首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Summary The renal cell line LLC-PK1 cultured on a membrane filter forms a functional epithelial tissue. This homogeneous cell population exhibits rheogenic Na-dependentd-glucose coupled transport. The short-circuit current (I sc) was acccounted for by net apical-to-basolaterald-glucose coupled Na flux, which was 0.53±0.09(8) eq cm–2hr–1, andI sc, 0.50±0.50(8) eq cm–2hr–1. A linear plot of concurrent net Na vs. netd-glucose apical-to-basolateral fluxes gave a regression coefficient of 2.08. As support for a 21 transepithelial stoichiometry, sodium was added in the presence ofd-glucose and the response ofI sc analyzed by a Hill plot. A slope of 2.08±0.06(5) was obtained confirming a requirement of 2 Na for 1d-glucose coupled transport. A Hill plot ofI sc increase to addedd-glucose in the presence of Na gave a slope of 1.02±0.02(5). A direct determination of the initial rates of Na andd-glucose translocation across the apical membrane using phlorizin, a nontransported glycoside competitive inhibitor to identify the specific coupled uptake, gave a stoichiometry of 2.2 A coupling ratio of 2 for Na,d-glucose uptake, doubles the potential energy available for Na-gradient coupledd-glucose transport. In contrast to coupled uptake, the stoichiometry for Na-dependentphlorizin binding was 1.1±0.1(8) from Hill plot analyses of Na-dependent-phlorizin binding as a function of [Na]. Although occurring at the same site the process of Na-dependent binding of phlorizin differs from the binding and translocation ofd-glucose. Our results support a two-step, two-sodium model for Na-dependentd-glucose cotransport; the initial binding to the cotransporter requires a single Na andd-glucose, a second Na then binds to the ternary complex resulting in translocation.  相似文献   

2.
Summary Glucose uptake into plasma membrane vesicles from the maternal surface of the human placenta was measured with the Millipore filtration technique. Uptake ofd-glucose was dependent on the osmolarity of the incubation medium surrounding the vesicles. Uptake ofd-glucose exceeded that ofl-glucose. The uptake ofd-glucose was not enhanced by placing 100mm NaCl or NaSCN in the medium outside the vesicles (none inside) at the onset of uptake determinations.d-glucose transport was inhibited by cytochalasin B; phloretin, phlorizin, and 1-fluoro-2,4-dinitrobenzene.d-glucose uptake was inhibited by 2-deoxy-d-glucose, 3-O-methyl-d-glucose and to a lesser extent byd-galactose. It was not inhibited by -methyl-d-glucoside. Cytochalasin B binding to the vesicles was 30% inhibited in the presence of 80mm d-glucose. The results indicate that the system for facilitated transport ofd-glucose at the maternal face of the placenta is distinctly different from that on the brush-border membrane of intestine or renal tubule and more closely resembles that of human erythrocyte.  相似文献   

3.
On aerobic incubation of rat cerebral cortex slices with anomers ofd-glucose and with 2-deoxy-d-glucose (2DG) for 5 min, the disappearance of -d-glucose from the incubation mixture was greater than that of -d-glucose and both anomers had a greater rate of disappearance than that of 2DG. In addition, there were significantly greater consumption of oxygen and production of lactate with the -anomer than with the -anomer. In similar experiments with3H-labeledd-glucose anomers and [1-3H]-3-O-methyl-d-glucose (3MG), the accumulation of [1-3H]--d-glucose (up to 5 min) by rat cerebral cortex slices was greater than that of [1-3H]--d-glucose. Although initially lower than that of the anomers, the accumulation of [1-3H]-3MG increased at a greater rate and, by 5 min of incubation, was greater than that of both glucose anomers. This preferential accumulation was seen to disappear when the slices were preincubated with 2DG (hexokinase inhibitor) or when the temperature of incubation was reduced to 20°C. Under those conditions the data with the glucose anomers were similar to those obtained with 3MG. Our data then suggested that the greater accumulation of -d-glucose than of -d-glucose by the slices was probably not due to differences in transport through brain cell membranes but rather to the preferential metabolism of the -d-glucose.  相似文献   

