首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Marshall, PWM, Desai, I, and Robbins, DW. Core stability exercises in individuals with and without chronic nonspecific low back pain. J Strength Cond Res 25(12): 3404-3411, 2011-The aim of this study was to measure trunk muscle activity during several commonly used exercises in individuals with and without low back pain (LBP). Abdominal bracing was investigated as an exercise modification that may increase the acute training stimulus. After an initial familiarization session, 10 patients with LBP and 10 matched controls performed 5 different exercises (quadruped, side bridge, modified push-up, squat, shoulder flexion) with and without abdominal bracing. Trunk muscle activity and lumbar range of motion (LROM) were measured during all exercises. Muscle activity was measured bilaterally during each exercise from rectus abdominis (RA), external obliques (EO), and lumbar erector spinae (ES) with pairs of surface electrodes. Recorded signals were normalized to a percentage of maximal voluntary contractions performed for each muscle. The ES activity was lower for the LBP group during the quadruped (p < 0.05) and higher for RA and EO during the side bridge (p < 0.001), compared to for the healthy controls. Higher muscle activity was observed across exercises in an inconsistent pattern when abdominal bracing was used during exercise. The LROM was no different between groups for any exercise. The lack of worsening of symptoms in the LBP group and similar LROM observed between groups suggest that all exercises investigated in this study are of use in rehabilitating LBP patients. The widespread use of abdominal bracing in clinical practice, whether it be for patients with LBP or healthy individuals, may not be justified unless symptoms of spinal instability are identified.  相似文献   

2.
The aim of this study was to assess the effect of verbal instruction, surface stability, and load intensity on trunk muscle activity levels during the free weight squat exercise. Twelve trained males performed a free weight squat under four conditions: (1) standing on stable ground lifting 50% of their 1-repetition maximum (RM), (2) standing on a BOSU balance trainer lifting 50% of their 1-RM, (3) standing on stable ground lifting 75% of their 1-RM, and (4) receiving verbal instructions to activate the trunk muscles followed by lifting 50% of their 1-RM. Surface EMG activity from muscles rectus abdominis (RA), external oblique (EO), transversus abdominis/internal oblique (TA/IO), and erector spinae (ES) were recorded for each condition and normalized for comparisons. Muscles RA, EO, and TA/IO displayed greater peak activity (39–167%) during squats with instructions compared to the other squat conditions (P = 0.04–0.007). Peak EMG activity of muscle ES was greater for the 75% 1-RM condition than squats with instructions or lifting 50% of 1-RM (P = 0.04–0.02). The results indicate that if the goal is to enhance EMG activity of the abdominal muscles during a multi-joint squat exercise then verbal instructions may be more effective than increasing load intensity or lifting on an unstable surface. However, in light of other research, conscious co-activation of the trunk muscles during the squat exercise may lead to spinal instability and hazardous compression forces in the lumbar spine.  相似文献   

3.
The purpose of the study was to evaluate the electromyographic (EMG) activity of muscles in curl-up exercises depending on the position of the upper and lower extremities. From the perspective of biomechanics, different positions of the extremities result in shifting the center of gravity and changing muscular loads in abdominal strength exercises. The subjects of the research were 3 healthy students (body mass 53-56 kg and height 163-165 cm) with no history of low back pain or abdominal surgery. Subjects completed 18 trials for each of the 9 exercises (static curl-up with 3 positions of the upper and 3 position of the lower extremities). The same experiment with the same subjects was conducted on the next day. The EMG activity of rectus abdominis (RA), erector spinae (ES), and quadriceps femoris-long head (rectus femoris [RF]) was examined during the exercises. The surface electrical activity was recorded for the right and left sides of each muscle. The raw data for each muscle were rectified and integrated. The statistical analysis showed that changing the position of upper extremities in the examined exercises affects the EMG activity of RA and ES but does not significantly affect the EMG activity of RF. Additionally, it was found that curl-up exercises with the upper extremities extended behind the head and the lower extremities flexed at 90° in the hip and knee joints involve RA with the greatest intensity, whereas curl-up exercises with the upper extremities extended along the trunk and the lower extremities flexed at 90° in the hip and knee joints involve RA with the lowest intensity.  相似文献   

