首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Long internal inverted repeat in a yeast viral double-stranded RNA.   总被引:2,自引:0,他引:2       下载免费PDF全文
J Bruenn  K Madura  A Siegel  Z Miner    M Lee 《Nucleic acids research》1985,13(5):1575-1591
The Saccharomyces cerevisiae viruses are non-infectious double-stranded (ds) RNA viruses present in most laboratory strains of yeast. Their genome consists of one or more dsRNAs separately encapsidated in particles composed mainly of one polypeptide, which has a Mr of 88 kdaltons in the best-studied viral subtype. A large viral dsRNA (L1, of 4.7 kb) encodes the capsid polypeptide. We have determined the sequences of a number of cDNA clones homologous to portions of L1 and mapped them by a novel heteroduplex technique. Several of these clones originate from a region of L1 2.3-2.5 kb from the 5' end of the plus strand that contains stop codons in all three reading frames in the plus strand. We therefore suspect that the capsid polypeptide gene lies in the 5' 2.3-2.6 kb of the plus strand. One of the cloned cDNAs has an inverted repeat of 170 bp that appears to be present in its parental RNA. The inverted repeat in L1 is the longest known inverted repeat in a viral dsRNA and the only known non-terminal inverted repeat. It might serve the function of creating two mRNAs from one viral dsRNA.  相似文献   

2.
Packaging in a yeast double-stranded RNA virus.   总被引:2,自引:1,他引:1       下载免费PDF全文
W Yao  K Muqtadir    J A Bruenn 《Journal of virology》1995,69(3):1917-1919
The yeast virus ScV-L1 has only two genes, cap and pol, which encode the capsid polypeptide and the viral polymerase, respectively. The second gene is translated only as a cap-pol fusion protein. This fusion protein is responsible for recognition of a specific small stem and loop region of the viral plus strands, of 19 to 31 bases in length, ensuring packaging specificity. We have used a related virus, ScV-La, which has about 29% codon identity with ScV-L1 in the most conserved region of the pol gene, to map the region in pol that is responsible for packaging L1. Characterization of a number of chimeric viral proteins that recognize L1 but have the La capsid region delimits the region necessary for recognition of L1 to a 76- to 82-codon portion of pol. In addition, we show that overproduction of the La capsid polypeptide results in curing of the ScV-La virus, analogous to the production of plants resistant to RNA viruses by virtue of systemic production of viral coat protein.  相似文献   

3.
Carrion R  Ro YT  Patterson JL 《Journal of virology》2003,77(19):10448-10455
Leishmania RNA virus (LRV) is a double-stranded RNA virus that infects some strains of the protozoan parasite leishmania As with other totiviruses, LRV presumably expresses its polymerase by a ribosomal frameshift, resulting in a capsid-polymerase fusion protein. We have demonstrated previously that an LRV capsid-polymerase polyprotein is specifically cleaved by a Leishmania-encoded cysteine protease. This study reports the purification of this protease through a strategy involving anion-exchange chromatography and affinity chromatography. By using a Sepharose-immobilized lectin, concanavalin A, we isolated a fraction enriched with LRV polyprotein-specific protease activity. Analysis of the active fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoreses and silver staining revealed a 50-kDa protein that, upon characterization by high-pressure liquid chromatography electrospray tandem mass spectrometry (electrospray ionization/MS/MS), was identified as a cysteine protease of trypanosomes. A partial amino acid sequence derived from the MS/MS data was compared with a protein database using BLAST software, revealing homology with several cysteine proteases of Leishmania and other trypanosomes. The protease exhibited remarkable temperature stability, while inhibitor studies characterized the protease as a trypsin-like cysteine protease-a novel finding for leishmania. To elucidate substrate preferences, a panel of deletion mutations and single-amino-acid mutations were engineered into a Gag-Pol fusion construct that was subsequently transcribed and translated in vitro and then used in cleavage assays. The data suggest that there are a number of cleavage sites located within a 153-amino-acid region spanning both the carboxy-terminal capsid region and the amino-terminal polymerase domain, with LRV capsid exhibiting the greatest susceptibility to proteolysis.  相似文献   

