共查询到20条相似文献,搜索用时 11 毫秒
1.
Bees were trained to react to differences both in the size and in the degree of greyness of discs. To measure the differential sensitivity on these parameters, differences in size and shade of grey (-intervals) were established such as lead to a specific choice reaction (Fig. 3). The -intervals may be described for both parameters by Weber's rule (Fig. 4). The main result is the following relationship between the differential sensitivity and the equivalence curve as defined by cross modality matching. The bee treats two discs, which differ from a reference disc in diameter or in degree of greyness, as equivalent when both differ from the reference disc by an equal number of -intervals (Fig. 6). The choice reactions between the reference disc and the discs of the equivalent pair are the same for these parameters. This does not hold for another parameter (Fig. 7A and B). Problems of infering from the -intervals to the differential sensitivity are then discussed. 相似文献
2.
The purpose of the present study was to evaluate active muscle stiffness with the stretch reflex according to changes (in 110-ms period after stretching) in torque and fascicle length during slower angular velocity (peak angular velocity of 100 deg·s−1) in comparison with active muscle stiffness without the stretch reflex (in 60-ms period after stretching) during slower and faster (peak angular velocity of 250 deg·s−1) angular velocities. Active muscle stiffness in the medial gastrocnemius muscle was calculated according to changes in estimated muscle force and fascicle length with slower and faster stretching during submaximal isometric contractions (10–90% maximal voluntary contractions). Active muscle stiffness significantly increased for both angular velocities and analyzed periods as torque levels exerted became higher. The effects of angular velocities and the interaction between angular velocities and torque levels were not significantly different between 250 deg·s−1 (in 60-ms period after stretching) and 100 deg·s−1 (in 110-ms period after stretching) conditions. The effects of the analyzed periods and the interaction between analyzed periods and torque levels were not significantly different between the analyzed periods (60-ms and 110-ms periods after stretching) for the 100 deg·s−1 condition. Furthermore, active muscle stiffness measured during the same angular velocity had significant correlations between those calculated in the different analyzed periods, whereas those under 250 deg·s−1 (60-ms period after stretching) did not correlate with those under 100 deg·s−1 (110-ms period after stretching). These results suggest that active muscle stiffness is not influenced by the stretch reflex. 相似文献
3.
The purpose of the present study was to investigate the combined effects of muscle history, activation and stretching velocity on short latency stretch response (SLR). Stretches (70, 120 and 200 deg s-1) were elicited to both passive and active (10-25% MVC) triceps surae muscle with constant (ISO), lengthened (LEN) or shortened (SHO) muscle length. Under the passive SHO pre-condition both SLR amplitude and reflex torque (RT) decreased where as latency increased compared with the passive ISO pre-condition. Such observations were absent in active trials. Stretches applied to a lengthening passive muscle (LEN) resulted in smaller SLR amplitude and RT compared with passive ISO. In active muscle the stretch response increased with stretching velocity in ISO and SHO. However, in LEN there was large interindividual variability and no velocity dependent increase in SLR amplitude was observed. Smaller amplitude and longer latency of passive SLR in SHO could result from increased slack in the intrafusal fibres, which may be compensated by fusimotor activation during the active condition. The mechanism behind the smaller amplitude in passive LEN and the lack of velocity dependence in active LEN may be related to changes in motoneuron pool excitability or changes in the spindle sensitivity to stretch. 相似文献
4.
This paper continues the investigation of a three-loop representation of the segmental muscle stretch reflex system introduced in a preceding communication. Frequency response characteristics were computed for open-loop conditions, control and disturbance signal inputs under a variety of conditions: (i) in parallel and in series peripheral arrangements of muscle compartments, (ii) various patterns of central connectivity, (iii) various recruitment levels of motor units, (iv) various overall reflex gains, (v) absence or presence of muscle spindle accleration sensitivity. These computations disclosed a number of mechanisms by which the nervous system might improve system stability and behaviour. These mechanisms are discussed with regard to physiological data. 相似文献
5.
Sachio Shimba Noritaka Kawashima Yuji Ohta Shin-Ichiroh Yamamoto Kimitaka Nakazawa 《Journal of electromyography and kinesiology》2010,20(3):406-412
The purpose of this study was to test whether the spinal reflex excitability of the soleus muscle is modulated as posture changes from a supine to a passive upright position. Eight healthy subjects (29.6 ± 5.4 yrs) participated in this study. Stretch and H-reflex responses were elicited while the subjects maintained passive standing (ST) and supine (SP) postures. The passive standing posture was accomplished by using a gait orthosis to which a custom-made device was mounted to elicit stretch reflex in the soleus muscle. This orthosis makes it possible to elicit stretch and H-reflexes without background muscle activity in the soleus muscle. The results revealed that the H-reflex amplitude in the ST was smaller than that in the SP condition, which is in good agreement with previous reports. On the other hand, the stretch reflex was significantly larger in the ST than in the SP condition. Since the experimental conditions of both the stretch and H-reflex measurements were exactly the same, the results were attributed to differences in the underlying neural mechanisms of the two reflex systems: different sensitivity of the presynaptic inhibition onto the spinal motoneuron pool and/or a change in the muscle spindle sensitivity. 相似文献
6.
