V gamma 9/V delta 1 T cells of Daudi appears to involve a specific triggering pathway that is distinct from recognition by these gamma/delta T cells of Molt4, K562, and other target cells. NK cell clones and most other gamma/delta and alpha/beta T cell clones derived from the same normal volunteer blood donors do not show this specific interaction with Daudi cells. These data show that distinct subsets of human gamma/delta T cells recognize Daudi cells and support the idea that the gamma/delta TCR may be directly involved.  相似文献   

12.
B, alpha beta T, and NK lymphocytes establish immunological synapses (IS) with their targets to enable recognition. Transfer of target cell-derived Ags together with proximal molecules onto the effector cell appears also to occur through synapses. Little is known about the molecular basis of this transfer, but it is assumed to result from Ag receptor internalization. Because human gamma delta T cells recognize soluble nonpeptidic phosphoantigens as well as tumor cells such as Daudi, it is unknown whether they establish IS with, and extract molecules from, target cells. Using flow cytometry and confocal microscopy, we show in this work that Ag-stimulated human V gamma 9/V delta 2 T cells conjugate to, and perform molecular transfer from, various tumor cell targets. The molecular transfer appears to be linked to IS establishment, evolves in a dose-dependent manner in the presence of either soluble or cellular Ag, and requires gamma delta TCR ligation, Src family kinase signaling, and participation of the actin cytoskeleton. Although CD45 exclusion characterized the IS performed by gamma delta T cells, no obvious capping of the gamma delta TCR was detected. The synaptic transfer mediated by gamma delta T cells involved target molecules unrelated to the cognate Ag and occurred independently of MHC class I expression by target cells. From these observations, we conclude that despite the particular features of gamma delta T cell activation, both synapse formation and molecular transfer of determinants belonging to target cell characterize gamma delta T cell recognition of Ags.  相似文献   

13.
The complexes between the Fab fragments of two monoclonal anti-lysozyme antibodies, Fab10.6.6 (high affinity) and D44.2 (lower affinity), and their specific antigen, hen egg-white lysozyme, have been crystallized. The antibodies recognize an antigenic determinant including Arg68, but differ significantly in their association constants for the antigen. Two crystalline forms were obtained for the complex with FabF10.6.6, the higher affinity antibody. One of them is monoclinic, space group P21, with unit cell dimensions a = 145.6 A, b = 78.1 A, c = 63.1 A, beta = 89.05 degrees, consistent with the presence of two molecules of the complex in the asymmetric unit. These crystals diffract X-rays beyond 3 A making this form suitable for high-resolution X-ray diffraction studies. The second form crystallizes in the triclinic space group P1, with unit cell dimensions a = 134.0 A, b = 144.7 A, c = 98.6 A, alpha = 90.30 degrees, beta = 97.1 degrees, gamma = 90.20 degrees, consistent with the presence of 10 to 12 molecules of the complex in the unit cell. These crystals do not diffract X-rays beyond 5 A resolution. The antigen-antibody complex between FabD44.2, the lower affinity antibody, and hen egg-white lysozyme crystallizes in space group P2(1)2(1)2(1), with unit cell dimensions a = 99.7 A, b = 167.3 A, c = 84.7 A, consistent with the presence of two molecules of the complex in the asymmetric unit. These crystals diffract X-rays beyond 2.5 A resolution.  相似文献   

14.
15.
IL-4-producing gamma delta thymocytes in normal mice belong to a distinct subset of gamma delta T cells characterized by low expression of Thy-1. This gamma delta thymocyte subset shares a number of phenotypic and functional properties with the NK T cell population. Thy-1dull gamma delta thymocytes in DBA/2 mice express a restricted repertoire of TCRs that are composed of the V gamma 1 gene product mainly associated with the V delta 6.4 chain and exhibit limited junctional sequence diversity. Using mice transgenic for a rearranged V gamma 1J gamma 4C gamma 4 chain and a novel mAb (9D3) specific for the V delta 6.3 and V delta 6.4 murine TCR delta chains, we have analyzed the peripheral localization and functional properties of gamma delta T cells displaying a similarly restricted TCR repertoire. In transgenic mice, IL-4 production by peripheral gamma delta T cells was confined to the gamma delta+9D3+ subset, which contains cells with a TCR repertoire similar to that found in Thy-1dull gamma delta thymocytes. In normal DBA/2 mice such cells represent close to half of the gamma delta T cells present in the liver and around 20% of the splenic gamma delta T cells.  相似文献   

