首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
More than 30 lipid ligands, which express their biological activities through cognate G-protein-coupled receptors (GPCRs), have been reported. Among them, leukotriene B(4) (LTB(4)) is a potent lipid mediator involved in host defense, inflammation, and the immune responses. Two GPCRs for LTB(4) (BLT1 and BLT2) have been cloned and analyzed. Recent studies using genetically engineered mice suggest that BLT1 plays an important role in several inflammatory diseases including ischemic reperfusion tissue injury, atherosclerosis, and bronchial asthma. BLT1 is also a good tool to study the molecular mechanism of GPCR activation and inactivation in vitro. In this brief review, we focus on the biological and biochemical properties of BLT1 with special attention to the putative helix 8 of the receptor.  相似文献   

2.
G-protein-coupled receptors (GPCRs) regulate a wide variety of physiological processes and are important pharmaceutical targets for drug discovery. Here, we describe a unique concept based on yeast cell-surface display technology to selectively track eligible peptides with agonistic activity for human GPCRs (Cell Wall Trapping of Autocrine Peptides (CWTrAP) strategy). In our strategy, individual recombinant yeast cells are able to report autocrine-positive activity for human GPCRs by expressing a candidate peptide fused to an anchoring motif. Following expression and activation, yeast cells trap autocrine peptides onto their cell walls. Because captured peptides are incapable of diffusion, they have no impact on surrounding yeast cells that express the target human GPCR and non-signaling peptides. Therefore, individual yeast cells can assemble the autonomous signaling complex and allow single-cell screening of a yeast population. Our strategy may be applied to identify eligible peptides with agonistic activity for target human GPCRs.  相似文献   

3.
Flow cytometry enables comparative quantification, population analysis, and high-throughput screening of agonist-mediated G-protein-coupled receptor (GPCR) signaling in genetically engineered yeasts. By using flow cytometry, we found that transformation of yeast cells with a low plasmid number is critical both for the construction of large screening libraries and for stable signal transmission in cell ensembles. Based on these findings, we constructed an engineered yeast strain for the improved identification of signal promotion by Gα(i)-specific human GPCRs using flow cytometry.  相似文献   

4.
Skp1 is a subunit of the SCF-E3 ubiquitin ligase that targets cell cycle and other regulatory factors for degradation. In Dictyostelium, Skp1 is modified by a pentasaccharide containing the type 1 blood group H trisaccharide at its core. To address how the third sugar, fucose alpha1,2-linked to galactose, is attached, a proteomics strategy was applied to determine the primary structure of FT85, previously shown to copurify with the GDP-Fuc:Skp1 alpha 1,2-fucosyltransferase. Tryptic-generated peptides of FT85 were sequenced de novo using Q-TOF tandem mass spectrometry. Degenerate primers were used to amplify FT85 genomic DNA, which was further extended by a novel linker polymerase chain reaction method to yield an intronless open reading frame of 768 amino acids. Disruption of the FT85 gene by homologous recombination resulted in viable cells, which had altered light scattering properties as revealed by flow cytometry. FT85 was necessary and sufficient for Skp1 fucosylation, based on biochemical analysis of FT85 mutant cells and Escherichia coli that express FT85 recombinantly. FT85 lacks sequence motifs that characterize all other known alpha 1,2-fucosyltransferases and lacks the signal-anchor sequence that targets them to the secretory pathway. The C-terminal region of FT85 harbors motifs found in inverting Family 2 glycosyltransferase domains, and its expression in FT85 mutant cells restores fucosyltransferase activity toward a simple disaccharide substrate. Whereas most prokaryote and eukaryote Family 2 glycosyltransferases are membrane-bound and oriented toward the cytoplasm where they glycosylate lipid-linked or polysaccharide precursors prior to membrane translocation, the soluble, eukaryotic Skp1-fucosyltransferase modifies a protein that resides in the cytoplasm and nucleus.  相似文献   