4.
Summary We have confirmed previous demonstrations of sodium gradient-stimulated transport ofl-alanine, phenylalanine, proline, and -alanine, and in addition demonstrated transport of N-methylamino-isobutyric acid (MeAIB) and lysine in isolated rabbit kidney brush border vesicles. In order to probe the multiplicity of transport pathways available to each of these14C-amino acids, we measured the ability of test amino acids to inhibit tracer uptake. To obtain a rough estimate of nonspecific effects, e.g., dissipation of the transmembrane sodium electrochemical potential gradient, we measured the ability ofd-glucose to inhibit tracer uptake.l-alanine and phenylalanine were completely mutually inhibitory. Roughly 75% of the14C-l-alanine uptake could be inhibited by proline and -alanine, while lysine and MeAIB were no more effective thand-glucose. Roughly 50% of the14C-phenylalanine uptake could be inhibited by proline and -alanine; lysine was as effective as proline and -alanine, and the effects of pairs of these amino acids at 50mm each were not cumulative. MeAIB was no more effective thand-glucose. We conclude that three pathways mediate the uptake of neutral,l, -amino acids. One system is inaccessible to lysine, proline, and -alanine. The second system carries a major fraction of thel-alanine flux; it is sensitive to proline and -alanine, but not to lysine. The third system carries half the14C-phenylalanine flux, and it is sensitive to proline, lysine, and -alanine. Since the neutral,l, -amino acid fluxes are insensitive to MeAIB, we conclude that they are not mediated by the classicalA system, and since all of thel-alanine flux is inhibited by phenylalanine, we conclude that it is not mediated by the classicalASC system.l-alanine and phenylalanine completely inhibit uptake of lysine. MeAIB is no more effective thand-glucose in inhibiting lysine uptake, while proline and -alanine appear to inhibit a component of the lysine flux. We conclude that the14C-lysine fluxes are mediated by two systems, one, shared with phenylalanine, which is inhibited by proline, -alanine, andl-alanine, and one which is inhibited byl-alanine and phenylalanine but inaccessible to proline, -alanine, and MeAIB. Fluxes of14C-proline and14C-MeAIB are completely inhibited byl-alanine, phenylalanine, proline, and MeAIB, but they are insensitive to lysine. Proline and MeAIB, as well as alanine and phenylalanine, but not lysine, inhibit14C--alanine uptake. However, -alanine inhibits only 38% of the14C-proline uptake and 57% of the MeAIB uptake. We conclude that two systems mediate uptake of proline and MeAIB, and that one of these systems also transports -alanine.  相似文献   

5.
Summary Analysis of deltorphin A position 4 analogues included: backbone constrained N MeHis, spinacine (Spi), N MePhe and the tetrahydroisoquinoline-3-carboxylic acid (Tic); spatially confined side-chain (Phg); and imidazole alkylation ofl- andd-His4 enantiomers. High selectivity was lost with the following replacements: N MeHis4, N MePhe4 and Phg4 reduced binding and the constrained residues also increasedµ binding; ring closure between the side-chain and amino group to yield Spi4 or Tic4 increasedµ affinity. Imidazole methylation of His4 marginally affected opioid binding and doubled selectivity; alkylatedd-His4-derivatives generally maintained selectivity in spite of decreased affinities. Thus, His4 imidazole preserves selectivity by facilitating high binding and by repulsion at theµ receptor. Several low energy conformers of deltorphin A indicated that the His4 imidazole preferred a spatial orientation parallel to the phenolic side-chain of Tyr1 suggestive that this conformation might contribute to high affinity and selectivity.  相似文献   