16.
Purified malate dehydrogenase (MDH) of Streptomyces aureofaciens was crystallized either in the absence or in the presence of NADH or NADPH coenzymes by hanging-drop vapour-diffusion method. An X-ray study has shown, that MDH crystals belong to space group C222(1) with unit-cell parameters a = 53.2 A, b = 104.6 A, c = 520.0 A, alpha = beta = gamma = 90( degrees ), MDH-NADH crystals to space group C2 with unit-cell parameters a = 51.5 A, b = 51.5 A, c = 256 A, alpha = beta = gamma = 90( degrees ), and MDH-NADPH crystals to space group C222(1) with unit-cell parameters a = 72, A b = 72 A, c = 520 A, alpha = beta = gamma = 90( degrees ). The crystal of native MDH diffracted to 2.1 A resolution.  相似文献   

17.
We have expressed the alpha4beta3delta and alpha4beta3gamma2L subtypes of the rat GABAA receptor in Xenopus oocytes and have investigated their agonist activation properties. GABA was a more potent agonist of the alpha4beta3delta receptor (EC50 approximately 1.4 micromol/L) than of the alpha4beta3gamma2L subtype (EC50 approximately 27.6 micromol/L). Other GABAA receptor agonists (muscimol, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol, imidazole-4-amino acid) displayed similar subtype selectivity. The structural determinants underlying these differences have been investigated by co-expressing chimeric delta/gamma2L subunits with alpha4 and beta3 subunits. A stretch of amino acids in the delta subunit, S238-V264, is shown to play an important role in determining both agonist potency and the efficacies of full or partial agonists. This segment includes transmembrane domain 1 and the short intracellular loop that leads to the second transmembrane domain. The effects of the competitive antagonists, bicuculline and SR95531, and the channel blocker, picrotoxin, were not significantly affected by the incorporation of chimeric subunits. As the delta and gamma2L subunits have not been previously implicated directly in agonist binding, we suggest that the effects are likely to arise from changes in the transduction mechanisms that link agonist binding to channel activation.  相似文献   

18.
19.
Although the mechanisms that determine TCR-alpha beta V gene repertoire are well studied, the genetic influences involved in TCR-gamma delta repertoire development are unclear. Unlike the TCR-gamma delta populations that localize in epithelial tissues, the circulating peripheral TCR-gamma delta V region repertoire is quite diverse. Previous studies have shown that three TCR-gamma chains and at least six TCR-V delta genes are expressed by splenic TCR-gamma delta cells. However, the relative frequency of individual gamma delta subsets among genetically diverse mice has not been determined. Therefore, the repertoire of TCR-gamma delta cells was examined using anti-TCR V region specific mAb against V gamma 2 and V delta 4 on TCR-gamma delta + cells from total splenocytes. We found that there was a strain-specific variation in TCR-gamma delta usage. The frequency of V gamma 2 expression in different strains varied from 54 to 12%, and the frequency of V delta 4 expression in different strains varied from 38 to 10%. However, the level of V delta 4 and V gamma 2 expression for an individual strain was highly consistent from experiment to experiment. F1 analysis between parental strains that differed in relative frequency of either V gamma 2+ or V delta 4+ cells revealed that high expression was genetically dominant, suggesting that positive selection events play a major role in the peripheral gamma delta repertoire. Variations in the levels of V gamma 2+ cells and V delta 4+ cells was not associated with Mls or MHC haplotype. Analysis of recombinant inbred strains revealed that high V delta 4 expression mapped to the TCR-gamma locus, while high V gamma 2 expression was influenced by the TCR-delta locus. Back-cross analysis confirmed that the TCR loci dominantly influenced the level of V delta 4+ cells and V gamma 2+ cells; however, there was clear evidence that multiple genes affect the TCR-gamma delta repertoire.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号