4.
The purpose of this study was to compare the activation of the rectus abdominis (RA), external oblique abdominis (EO), lower abdominal stabilizers (LASs), and lumbar erector spinae (LES) during performance of 3 traditional trunk exercises vs. exercise on the Ab Circle device. Surface electromyography was used to assess 12 subjects (6 men, 6 women) for 6 exercise conditions, including: abdominal crunch, side bridge, quadruped, and Ab Circle levels 1-3. For the RA, the abdominal crunch elicited significantly greater activity vs. the Ab Circle level 1, and the side bridge elicited significantly greater activity vs. the Ab Circle levels 1 and 2. For the EO, the side bridge elicited significantly greater activity vs. the quadruped. No significant differences were noted between conditions for the LASs. For the LES, the side bridge and quadruped elicited significantly greater activity vs. the abdominal crunch. The results of this study indicate that the anterior, posterior, and lateral trunk musculature can be activated to similar or even greater levels by performing the 3 traditional trunk exercises vs. the Ab Circle. This was particularly evident for the side bridge exercise, which elicited significantly greater activity of the RA vs. the Ab Circle levels 1 and 2, and elicited similar activity of the EO, LASs, and LES at all 3 Ab Circle levels.  相似文献   

5.
Unilateral and bilateral lower-body heavy resistance exercises (HREs) are used for strength training. Little research has examined whether muscle activation and testosterone (TES) responses differ between these exercises. Our purpose was to compare the effects of unilateral and bilateral lower-body HRE on muscle activity using surface electromyography (sEMG) and TES concentrations. Ten resistance-trained, college-aged male athletes (football, track and field) completed 5 testing sessions in which bilateral (back squat [BS]) and unilateral (pitcher squat [PS]) exercises were performed using a counterbalanced design. Sessions 1 and 2 determined estimated maximum strength (10 repetition maximum [10RM]) in the BS and PS. During testing session 3, muscle activation (sEMG) was measured in the right vastus lateralis, biceps femoris, gluteus maximus, and erector spinae (ES) during both BS and PS (stance leg) exercises. In sessions 4 and 5, total TES concentrations (nanomoles per liter) were measured via blood draws at baseline (preexercise), 0, 5, 10, 15, and 30 minutes postexercise after 4 sets of 10 repetitions at the 10RM. Separate repeated-measures analyses of variance examined differences in sEMG and TES between BS and PS (p < 0.05). The sEMG amplitudes were similar (p = 0.80) for BS (0.22 ± 0.06 mV) and PS (0.20 ± 0.07 mV). The TES responses were also similar (p = 0.15) between BS (21.8 ± 6.9 nmol·L(-1)) and PS (26.2 ± 10.1 nmol·L(-1)). The similar lower limb and back sEMG and TES responses may indicate that the neuromuscular and hormonal demands were comparable for both the BS and PS exercises despite the absolute work being less in the PS. The PS exercise may be an effective method for including unilateral exercise into lower-body resistance training when designing training programs for ground-based activities.  相似文献   

6.
Although exercise speed is an acute variable to prescribe abdominal strengthening programs, current literature lacks studies analyzing the influence of speed on muscular activation in abdominal exercises. The aim of this work was to determine the influence of trunk curl-up speed on the amplitude of muscular activation and the way in which the trunk muscles were coactivated. Twenty recreationally trained volunteers (16 women and 4 men; age, 23.7 +/- 4.3 years; height, 166.2 +/- 6.3 cm; mass, 61.0 +/- 8.2 kg) participated in this study. Surface electromyographic data were collected from the rectus abdominis, external oblique, internal oblique, and erector spinae during 4 different curl-up cadences [1 repetition per 4 seconds (C4), 1 repetition per 2 seconds (C2), 1 repetition per 1.5 seconds (C1.5), 1 repetition per 1 second (C1)], and during maximum speed curl-ups (Cmax). The electromyographic amplitude was averaged and normalized using maximum voluntary isometric contractions (MVICs). Statistical analyses were performed using repeated-analyses of variance. Normalized electromyographic mean amplitudes of trunk muscles increased with curl-up speed. Although the rectus abdominis (ranged from 23.3% of MVICs at C4 to 49.6% of MVICs at Cmax) and internal oblique (ranged from 19.2% of MVICs at C4 to 48.5% of MVICs at Cmax) were the most active analyzed muscles at each speed, contribution of the external oblique increased appreciably with velocity (ranged from 5.3% of MVICs at C4 to 33.3% of MVICs at Cmax). Increasing trunk curl-up speed supposed greater trunk muscular coactivation, probably required for a faster performance and to ensure dynamic spine stability. On the basis of our findings, curl-up speed had an important effect on trunk muscular recruitment and must be taken into account when prescribing exercise programs for abdominal conditioning.  相似文献   