6.
Summary A membrane extract enriched with the Na+-dependentd-glucose transport system was obtained by differential cholate solubilization of rat renal brush border membranes in the presence of 120mm Na+ ions. Sodium ions were essential in stabilizing the transport system during cholate treatment. This membrane extract was further purified with respect to its Na+-coupledd-glucose transport activity and protein content by the use of asolectin-equilibrated hydroxylapatite. The reconstituted proteoliposomes prepared from this purified fraction showed a transient accumulation ofd-glucose in response to a Na+ gradient. The observed rate of Na+-coupledd-glucose uptake by the proteoliposomes represented about a sevenfold increase as compared to that of the reconstituted system derived from an initial 1.2% cholate extract of the membranes. Other Na+-coupled transport systems such asl-alanine, -ketoglutarate and phosphate were not detected in these reconstituted proteoliposomes.  相似文献   

7.
Summary The kinetics of the initial phases of d-glucose binding to the glucose transport protein (GLUT1) of the human red cell can be followed by stopped-flow measurements of the time course of tryptophan (trp) fluorescence enhancement. A number of control experiments have shown that the trp fluorescence kinetics are the result of conformational changes in GLUT1. One shows that nontransportable l-glucose has no kinetic response, in contrast to d-glucose kinetics. Other controls show that d-glucose binding is inhibited by cytochalasin B and by extracellular d-maltose. A typical time course for a transportable sugar, such as d-glucose, consists of a zero-time displacement, too fast for us to measure, followed by three rapid reactions whose exponential time courses have rate constants of0.5–100 sec+–1 at 20°C. It is suggested that the zero-time displacement represents the initial bimolecular ligand/GLUT1 association. Exponential 1 appears to be located at, or near, the external membrane face where it is involved in discriminating among the sugars. Exponential 3 is apparently controlled by events at the cytosolic face. Trp kinetics distinguish the K d of the epimer, d-galactose, from the K dfor d-glucose, with results in agreement with determinations by other methods. Trp kinetics distinguish between the binding of the - and -d-glucose anomers. The exponential 1 activation energy of the -anomer, 13.6 ± 1.4 kcal mol+–1, is less than that of -d-glucose, 18.4 ± 0.8 kcal mol+–1, and the two Arrhenius lines cross at 23.5°C. The temperature dependence of the kinetic response following -d-glucose binding illustrates the interplay among the exponentials and the increasing dominance of exponential 2 as the temperature increases from 22.3 to 36.6°C. The existence of these interrelations means that previously acceptable approximations in simplified reaction schemes for sugar transport will now have to be justified on a point-to-point basis.We should like to express our thanks to Michael R. Toon for his important contributions. This work was supported in part by a grant-in-aid from the American Heart Association, by the Squibb Institute for Medical Research and by The Council for Tobacco Research.  相似文献   

8.
Summary Glucose transport was studied in marine mussels of the genusMytilus. Initial observations, with intact animals and isolated gills, indicated that net uptake of glucose occurred in mussels by a carrier-mediated, Na+-sensitive process. Subsequent studies included use of brush-border membrane vesicles (BBMV) in order to characterize this transport in greater detail. The highest activity of Na+-dependent glucose transport was found in the brush-border membrane fractions used in this study, while basal-lateral membrane fractions contained the highest specific binding of ouabain. Glucose uptake into BBMV showed specificity for Na+, and concentrative glucose transport was observed in the presence of an inwardly directed Na+ gradient. There was a single saturable pathway for glucose uptake, with an apparentK t of 3 m in BBMV and 9 m in intact gills. The kinetics of Na+ activation of glucose uptake were sigmoidal, with apparent Hill coefficients of 1.5 in BBMV and 1.2 in isolated gills, indicating that more than one Na+ may be involved in the transport of each glucose. Harmaline inhibited glucose transport in mussel BBMV with aK i of 44 m. The uptake of glucose was electrogenic and stimulated by an inside-negative membrane potential. The substrate specificity in intact gills and BBMV resembled that of Na+-glucose cotransporters in other systems;d-glucose and -methyl glucopyranoside were the most effective inhibitors of Na+-glucose transport,d-galactose was intermediate in its inhibition, and there was little or no effect ofl-glucose,d-fructose, 2-deoxy-glucose, or 3-O-methyl glucose. Phlorizin was an effective inhibitor of Na+-glucose uptake, with an apparentK i of 154nm in BBMV and 21nm in intact gills. While the qualitative characteristics of glucose transport in the mussel gill were similar to those in other epithelia, the quantitative characteristics of this process reflect adaptation to the seawater environment of this animal.  相似文献   