4.
We have compared the sequence of the capsid polypeptide of the Saccharomyces cerevisiae double-stranded RNA virus, ScV, with those of the picornaviruses. A central region of 245 amino acids in the ScV capsid polypeptide of 680 amino acids has significant similarity to the picornavirus VP3. This similarity is more extensive than that already noted for the alphavirus capsid polypeptide and the picornavirus VP3 (Fuller, S.D. and Argos, P, EMBO J. 6, 1099, 1987). Together with the similarity between the ScV RNA polymerase and the picornavirus RNA polymerases, this result implies an evolutionary relationship between a simple double-stranded RNA virus of fungi and the small plus strand RNA animal viruses.  相似文献   

5.
6.
7.
The RNA1 of tobacco rattle virus (TRV) has been cloned as cDNA and the nucleotide sequence determined of 2 kb from the 3'-terminal region. The sequence contains three long open reading frames. One of these starts 5' of the cDNA and probably corresponds to the carboxy-terminal sequence of a 170-K protein encoded on RNA1. The deduced protein sequence from this reading frame shows homology with the putative replicases of tobacco mosaic virus (TMV) and tricornaviruses. The location of the second open reading frame, which encodes a 29-K polypeptide, was shown by Northern blot analysis to coincide with a 1.6-kb subgenomic RNA. The validity of this reading frame was confirmed by showing that the cDNA extending over this region could be transcribed and translated in vitro to produce a polypeptide of the predicted size which co-migrates in electrophoresis with a translation product of authentic viral RNA. The sequence of this 29-K polypeptide showed homology with two regions in the 30-K protein of TMV. This homology includes positions in the TMV 30-K protein where mutations have been identified which affect the transport of virus between cells. The third open reading frame encodes a potential 16-K protein and was shown by Northern blot hybridisation to be contained within the region of a 0.7-kb subgenomic RNA which is found in cellular RNA of infected cells but not virus particles. The many similarities between TRV and TMV in viral morphology, gene organisation and sequence suggest that these two viral groups may share a common viral ancestor.  相似文献   

8.
9.
The RNA polymerase gene of human coronavirus (HCV) 229E encodes a large polyprotein that contains domains with motifs characteristic of both papain-like cysteine proteinases and proteinases with homology to the 3C proteinase of picornaviruses. In this study, we have, first, expressed the putative HCV 229E 3C-like proteinase domain as part of a beta-galactosidase fusion protein in Escherichia coli and have shown that the expressed protein has proteolytic activity. The substitution of one amino acid within the predicted proteinase domain (His-3006-->Asp-3006) abolishes, or at least significantly reduces, this activity. Amino-terminal sequence analysis of a purified, 34-kDa cleavage product shows that the bacterial fusion protein is cleaved at the dipeptide Gln-2965-Ala-2966, which is the predicted amino-terminal end of the putative 3C-like proteinase domain. Second, we have confirmed the proteolytic activity of a bacterially expressed polypeptide with the amino acid sequence of the predicted HCV 229E 3C-like proteinase by trans cleavage of an in vitro translated polypeptide encoded within open reading frame 1b of the RNA polymerase gene. Finally, using fusion protein-specific antiserum, we have identified a 34-kDa, 3C-like proteinase polypeptide in HCV 229E-infected MRC-5 cells. This polypeptide can be detected as early as 3 to 5 h postinfection but is present in the infected cell in very low amounts. These data contribute to the characterization of the 3C-like proteinase activity of HCV 229E.  相似文献   