5.
Transfer printing is a method to transfer solid micro/nanoscale materials (herein called ‘inks’) from a substrate where they are generated to a different substrate by utilizing elastomeric stamps. Transfer printing enables the integration of heterogeneous materials to fabricate unexampled structures or functional systems that are found in recent advanced devices such as flexible and stretchable solar cells and LED arrays. While transfer printing exhibits unique features in material assembly capability, the use of adhesive layers or the surface modification such as deposition of self-assembled monolayer (SAM) on substrates for enhancing printing processes hinders its wide adaptation in microassembly of microelectromechanical system (MEMS) structures and devices. To overcome this shortcoming, we developed an advanced mode of transfer printing which deterministically assembles individual microscale objects solely through controlling surface contact area without any surface alteration. The absence of an adhesive layer or other modification and the subsequent material bonding processes ensure not only mechanical bonding, but also thermal and electrical connection between assembled materials, which further opens various applications in adaptation in building unusual MEMS devices.  相似文献   

6.
Membrane proteins, particularly G-protein coupled receptors (GPCRs), are notoriously difficult to express. Using commercial E. coli cell-free systems with the detergent Brij-35, we could rapidly produce milligram quantities of 13 unique GPCRs. Immunoaffinity purification yielded receptors at >90% purity. Secondary structure analysis using circular dichroism indicated that the purified receptors were properly folded. Microscale thermophoresis, a novel label-free and surface-free detection technique that uses thermal gradients, showed that these receptors bound their ligands. The secondary structure and ligand-binding results from cell-free produced proteins were comparable to those expressed and purified from HEK293 cells. Our study demonstrates that cell-free protein production using commercially available kits and optimal detergents is a robust technology that can be used to produce sufficient GPCRs for biochemical, structural, and functional analyses. This robust and simple method may further stimulate others to study the structure and function of membrane proteins.  相似文献   

7.
G蛋白偶联受体(GPCR)长期以来是最重要的药物靶点家族,小分子药物层出不穷。然而受研发难度的限制,针对GPCR的抗体或大分子类药物屈指可数。我们利用选择性靶向κ阿片受体(KOR)且无法激活下游信号的单克隆抗体连接强啡肽(Dynorphin)基因、HEK 293F系统进行表达,纯化获得KOR强啡肽单抗融合蛋白,我们将此融合蛋白命名为APF(antibody-peptide fusion)。结果显示,获得的单抗融合蛋白二级结构未显著改变,保持了Dynorphin活性,可激活KOR相关下游蛋白(Gi)活性,调动β-arrestin信号。结果证明,基因层面实现抗体药物改构的可行性,该法可指导新一代抗体偶联药物的改造,为以GPCR为靶点的大分子药物开发提供了新的空间。  相似文献   

8.
We report on the identification, molecular cloning, and characterization of an alpha1,3 fucosyltransferase (alpha1,3FT) expressed by the nematode, Caenorhabditis elegans . Although C. elegans glycoconjugates do not express the Lewis x antigen Galbeta1-- >4[Fucalpha1-->3]GlcNAcbeta-->R, detergent extracts of adult C.elegans contain an alpha1,3FT that can fucosylate both nonsialylated and sialylated acceptor glycans to generate the Lexand sialyl Lexantigens, as well as the lacdiNAc-containing acceptor GalNAcbeta1-->4GlcNAcbeta1-- >R to generate GalNAcbeta1-->4 [Fucalpha1-->3]GlcNAcbeta1-->R. A search of the C.elegans genome database revealed the existence of a gene with 20-23% overall identity to all five cloned human alpha1,3FTs. The putative cDNA for the C.elegans alpha1,3FT (CEFT-1) was amplified by PCR from a cDNA lambdaZAP library, cloned, and sequenced. COS7 cells transiently transfected with cDNA encoding CEFT-1 express the Lex, but not sLexantigen. The CEFT-1 in the transfected cell extracts can synthesize Lex, but not sialyl Lex, using exogenous acceptors. A second fucosyltransferase activity was detected in extracts of C. elegans that transfers Fuc in alpha1,2 linkage to Gal specifically on type-1 chains. The discovery of alpha-fucosyltransferases in C. elegans opens the possibility of using this well-characterized nematode as a model system for studying the role of fucosylated glycans in the development and survival of C.elegans and possibly other helminths.   相似文献   