9.
-Fructofuranosidase fromAspergillus japonicus, which produces 1-kestose (O--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) and nystose (O--d-fructofuranosyl-(21)--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) from sucrose, was purified to homogeneity by fractionation with calcium acetate and ammonium sulphate and chromatography with DEAE-Cellulofine and Sephadex G-200. Its molecular size was estimated to be about 304,000 Da by gel filtration. The enzyme was a glycoprotein which contained about 20% (w/w) carbohydrate. Optimum pH for the enzymatic reaction was 5.5 to 6. The enzyme was stable over a wide pH range, from pH 4 to 9. Optimum reaction temperature for the enzyme was 60 to 65°C and it was stable below 60°C. The Km value for sucrose was 0.21m. The enzyme was inhibited by metal ions, such as those of silver, lead and iron, and also byp-chloromercuribenzoate.  相似文献   

10.
Murine resident macrophages express, on their surface, carbohydrate epitopes which undergo changes during their stimulation/activation as monitored by binding of125I labelledEvonymus europaea andGriffonia simplicifolia I-B4 lectins. Treatment of the stimulated macrophages with coffee bean -galactosidase abolished binding of the GS I-B4 isolectin and changed the binding pattern of theEvonymus lectin. The affinity (K a) ofEvonymus lectin for -galactosidase-treated macrophages decreased approximately 23-fold, from 1.25×108 M–1 to 5.5×106 M–1. Subsequent digestion of -galactosidase-treated macrophages with -l-fucosidase fromTrichomonas foetus, further reduced binding ofEvonymus lectin. Resident macrophages showed the same pattern ofEvonymus lectin binding, with the same affinity, as -galactosidase-treated, stimulated macrophages. These results, together with a consideration of the carbohydrate binding specificity of theEvonymus lectin which, in the absence of -d-galactosyl groups, requires -l-fucosyl groups for binding, indicate the presence, on resident macrophages, of glycoconjugates with terminal -l-fucosyl residues. It is also concluded that during macrophage stimulation/activation -d-galactosyl residues are added to this glycoconjugate and that they form part of the receptor forEvonymus lectin. The same glycoconjugate(s) is/are also expressed on the activated macrophage IC-21 cell line which exhibits the same characteristics as that of stimulated peritoneal macrophages, i.e., it contains -d-galactosyl end groups and is resistant to the action of trypsin. Both lectins were also specifically bound toCorynaebacterium parvum activated macrophages.Abbreviations BSA bovine serum albumin - GS I-B4 Griffonia simplicifolia I-B4 isolectin - PBS 0.01m phosphate buffer (pH 7.1) with 0.15m NaCl (unless stated otherwise this buffer contained 3mm azide and was free of divalent cations) - PMSF phenyl methane sulfonyl fluoride - TG thioglycollate brewers medium.  相似文献   