7.
The purpose of this study was to determine whether incorporating arm movement into bridge exercise changes the electromyographic (EMG) activity of selected trunk muscles. Twenty healthy young men were recruited for this study. EMG data were collected for the rectus abdominis (RA), internal oblique (IO), erector spinae (ES), and multifidus (MF) muscles of the dominant side. During bridging, an experimental procedure was performed with two options: an intervention factor (with and without arm movement) and a bridging factor (on the floor and on a therapeutic ball). There were significant main effects for the intervention factor in the IO and ES and for the bridging factor in the IO. The RA and IO showed significant interaction between the intervention and bridge factors. Furthermore, IO/RA ratio during bridging on the floor (without arm movement, 2.05 ± 2.61; with arm movement, 3.24 ± 3.42) and bridging on the ball (without arm movement: 2.95 ± 3.87; with arm movement: 5.77 ± 4.85) showed significant main effects for, and significant interaction between the intervention and bridge factors. However, no significant main effects or interaction were found for the MF/ES ratio. These findings suggest that integrating arm movements during bridge exercises may be used to provide preferential loading to certain trunk muscle groups and that these effects may be better derived by performing bridge exercises on a therapeutic ball.  相似文献   

8.
The purpose of this study was to examine the extent of activation in various trunk muscles during dynamic weight-training and isometric instability exercises. Sixteen subjects performed squats and deadlifts with 80% 1 repetition maximum (1RM), as well as with body weight as resistance and 2 unstable calisthenic-type exercises (superman and sidebridge). Electromyographic (EMG) activity was measured from the lower abdominals (LA), external obliques (EO), upper lumbar erector spinae (ULES), and lumbar-sacral erector spinae (LSES) muscle groups. Results indicated that the LSES EMG activity during the 80% 1RM squat significantly exceeded 80% 1RM deadlift LSES EMG activity by 34.5%. The LSES EMG activity of the 80% 1RM squat also exceeded the body weight squat, deadlift, superman, and sidebridge by 56, 56.6, 65.5, and 53.1%, respectively. The 80% 1RM deadlift ULES EMG activity significantly exceeded the 80% 1RM squat exercise by 12.9%. In addition, the 80% 1RM deadlift ULES EMG activity also exceeded the body weight squat, deadlift, superman, and sidebridge exercises by 66.7, 65.5, 69.3, and 68.6%, respectively. There were no significant changes in EO or LA activity. Therefore, the augmented activity of the LSES and ULES during 80% 1RM squat and deadlift resistance exercises exceeded the activation levels achieved with the same exercises performed with body weight and selected instability exercises. Individuals performing upright, resisted, dynamic exercises can achieve high trunk muscle activation and thus may not need to add instability device exercises to augment core stability training.  相似文献   

9.
The aim of this study was to analyze trunk muscle activity during bridge style stabilization exercises, when combined with single and double leg support strategies. Twenty-nine healthy volunteers performed bridge exercises in 3 different positions (back, front and side bridges), with and without an elevated leg, and a quadruped exercise with contralateral arm and leg raise ("bird-dog"). Surface EMG was bilaterally recorded from rectus abdominis (RA), external and internal oblique (EO, IO), and erector spinae (ES). Back, front and side bridges primarily activated the ES (approximately 17% MVC), RA (approximately 30% MVC) and muscles required to support the lateral moment (mostly obliques), respectively. Compared with conventional bridge exercises, single leg support produced higher levels of trunk activation, predominantly in the oblique muscles. The bird-dog exercise produced greatest activity in IO on the side of the elevated arm and in the contralateral ES. In conclusion, during a common bridge with double leg support, the antigravity muscles were the most active. When performed with an elevated leg, however, rotation torques increased the activation of the trunk rotators, especially IO. This information may be useful for clinicians and rehabilitation specialists in determining appropriate exercise progression for the trunk stabilizers.  相似文献   