9.
We have developed a mammalian expression system suitable for the production of enzymatically biotinylated integral membrane proteins. The key feature of this system is the doxycycline (dox)-regulated co-expression of a secreted variant of Escherichia coli biotin ligase (BirA) and a target protein with a 13-residue biotin acceptor peptide (BioTag) appended to its extracellular domain. Here we describe the expression and functional analysis of three G-protein coupled receptors (GPCRs): protease-activated receptors (PARs) 1 and 2, and the platelet ADP receptor, P2Y(12). Clonal Chinese hamster ovary (CHO) Tet-On cell lines that express biotinylated GPCRs were rapidly isolated by fluorescence-activated cell sorting following streptavidin-FITC staining, thereby circumventing the need for manual colony picking. Analysis by Western blotting with streptavidin-HRP following endoglycosidase treatment revealed that all three GPCRs undergo N-linked glycosylation. The expression of biotinylated GPCRs on the cell surface was regulated by the concentration of dox in the medium, reaching a maximum at approximately 1 microg/mL dox. Similarly, the extent of GPCR biotinylation was dependent on biotin concentration, with maximum and complete biotinylation achieved upon supplementation with 50 microM biotin. Biotinylated PAR1 and PAR2 were readily and specifically cleaved on the surface of intact cells by their cognate proteases, and were capable of transducing extracellular stimuli, resulting in the downstream phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Notably, P2Y(12) mediated agonist-induced ERK phosphorylation only when it was expressed at low levels on the cell surface, highlighting the utility of regulated expression for the production of functionally active GPCRs in mammalian cells.  相似文献   

10.
11.
A human colon carcinoma cell line KM12-LX, expressing low levels of monoclonal antibody (mAb) FH6 epitope, was transfected with alpha 1,3-fucosyltransferase VI cDNA. Clonal populations with high or intermediate expression levels of the mRNA, shown by RT-PCR (FT6hi and FT6in cells, respectively) were obtained. FT6hi cells were found to express both mAb FH6 and KM93 epitopes by flow-cytometric analysis, whereas FT6in cells expressed mAb FH6 epitopes but not mAb KM93 epitopes. The mAb FH6-binding was abrogated by endo-beta-galactosidase treatment of FT6in, but not FT6hi, cells. FT6hi but not FT6in cells adhered to Chinese-hamster-ovary cells expressing human E-selectin. FT6in cells adhered to sections of mouse liver and the adhesion was blocked by treatment of the cells with endo-beta-galactosidase. The results indicate that endo-beta-galactosidase-sensitive and mAb FH6-reactive carbohydrate chains are generated under the control of expression levels of FUT6 and involved in the adhesion of colon carcinoma cells to liver sections.  相似文献   

12.
Membrane proteins, including ion channels, transporters and G-protein-coupled receptors (GPCRs), play a significant role in various physiological processes. Many of these proteins are difficult to express in large quantities, imposing crucial experimental restrictions. Nevertheless, there is now a wide variety of studies available utilizing electron paramagnetic resonance (EPR) spectroscopic techniques that expand experimental accessibility by using relatively small quantities of protein. Here, we give an overview starting from basic strategies in EPR on membrane proteins with a focus on GPCRs, while emphasizing several applications from recent years. We highlight how the arsenal of EPR-based techniques may provide significant further contributions to understanding the complex molecular machinery and energetic phenomena responsible for seamless workflow in essential biological processes.  相似文献   