11.
Summary The sodium-dependentl-alanine transport across the plasma membrane of oocytes ofXenopus laevis was studied by means of [14C]-l-alanine,22Na+ and electrophysiological measurements. At fixed sodium concentrations, the dependence of alanine transport on alanine concentration follows Michaelis-Menten kinetics; at fixed alanine concentrations, the transport varies with sodium concentration with a Hill coefficient of 2. In the presence of sodium the uptake of alanine is accompanied by a depolarization of the membrane. Under voltage-clamp conditions this depolarization can be compensated by an inward-directed current. Assuming that this current is carried by sodium we arrive at a 21 stoichiometry for the sodium-alanine cotransport. The assumption was confirmed by direct measurements of both sodium and alanine fluxes at saturating concentrations of the two substrates, which also yielded a stoichiometry close to 21. The sodium-l-alanine cotransport is neither inhibited by furosemide (0.5 mmol/liter) nor by N-methyl amino isobutyric acid (5 mmol/liter). A 20-fold excess ofd-alanine overl-alanine caused about 60% inhibition.  相似文献   

12.
Schizosaccharomyces pombe cells grow on d-gluconate as the sole carbon and energy source. d-Gluconate is taken up in symport with protons by a specific symporter, pH being the sole driving force. d-Gluconate uptake is independent of the sugar transporting system (e.g. for d-glucose) and of . The carrier is expressed constitutively, and its activity is not subject to glucose repression. Hence, d-gluconate is a suitable carbon and energy source for growth, when d-glucose or other hexoses have to be eliminated e.g. for selection of mutants deficient in hexose transport.Abbreviations 2-DG 2-deoxy-d-glucose - CCCP carbonylcyanide m-chlorophenylhydrazone - pH pH-gradient - electrical potential difference across the plasma membrane - SD standard deviation - SEM standard error of the mean - TPP+ tetraphenylphosphonium  相似文献   

13.
Membrane fractions and digitonin-solubilized enzymes prepared from stem segments isolated from the third internode of etiolated pea seedlings (Pisum sativum L. cv. Alaska) catalyzed the synthesis of a -1,4-[su14C]mannan from GDP-d-[U-14C]-mannose, a mixed -1,3- and -1,4-[14C]glucan from GDP-d-[U-14C]-glucose and a -1,4-[14C]-glucomannan from both GDP-d-[U-14C]mannose and GDP-d-[U-14C]glucose. The kinetics of the membrane-bound and soluble mannan and glucan synthases were determined. The effects of ions, chelators, inhibitors of lipid-linked saccharides, polyamines, polyols, nucleotides, nucleoside-diphosphate sugars, acetyl-CoA, group-specific chemical probes, phospholipases and detergents on the membrane-bound mannan and glucan synthases were investigated. The -glucan synthase had different properties from other preparations which bring about the synthesis of -1,3-glucans (callose) and mixed -1,3- and -1,4-glucans and which use UDP-d-glucose as substrate. It also differed from xyloglucan synthase because in the presence of several concentrations of UDP-d-xylose in addition to GDP-d-glucose no xyloglucan was formed. Using either the membrane-bound or the soluble mannan synthase, GDP-d-glucose acted competitively in the presence of GDP-d-mannose to inhibit the incorporation of mannose into the polymer. This was not due to an inhibition of the transferase activity but was a result of the incorporation of glucose residues from GDP-d-glucose into a glucomannan. The kinetics and the composition of the synthesized glucomannan depended on the ratio of the concentrations of GDP-d-glucose and GDP-d-mannose that were available. Our data indicated that a single enzyme has an active centre that can use both GDP-d-mannose and GDP-d-glucose to bring about the synthesis of the heteropolysaccharide.Abbreviations CHAPS 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate - CHAPSO 3-[(3-cholamidopropyl)-dimethylammonio]-2-hydroxy-1-propanesulfonate - CHD 1,2-cyclohexanedione - CDP cytidine 5-diphosphate - EGTA ethylene glycol-bis(-aminoethyl ether) N,N,N,N-tetraacetic acid - GDP guanosine 5-diphosphate - NAI N-acetyl-imidazole - NEM N-ethylmaleimide - PGO phenylglyoxal This work has been made possible by grants of M.A.F. and M.U.R.S.T. 40% of Italy. Dr. A. Zuppa wishes to thank the C.N.R. of Italy for his research scolarship.  相似文献   