10.
This study used surface electromyography (EMG) to investigate the regions and patterns of activity of the external oblique (EO), erector spinae longissimus (ES), multifidus (MU) and rectus abdominis (RA) muscles during walking (W) and pole walking (PW) performed at different speeds and grades. Eighteen healthy adults undertook W and PW on a motorized treadmill at 60% and 100% of their walk-to-run preferred transition speed at 0% and 7% treadmill grade. The Teager-Kaiser energy operator was employed to improve the muscle activity detection and statistical non-parametric mapping based on paired t-tests was used to highlight statistical differences in the EMG patterns corresponding to different trials. The activation amplitude of all trunk muscles increased at high speed, while no differences were recorded at 7% treadmill grade. ES and MU appeared to support the upper body at the heel-strike during both W and PW, with the latter resulting in elevated recruitment of EO and RA as required to control for the longer stride and the push of the pole. Accordingly, the greater activity of the abdominal muscles and the comparable intervention of the spine extensors supports the use of poles by walkers seeking higher engagement of the lower trunk region.  相似文献   

11.
The present study used synchronized motion analysis to investigate the activity of hip and trunk muscles during deep-water running (DWR) relative to land walking (LW) and water walking (WW). Nine healthy men performed each exercise at self-determined slow, moderate, and fast paces, and surface electromyography was used to investigate activity of the adductor longus, gluteus maxima, gluteus medius, rectus abdominis, oblique externus abdominis, and erector spinae. The following kinematic parameters were calculated: the duration of one cycle, range of motion (ROM) of the hip joint, and absolute angles of the pelvis and trunk with respect to the vertical axis in the sagittal plane. The percentages of maximal voluntary contraction (%MVC) of each muscle were higher during DWR than during LW and WW. The %MVC of the erector spinae during WW increased concomitant with the pace increment. The hip joint ROMs were larger in DWR than in LW and WW. Forward inclinations of the trunk were apparent for DWR and fast-paced WW. The pelvis was inclined forward in DWR and WW. In conclusion, the higher-level activities during DWR are affected by greater hip joint motion and body inclinations with an unstable floating situation.  相似文献   

12.
The PLAD (personal lift assistive device) was designed to reduce the lumbar moment during lifting and bending tasks via elastic elements. This investigation examined the effects of modulating the elastic stiffness. Thirteen men completed 90 lifts (15 kg) using 6 different PLAD stiffnesses in stoop, squat and freestyle lifting postures. The activity of 8 muscles were recorded (latissimus dorsi, thoracic and lumbar erector spinae, rectus abdominis, external oblique, gluteus maximus, biceps femoris and rectus femoris), 3D electromagnetic sensors tracked the motion of each segment and strain gauges measured the elastic tension. EMG data were rectified, filtered, normalized and integrated as a percentage of the lifting task. The highest PLAD tension elicited the greatest reduction in erector spinae activity (mean of thoracic and lumbar) in comparison to the no-PLAD condition for the stoop (37%), squat (38%), and freestyle (37%) lifts, while prompting comparable reductions in gluteus maximums and biceps femoris activity. The highest PLAD stiffness also elicited the greatest reduction in the integrated L4/L5 flexion moment for the stoop (19.0%), squat (18.4%) and freestyle (17.4%) lifts without changing peak lumbar flexion. Each increase in PLAD stiffness further reduced the muscle activity of the posterior chain and the dynamic lumbar moment.  相似文献   

13.
This study examined the electromyographic (EMG) response of the upper rectus abdominis (URA), lower rectus abdominis (LRA), internal obliques (IOs), external obliques (EOs), and the rectus femoris (RF) during various abdominal exercises (crunch, supine V-up, prone V-up on ball, prone V-up on slide board, prone V-up on TRX, and prone V-up on Power Wheel). The subjects (n = 21) performed an isometric contraction of the abdominal musculature while performing these exercises. Testing revealed no statistically significant differences between any of the exercises with respect to the EOs, the URA, or the LRA. However, when examining the IO muscle, the supine V-up exercise displayed significantly greater muscle activity than did the slide exercise. In addition, EMG activity of the RF during the crunch was significantly less than in any of the other 5 exercises. These results indicate that when performing isometric abdominal exercises, non-equipment-based exercises stressed the abdominal muscles similarly to equipment-based exercises. Based on the findings of the current study, the benefit of training the abdominal musculature in an isometric fashion using commercial equipment could be called into question.  相似文献   