13.
G protein-coupled receptors (GPCRs) are a large group of receptors of great biological and clinical relevance. Despite this, the tools for a detailed analysis of ligand–GPCR interactions are limited. The aim of this paper was to demonstrate how ligand binding to GPCRs can be followed in real-time on living cells. This was conducted using two model systems, the radiolabeled porcine peptide YY (pPYY) interacting with transfected human Y2 receptor (hY2R) and the bombesin antagonist RM26 binding to the naturally expressed gastrin-releasing peptide receptor (GRPR). By following the interaction over time, the affinity and kinetic properties such as association and dissociation rate were obtained. Additionally, data were analyzed using the Interaction Map method, which can evaluate a real-time binding curve and present the number of parallel interactions contributing to the curve. It was found that pPYY binds very slowly with an estimated time to equilibrium of approximately 12 h. This may be problematic in standard end-point assays where equilibrium is required. The RM26 binding showed signs of heterogeneity, observed as two parallel interactions with unique kinetic properties. In conclusion, measuring binding in real-time using living cells opens up for a better understanding of ligand interactions with GPCRs.  相似文献   

14.
G protein-coupled receptors (GPCRs) constitute one of the largest families of genes in the human genome, and are the largest targets for drug development. Although a large number of GPCR genes have recently been identified, ligands have not yet been identified for many of them. Various assay systems have been employed to identify ligands for orphan GPCRs, but there is still no simple and general method to screen for ligands of such GPCRs, particularly of G(i)-coupled receptors. We have examined whether fusion proteins of GPCRs with G protein alpha subunit (Galpha) could be utilized for ligand screening and showed that the fusion proteins provide an effective method for the purpose. This article focuses on the followings: (1) characterization of GPCR genes and GPCRs, (2) identification of ligands for orphan GPCRs, (3) characterization of GPCR-Galpha fusion proteins, and (4) identification of ligands for orphan GPCRs using GPCR-Galpha fusion proteins.  相似文献   

15.
The protein kinase Akt plays a central role in a number of key biological functions including protein synthesis, glucose homeostasis, and the regulation of cell survival or death. The mechanism by which tyrosine kinase growth factor receptors stimulate Akt has been recently defined. In contrast, the mechanism of activation of Akt by other cell surface receptors is much less understood. For G protein-coupled receptors (GPCRs), conflicting data suggest that these receptors stimulate Akt in a cell type-specific manner by a yet to be fully elucidated mechanism. Here, we took advantage of the availability of cells, where Akt activity could not be enhanced by agonists acting on this large family of cell surface receptors, such as NIH 3T3 cells, to investigate the pathway linking GPCRs to Akt. We present evidence that expression of phosphatidylinositol 3-kinase (PI3K) beta is necessary and sufficient to transmit signals from G proteins to Akt in these murine fibroblasts and that the activation of PI3Kbeta may represent the most likely mechanism whereby GPCRs stimulate Akt, as the vast majority of cells do not express PI3Kgamma, a known G protein-sensitive PI3K isoform. Furthermore, available evidence indicates that GPCRs activate Akt by a pathway distinct from that utilized by growth factor receptors, as it involves the tyrosine phosphorylation-independent activation of PI3Kbeta by G protein betagamma dimers.  相似文献   

16.
Agonist stimulation of G-protein coupled receptors (GPCRs) results in the redistribution of the receptor from the cell surface into intracellular compartments through the process of endocytosis. Monitoring ligand-mediated internalization of GPCRs in living cells has become experimentally accessible by applying fluorescent reagents and fluorescence microscopy. By using cell lines that transiently, stably or endogenously express the human Y receptor (hYR) subtypes hY(1)R, hY(2)R, hY(4)R and hY(5)R and differently fluorescently tagged receptor proteins we were able to unravel further details concerning the internalization behavior of this multi-receptor/multi-ligand system. For the first time we could show that also the hY(2)R is internalized with a rate which is comparable to the hY(1)R and the hY(4)R. In contrast, the hY(5)R was internalized much slower and the rate remained unaffected by co-expression with other hYR subtypes. Furthermore receptor subtype co-expressing cells and selectively binding peptides revealed a receptor subtype selective internalization. By using novel hY(5)/hY(2) receptor chimera the receptor subtype dependent differences in hY receptor internalization could be identified on a molecular level.  相似文献   