14.
Various carbon compounds inhibited galactose induced synthesis of a -galactosidase activity in Streptomyces violaceus. Glucose and 2-deoxyglucose, but not methyl--d-glucose, caused inhibition of galactose uptake activity. In addition, glucose, or one of its metabolites, inhibited the synthesis of the glactose uptake system. Therefore it is concluded that the main inhibitory activity of glucose on galactose induced enzyme synthesis is exerted through inducer exclusion. Other carbon sources, such as d-ribose, d-gluconate, cellobiose or dl--glycerophosphate, did not inhibit uptake of the inducer galactose and may exert their effect through catabolite repression, inactivation or direct enzyme inhibition.  相似文献   

15.
Summary The Na+/glucose cotransporter from rabbit intestinal brush border membranes has been cloned, sequenced, and expressed inXenopus oocytes. Injection of cloned RNA into oocytes increased Na+/sugar cotransport by three orders of magnitude. In this study, we have compared and contrasted the transport properties of this cloned protein expressed inXenopus oocytes with the native transporter present in rabbit intestinal brush borders. Initial rates of14C--methyl-d-glucopyranoside uptake into brush border membrane vesicles andXenopus oocytes were measured as a function of the external sodium, sugar, and phlorizin concentrations. Sugar uptake into oocytes and brush borders was Na+-dependent (Hill coefficient 1.5 and 1.7), phlorizin inhibitable (K i 6 and 9 m), and saturable (-methyl-d-glucopyranosideK m 110 and 570 m). The sugar specificity was examined by competition experiments, and in both cases the selectivity wasd-glucose>-methyl-d-glucopyranoside>d-galactose>3-O-methyl-d-glucoside. In view of the close similarity between the properties of the cloned protein expressed in oocytes and the native brush border transporter, we conclude that we have cloned the classical Na+/glucose cotransporter.  相似文献   

16.
Unlike other yeasts so far investigated, the d-glucose carrier of Candida utilis (strain NCYC 737) appears to change affinity for d-glucose according to its exogenous concentration. When the concentration of d-glucose was <0.4 mM, the apparent K m 0.2 mM; at >0.4 mM, the K m 10 mM.  相似文献   

17.
Summary Epithelial brush border membrane vesicles (BBMV) of lobster hepatopancreas were formed by a magnesium precipitation technique previously described (Ahearn et al. 1985).3H-l-alanine transport by these vesicles was sodium and potassium insensitive, in contrast to a strong Na-dependency exhibited by3H-d-glucose transport. Initial alanine entry rates (15 s uptake) were stimulated and transient alanine uptake overshoots were observed when external pH was acidic (e. g. pH 4.0, 5.0 or 6.0) and a Cl gradient was imposed across the vesicular wall; at pHo=7.4 alanine uptake was reduced in rate and hyperbolic in character. Alanine uptake from an acidic extravesicular environment in the absence of Cl responded to a transmembrane electrical potential difference created by an outwardly-directed, valinomycin-induced, potassium diffusion potential, suggesting that the alanine molecule alone carried sufficient charge under these conditions to respond to the electrical gradient. External 5.0 mMl-lysine andl-serine similarly inhibited the influx and overshoot properties of 0.05 mM3H-l-alanine uptake, whereas 5.0 mMl-leucine had virtually no effect. Trans-stimulation of alanine initial uptake rates and an enhancement of alanine accumulation against a concentration gradient were observed by vesicles preloaded with 1 mMl-lysine, but not by vesicles lacking amino acids or those containing 1 mMl-leucine orl-serine.3H-l-alanine influx from acidic external environments in the presence of a Cl gradient occurred by a combination of carrier-mediated transfer and apparent diffusion. Decreasing pHo from 6.0 to 4.0 elevated alanineK t from 0.55 to 2.64 mM, while alanineJ M increased from 55 to 550 pmol/mg protein· 15 s. Apparent diffusional permeability of the membranes to alanine under these conditions increased slightly. These results suggest, but do not conclusively prove, that alanine transport across BBMV of lobster hepatopancreas may occur by way of a classical y+ transprot protein at acidic pH. The extent of this transport is determined by the magnitude of the transmembrane chloride gradient which serves as a powerful driving force for cationic amino acids in this tissue.  相似文献   