10.
In this study, we describe Korean isolates of Trichomonas vaginalis infected with double-stranded (ds) RNA virus (TVV). One T. vaginalis isolate infected with TVV IH-2 evidenced weak pathogenicity in the mouse assay coupled with the persistent presence of a dsRNA, thereby indicating a hypovirulence effect of dsRNA in T. vaginalis. Cloning and sequence analysis results revealed that the genomic dsRNA of TVV IH-2 was 4,647 bp in length and evidenced a sequence identity of 80% with the previously-described TVV 1-1 and 1-5, but only a 42% identity with TVV 2-1 and 3 isolates. It harbored 2 overlapping open reading frames of the putative capsid protein and dsRNA-dependent RNA polymerase (RdRp). As previously observed in the TVV isolates 1-1 and 1-5, a conserved ribosomal slippage heptamer (CCUUUUU) and its surrounding sequence context within the consensus 14-nt overlap implied the gene expression of a capsid protein-RdRp fusion protein, occurring as the result of a potential ribosomal frameshift event. The phylogenetic analysis of RdRp showed that the Korean TVV IH-2 isolate formed a compact group with TVV 1-1 and 1-5 isolates, which was divergent from TVV 2-1, 3 and other viral isolates classified as members of the Giardiavirus genus.  相似文献   

11.
The putative capsid open reading frame (ORF2) of the Leishmania RNA virus LRV1-4 was expressed in a baculovirus expression system. The expressed protein was identified by Western immunoblot analysis with polyclonal antiserum raised to purified LRV1-4 virus. Electron microscopy and sedimentation analysis indicated that the expressed protein self-assembles into empty viruslike particles of similar size and shape to authentic virus particles, thus confirming that ORF2 encodes the viral capsid. The expressed particles are present exclusively in the cytoplasm of infected SF9 cells and are able to assemble in the absence of LRV1-4 RNA, viral polymerase, or any Leishmania host factors.  相似文献   

12.
13.
D Yu  C C Wang    A L Wang 《Journal of virology》1995,69(5):2825-2830
The double-stranded RNA genome of giardiavirus (GLV) has only two large open reading frame (ORFs). The 100-kDa capsid polypeptide (p100) is encoded by ORF1, whereas the only other viral polypeptide, the 190-kDa GLV RNA-dependent RNA polymerase (p190), is synthesized as an ORF1-ORF2 fusion protein by a (-1) ribosomal frameshifting. Edman degradation revealed that p100 was N-terminally blocked except for 2 to 5% of it that showed free N terminus starting from amino acid residue 33 of ORF1. Studies using antiserum targeted against amino acid residues 6 to 27 indicated that this region (NT) is absent from viral p100 and p190, while pulse-labelling experiments showed that NT is present in nascent p100 synthesized in GLV-infected Giardia lamblia but removed subsequently. In contrast, this region was retained in the two viral proteins synthesized in vitro, and it was not removed upon prolonged incubation or inclusion of microsomal fraction in the in vitro translation reaction mixtures. These results suggest that endoplasmic reticulum is not involved in the protein processing and that the precursors of p100 and p190 are incapable of cleaving themselves or each other. This specific cleavage was reproduced when lysates from GLV-infected G. lamblia were added, but not those from uninfected cells. The cleavage activity was relatively insensitive to phenylmethylsulfonyl fluoride, but it was inhibitable by leupeptin or E-64, two known specific inhibitors of cysteine protease. The possible origin of this processing activity is discussed.  相似文献   

14.
T Fahima  Y Wu  L Zhang    N K Van Alfen 《Journal of virology》1994,68(9):6116-6119
Hypovirulence of the pathogenic fungus Cryphonectria parasitica, caused by the unencapsidated viral double-stranded RNA of Cryphonectria hypovirus (CHV1), provides a means for biological control of chestnut blight. We report here the isolation of a replication complex of the virus solubilized from host membranes. The conserved regions of the putative RNA polymerase encoded by strain CHV1-713 were cloned and expressed, and the recombinant protein was purified and used to produce polyclonal antibodies. The CHV1 replication complex was solubilized from a membrane fraction of CHV1-infected C. parasitica hyphae. Antibodies raised against the putative viral polymerase reacted on a Western immunoblot with an 87-kDa polypeptide of the replication complex but not with comparable preparations from an isogenic uninfected strain. Analysis of the polypeptide composition of the complex by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining revealed a number of other polypeptides along with the double-stranded RNA of the virus. We conclude that this 87-kDa polypeptide is the putative RNA polymerase encoded on open reading frame B of CHV1.  相似文献   