The current investigation examined the effect of various types of background muscle contractions on the short-latency stretch reflex (SLR) elicited from the soleus muscle while subjects were in a sitting position. A stretch was applied to the calf muscles while they performed an isometric (pre-ISO), shortening (pre-SHO) and lengthening contraction (pre-LEN) with several pre-contraction levels. The ankle was at a 90 degrees tibio-tarsal joint angle when the perturbation was applied. Subjects developed and maintained a given pre-load level, which was maintained at various percentages of the maximum voluntary isometric plantar flexion torque. This was performed at 80 degrees in pre-SHO, 90 degrees in pre-ISO and 100 degrees in pre-LEN for about 2s before the contractions. The SLRs in trials with 0, 35 and 50% of the maximum voluntary contraction torque level were compared among the three conditions. The main results were as follows. (1) Pre-ISO and pre-SHO showed an equal SLR area and a different SLR waveform in the active muscle. (2) Pre-LEN showed the smallest SLR area of three conditions in the active muscle. (3) Pre-LEN showed shorter SLR latencies than the other conditions. (4) Pre-SHO showed a longer SLR latency in the relaxed muscle than in the active muscle. (5) The SLR area was larger in the active muscle than in the relaxed muscle. These findings demonstrate that the muscle contraction type and the pre-contraction level before a stretch perturbation have a considerable influence on the latency, the area and the waveform of the SLR. In particular, the equal area and the different waveforms of the SLR between pre-ISO and pre-SHO were a unique finding in the present study. They might result from differences in muscle spindle sensitivity and afferent input from various receptors induced by the present motor task. 相似文献
7.
Nis Hjortskov J?rgen Skotte Christian Hye-Knudsen Nils Fallentin 《Journal of applied physiology》2005,98(4):1366-1370
Animal experiments suggest that an increase in sympathetic outflow can depress muscle spindle sensitivity and thus modulate the stretch reflex response. The results are, however, controversial, and human studies have failed to demonstrate a direct influence of the sympathetic nervous system on the sensitivity of muscle spindles. We studied the effect of increased sympathetic outflow on the short-latency stretch reflex in the soleus muscle evoked by tapping the Achilles tendon. Nine subjects performed three maneuvers causing a sustained activation of sympathetic outflow to the leg: 3 min of static handgrip exercise at 30% of maximal voluntary contraction, followed by 3 min of posthandgrip ischemia, and finally during a 3-min mental arithmetic task. Electromyography was measured from the soleus muscle with bipolar surface electrodes during the Achilles tendon tapping, and beat-to-beat changes in heart rate and mean arterial blood pressure were monitored continuously. Mean arterial pressure was significantly elevated during all three maneuvers, whereas heart rate was significantly elevated during static handgrip exercise and mental arithmetic but not during posthandgrip ischemia. The peak-to-peak amplitude of the short-latency stretch reflex was significantly increased during mental arithmetic (P < 0.05), static handgrip exercise (P < 0.001), and posthandgrip ischemia (P < 0.005). When expressed in percent change from rest, the mean peak-to-peak amplitude increased by 111 (SD 100)% during mental arithmetic, by 160 (SD 103)% during static handgrip exercise, and by 90 (SD 67)% during posthandgrip ischemia. The study clearly indicates a facilitation of the short-latency stretch reflex during increased sympathetic outflow. We note that the enhanced stretch reflex responses observed in relaxed muscles in the absence of skeletomotor activity support the idea that the sympathetic nervous system can exert a direct influence on the human muscle spindles. 相似文献
8.
Relationship between short latency stretch reflex and fascicle behavior in the soleus muscle in vivo
Objectives:Stretch reflex responses were considered to be affected by the velocity of muscle fiber lengthening and angular velocity. However, the results of previous studies in vivo and in vitro are inconsistent in this regard. The purpose of the present study was to investigate the effects of the velocity of fascicle lengthening on the amplitude of the stretch reflex for each trial with a high angular velocity and wide range of motion.Methods:Thirteen healthy men volunteered for this study. While the ankle was passively moved from 100 to 80 deg at five different angular velocities (100, 200, 300, 500, and 600 deg⋅s-1), the velocity of fascicle lengthening in the soleus muscle was measured using ultrasonography. In addition, the amplitude of the short latency stretch reflex in the soleus muscle was also measured.Results:As angular velocity increased, the amplitude of the stretch reflex and velocity of fascicle lengthening significantly increased (both p<0.001). For each trial in all subjects, the amplitude of the stretch reflex was not correlated with the velocity of fascicle lengthening at any of the angular velocities.Conclusion:In conclusion, the stretch reflex size is not related to the fascicle behavior in each trial. 相似文献
9.