18.
Summary Studies were performed on purified brush-border membranes from the kidney of the rabbit to examine the relation between protein kinase C and the Na+/H+ exchanger in these membranes. The brush-border membranes were transiently opened by exposure to hypotonic media and the membrane proteins phosphorylated by exposure to ATP and phorbol esters or partially purified protein kinase C. The membranes were resealed and the intravesicular space acidified by incubation in a sodium-free isotonic solution (pH 5.5). The rate of uptake of 1mm 22Na+ (pH 7.5), with and without amiloride (1mm), was assayed and the proton gradient-stimulated, amiloride-inhibitable component of22Na+ taken as a measure of the activity of the Na+/H+ exchanger. 12-0-tetradecanoyl phorbol-13-acetate (TPA) increased the amiloride-sensitive component of22Na+ uptake TPA did not affect the amiloride-insensitive component of22Na+ uptake or the equilibrium concentration of sodium. TPA also did not affect the rate of dissipation of the proton gradient in the absence of sodium or the rate of sodium-dependent or-independent uptake ofd-glucose. Other active phorbol esters stimulated the rate of Na+/H+ exchange, but phorbol esters of the 4 configuration did not. Incubation of the opened membranes in partially purified protein kinase C increased the rate of proton gradient-stimulated, amiloride-inhibitable sodium uptake. The stimulatory effect of TPA and protein kinase C was not additive. In the absence of ATP, neither TPA nor protein kinase C affected Na+/H+ exchange transport. To determine the membrane-bound protein substrates, parallel experiments were conducted with -[32P] ATP in the phosphorylating solutions. The reaction was stopped by SDS and the phosphoproteins resolved by PAGE and autoradiography. TPA stimulation of protein kinase C resulted in phosphorylation of approximately 13 membrane-bound proteins ranging in apparent molecule from 15,000 to 140,000 daltons. These studies indicate that activation of endogenous renal brush-border protein kinase C by phorbol esters or exposure of these membranes to exogenous protein kinase C increases the rate of proton gradient-stimulated, amiloride-inhibitable sodium transport. Protein kinase C activation also results in phosphorylation of a finite number of membrane-bound proteins.  相似文献   

19.
The mechanism of hydrolysis of 4-methylumbelliferyl 3-deoxy-d-glycero--d-galacto-2-nonulopyranosidonic acid (KDN2MeUmb,4) by KDN-sialidase isolated from the hepatopancreas of the oysterCrassostrea virginica has been monitored by1H NMR spectroscopy. The results of these experiments reveal that KDN-sialidase catalyses the hydrolysis of the synthetic substrate KDN2MeUmb, with initial release of -d-KDN. This is consistent with an overall mechanism for the hydrolysis which proceeds with retention of anomeric configuration. These results agree with earlier NMR studies of otherN-acetylneuraminic acid-recognising sialidases from both viral and bacterial sources.  相似文献   

20.
Summary The order and stoichiometry of the binding of phlorizin and sodium to the renal brush-border membraned-glucose transporter are studied. The experimental results are consistent with a random-binding sites is one-to-one. When the kinetics of phlorizin binding are measured as a function of increasing sodium concentration no significant variation is found in the apparent number of binding sites; however, the apparent binding constant for phlorizin decreases rapidly from approximately 16 m at [Na]=0 to 0.1 m at [Na]=100mm and approaches 0.05 m as [Na]. The experimental data are fit to a random carrier-type model of the coupled transport of sodium andd-glucose. A complete parameterization of the phlorizin binding properties of this model under sodium equilibrium conditions is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号