17.
The interaction of the CC-chemokine RANTES with its cell surface receptors transduces multiple intracellular signals: low concentrations of RANTES (1 to 10 nM) stimulate G-protein-coupled receptor (GPCR) activity, and higher concentrations (1 microM) activate a phosphotyrosine kinase (PTK)-dependent pathway. Here, we show that the higher RANTES concentrations induce rapid tyrosine phosphorylation of multiple proteins. Several src-family kinases (Fyn, Hck, Src) are activated, as is the focal adhesion kinase p125 FAK and, eventually, members of the p44/p42 mitogen-activated protein kinase (MAPK) family. This PTK signaling pathway can be activated independently of known seven-transmembrane GPCRs for RANTES because it occurs in cells that lack any such RANTES receptors. Instead, activation of the PTK signaling pathway is dependent on the expression of glycosaminoglycans (GAGs) on the cell surface, in that it could not be activated by RANTES in GAG-deficient cells. We have previously demonstrated that RANTES can both enhance and inhibit infection of cells with human immunodeficiency virus type 1 (HIV-1). Here we show that activation of both PTK and MAPK is involved in the enhancement of HIV-1 infectivity caused by RANTES in cells that lack GPCRs for RANTES but which express GAGs.  相似文献   

18.
Salmon eggs are common in Japanese sushi and other seafood products; however, certain fish eggs are used as counterfeit salmon eggs which are found in foods and processed products. This study develops a simple, rapid, and cost-effective method for DNA extraction, filtration (FT) and dilution (DL) protocols from a single salmon egg with good DNA quality for real-time PCR amplification. The DNA amount, DNA quality, and real-time PCR performance for different dilutions and different lengths of PCR amplicons were evaluated and compared with the common Qiagen tissue kit (QTK) and Chelex-100-based (CX) protocols. The extracted DNA from a single salmon egg using the FT or DL protocol can be applied in phylogenic research, food authentication and post-marketing monitoring of genetically modified (GM) food products.  相似文献   

19.
Oligomerization or dimerization of G-protein-coupled receptors (GPCRs) has emerged as an important theme in signal transduction. This concept has recently gained widespread interest due to the application of direct and noninvasive biophysical techniques such as fluorescence resonance energy transfer (FRET), which have shown unequivocally that several types of GPCR can form dimers or oligomers in living cells. Current challenges are to determine which GPCRs can self-associate and/or interact with other GPCRs, to define the molecular principles that govern these specific interactions, and to establish which aspects of GPCR function require oligomerization. Although these questions ultimately must be addressed by using GPCRs expressed endogenously in their native cell types, analysis of GPCR oligomerization in heterologous expression systems will be useful to survey which GPCRs can interact, to conduct structure-function studies, and to identify peptides or small molecules that disrupt GPCR oligomerization and function. Here, we describe methods employing scanning fluorometry to detect FRET between GPCRs tagged with enhanced cyan and yellow fluorescent proteins (CFP and YFP) in living yeast cells. This approach provides a powerful means to analyze oligomerization of a variety of GPCRs that can be expressed in yeast, such as adrenergic, adenosine, C5a, muscarinic acetylcholine, vasopressin, opioid, and somatostatin receptors.  相似文献   

20.
Salmon eggs are common in Japanese sushi and other seafood products; however, certain fish eggs are used as counterfeit salmon eggs which are found in foods and processed products. This study develops a simple, rapid, and cost-effective method for DNA extraction, filtration (FT) and dilution (DL) protocols from a single salmon egg with good DNA quality for real-time PCR amplification. The DNA amount, DNA quality, and real-time PCR performance for different dilutions and different lengths of PCR amplicons were evaluated and compared with the common Qiagen tissue kit (QTK) and Chelex-100-based (CX) protocols. The extracted DNA from a single salmon egg using the FT or DL protocol can be applied in phylogenic research, food authentication and post-marketing monitoring of genetically modified (GM) food products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号