The effects of prior movement on the force responses of skeletal muscle are compared with the effects of movement history on the changes in firing rate of muscle spindle receptors. Prior release results in the linearization of the mechanical properties of skeletal muscles, which can be provisionally explained by cross-bridge models of muscular contraction. The history-dependence of responses of muscle spindle receptors in unanesthetized decerebrate preparations appears to result from the kinetics of cycling and noncycling cross-bridges. The results of this comparison indicate that the integration of mechanical properties of muscle and spindle receptor promotes stiffness regulation. 相似文献
10.
Development of the monosynaptic stretch reflex circuit 总被引:5,自引:0,他引:5
11.
12.
U. Windhorst 《Biological cybernetics》1979,34(4):205-213
Based on previous investigations on focussed signal transmission through the muscle stretch reflex system, a model is presented suggesting that different muscle areas (especially in large complex muscles such as the triceps surae muscle) may be regulated rather independently with respect to certain internal state variables, particularly internal length. Since the parallel localized reflex loops necessary for such local control tasks are inevitably coupled peripherally through the muscle and connective tissues, compensatory de-coupling elements would be required to reestablish at least partial independence. Whether and how this can be achieved at the level of spinal neuronal circuitry is investigated in connection with a discussion of the advantages of partially de-coupled reflex loops. 相似文献
13.
Janne Avela Paavo V. Komi 《European journal of applied physiology and occupational physiology》1998,78(5):403-410
It has been suggested that during repeated long-term stretch-shortening cycle (SSC) exercise the decreased neuromuscular
function may result partly from alterations in stiffness regulation. Therefore, interaction between the short latency stretch-reflex
component (M1) and muscle stiffness and their influences on muscle performance were investigated before and after long lasting SSC exercise.
The test protocol included various jumps on a sledge ergometer. The interpretation of the sensitivity of the reflex was based
on the measurements of the patellar reflexes and the M1 reflex components. The peak muscle stiffness was measured indirectly and calculated as a coefficient of the changes in the
Achilles tendon force and the muscle length. The fatigue protocol induced a marked impairment of the neuromuscular function
in maximal SSC jumps. This was demonstrated by a 14.1%–17.7% (n.s. –P < 0.001) reduction in the mean eccentric forces and a 17.3%–31.8% (n.s. –P < 0.05) reduction in the corresponding M1 area under the electromyograms. Both of these methods of assessing the short latency reflex response showed a clear deterioration
in the sensitivity of the reflex after fatigue (P < 0.05–0.001). This was also the case for the eccentric peak stiffness of the soleus muscle which declined immediately after
fatigue by 5.4% to 7.1% (n.s. –P < 0.05) depending on the jump condition. The results observed would suggest that the modulation of neural input to the muscle
was at least partly of reflex origin from the contracting muscle, and furthermore, that the reduced muscle stiffness which
accompanied the decreased reflex sensitivity could have been partly responsible for the weakened muscle performance due to
impaired utilization of elastic energy.
Accepted: 28 April 1998 相似文献
14.
15.
The role of the stretch reflex in the gastrocnemius muscle during human locomotion at various speeds. 总被引:1,自引:0,他引:1
In the present study, the fascicle length (L(fa)) of the human medial gastrocnemius (MG) muscle was monitored to evaluate possible input from the short-latency stretch reflex (SLR) during the stance phase of running and to examine its timing at various running speeds. Eight subjects ran at 2.0, 3.5, 5.0, and 6.5 m/s. The L(fa) was measured with the high-speed ultrasound fascicle scanning together with kinematics and myoelectrical activities. The amplitudes and onset latency of SLR activities were determined. During ground contact, the sudden MG fascicle stretch occurred during the early contact at all running speeds. This was followed by the fascicle shortening. The timing of fascicle stretch depended on running speed and type of foot contact. In slower speed conditions (2.0, 3.5, 5 m/s), the MG fascicle stretch and the corresponding SLR activities occurred during the middle of the braking phase. In fast-speed running (6.5 m/s), however, the MG fascicle stretch occurred later compared with the lower speed. The corresponding SLR activities occurred significantly later at the end of the braking phase. In addition to the clear demonstration of the different timings of SLR in MG during ground contact of running, the results imply that the role of the MG SLR during the stance phase of running can be different between fast- and slow-speed running conditions. 相似文献
16.
17.
18.
Regulation of wrist stiffness by the stretch reflex 总被引:1,自引:0,他引:1
In restoring the angular position after a displacement, the role of the muscle stretch reflex was investigated by comparing the restored angular torques and angular positions in the wrist under ischaemic and non-ischaemic conditions in normal human subjects. The wrist compliance (COM), defined as the dynamic relation between the angular position and the angular torque of the joint, was calculated to quantify the changes in the restoration of a displacement after abolishing the stretch reflex by ischaemia. The elasticity from the COM-function was found to be single most important factor controlled by the stretch reflex. The elasticity that equals the static stiffness of the system increased by more than 100%, from 0.21 Nm degree-1 with abolished reflex to 0.45 Nm degree-1 with intact reflex. Our results have shown that the stretch reflex assists in the rapid return of the limb to its original position after a mechanical displacement. When the reflex was blocked by ischaemia, the perturbation displaced the limb further away from the initial position. 相似文献
19.