15.
16.
The nucleotide sequence (25,320 base-pairs) of a part of the large single-copy region of chloroplast DNA from the liverwort Marchantia polymorpha was determined. This region encodes putative genes for four tRNAs, isoleucine tRNA(CAU), arginine tRNA(CCG), proline tRNA(UGG) and tryptophan tRNA(CCA); eight photosynthetic polypeptides, the large subunit of ribulose bisphosphate carboxylase/oxygenase (rbcL), 51,000 Mr photosystem II chlorophyll alpha apoprotein (psbB), apocytochrome b-559 polypeptides (psbE and psbF), 10,000 Mr phosphoprotein (psbH), cytochrome f preprotein (petA), cytochrome b6 polypeptide (petB), and cytochrome b6/f complex subunit 4 polypeptide (petD); 13 ribosomal proteins (L2, L14, L16, L20, L22, L23, L33, S3, S8, S11, S12, S18 and S19); initiation factor 1 (infA); ribosome-associating polypeptide (secX); and alpha subunit of RNA polymerase (rpoA). Functionally related genes were located in several clusters in this region of the genome. There were two ribosomal protein gene clusters: rpl23-rpl2-rps19-rpl22-rps3-rpl16-+ ++rpl14-rps8-infA-secX-rps11-rpoA, with a gene arrangement similar to that of the Escherichia coli S10-spc-alpha operons, and the rps12'-rpl20-rps18-rpl33 cluster. There were gene clusters encoding photosynthesis components such as the psbB-psbH-petB-petD and the psbE-psbF clusters. Thirteen open reading frames, ranging in length from 31 to 434 amino acid residues, remain to be identified.  相似文献   

17.
18.
19.
The L-A double-stranded RNA virus of Saccharomyces cerevisiae encodes its major coat protein (80 kDa) and a minor single-stranded RNA binding protein (180 kDa) that has immunological cross-reactivity with the major coat protein. The sequence of L-A cDNA clones revealed two open reading frames (ORF), ORF1 and ORF2. These two reading frames overlap by 130 base pairs and ORF2 is in the -1 reading frame with respect to ORF1. Although the major coat protein of the viral particles is encoded by ORF1, the 180-kDa protein is derived from the entire double-stranded RNA genome by fusing ORF1 and ORF2, probably by a -1 translational frameshift. Within the overlapping region is a sequence similar to that producing a -1 frameshift by "simultaneous slippage" in retroviruses. The coding sequence of ORF2 shows a pattern characteristic of viral RNA-dependent RNA polymerases of icosahedral (+)-strand RNA viruses. Thus, the 180-kDa protein is analogous to gag-pol fusion proteins.  相似文献   

20.
The Pol region of the Gag-Pol fusion protein of the L-A double-stranded (ds) RNA virus of Saccharomyces cerevisiae has (i) a domain essential for packaging viral positive strands, (ii) consensus amino acid sequence patterns typical of RNA-dependent RNA polymerases, and (iii) two single-stranded RNA binding domains. We describe here a third single-stranded RNA binding domain (Pol residues 374 to 432), which is unique in being cryptic. Its activity is revealed only after deletion of an inhibitory region C terminal to the binding domain itself. This cryptic RNA binding domain is necessary for propagation of M1 satellite dsRNA, but it is not necessary for viral particle assembly or for packaging of viral positive-strand single-stranded RNA. The cryptic RNA binding domain includes a sequence pattern common among positive-strand single-stranded RNA and dsRNA viral RNA-dependent RNA polymerases, suggesting that it has a role in RNA polymerase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号