14.
It has been hypothesized that changes in trunk muscle activity in chronic low back pain (CLBP) reflect an underlying “guarding” mechanism, which will manifest itself as increased superficial abdominal – and lumbar muscle activity. During a functional task like walking, it may be further provoked at higher walking velocities. The purpose of this cross sectional study was to investigate whether subjects with CLBP show increased co-activation of superficial abdominal – and lumbar muscles during walking on a treadmill, when compared to asymptomatic controls. Sixty-three subjects with CLBP and 33 asymptomatic controls walked on a treadmill at different velocities. Surface electromyography data of the erector spinae, rectus abdominis and obliquus abdominis externus muscles were obtained and averaged per stride. Results show that, compared to asymptomatic controls, subjects with CLBP have increased muscle activity of the erector spinae and rectus abdominis, but not of the obliquus abdominis externus. These differences in trunk muscle activity between groups do not increase with higher walking velocities. In conclusion, the observed increased trunk muscle activity in subjects with CLBP during walking supports the guarding hypothesis.  相似文献   

15.
Evidence suggests that the primary motor cortex (M1) is involved in both voluntary, goal-directed movements and in postural control. Trunk muscles are involved in both tasks, however, the extent to which M1 controls these muscles in trunk flexion/extension (voluntary movement) and in rapid shoulder flexion (postural control) remains unclear. The purpose of this study was to investigate this question by examining excitability of corticospinal inputs to trunk muscles during voluntary and postural tasks. Twenty healthy adults participated. Transcranial magnetic stimulation was delivered to the M1 to examine motor evoked potentials (MEPs) in the trunk muscles (erector spinae (ES) and rectus abdominis (RA)) during dynamic shoulder flexion (DSF), static shoulder flexion (SSF), and static trunk extension (STE). The level of background muscle activity in the ES muscles was matched across tasks. MEP amplitudes in ES were significantly larger in DSF than in SSF or in STE; however, this was not observed for RA. Further, there were no differences in levels of muscle activity in RA between tasks. Our findings reveal that corticospinal excitability of the ES muscles appears greater during dynamic anticipatory posture-related adjustments than during static tasks requiring postural (SSF) and goal-directed voluntary (STE) activity. These results suggest that task-oriented rehabilitation of trunk muscles should be considered for optimal transfer of therapeutic effect to function.  相似文献   

16.
The purpose of this study was to determine if 8 weeks of exercise affects motor control in people with chronic low back pain (CLBP), measured by anticipatory (APAs) and compensatory postural adjustments (CPAs). APAs and CPAs were measured prior to and following 8 weeks in two groups of people with CLBP: an exercise group (n = 12) who attended three exercise sessions per week for 8 weeks; and a non-exercise control group (n = 12) who were advised to continue their usual activities for the duration of the study. APAs and CPAs were recorded during unilateral arm flexion, bilaterally from rectus abdominis (RA), transverse abdominis/internal oblique (TA/IO), and erector spinae (ES) via surface electromyography. Analysis of muscle onsets and APA amplitudes suggests APAs did not change for either group. Ipsi-lateral TA/IO CPAs increased for the exercise group and ipsi-lateral TA/IO CPAs decreased for the control group. Only exercise promoted a pattern of TA/IO activity during CPAs similar to healthy individuals, suggesting improved control of rotational torques. These results show motor control improvement following exercise in people with CLBP, highlighted by improved side specific control of TA/IO.  相似文献   

17.
BackgroundTo compare the activation of shoulder and trunk muscles between six pairs of closed (CC) and open chain (OC) exercises for the upper extremity, matched for performance characteristics. The secondary aims were to compare shoulder and trunk muscle activation and shoulder activation ratios during each pair of CC and OC exercise.MethodsTwenty-two healthy young adults were recruited. During visit 1, the 5-repetition maximum resistance was established for each CC and OC exercise. During visit 2, electromyography activation from the infraspinatus (INF), deltoid (DEL), serratus anterior (SA), upper, middle and lower trapezius (UT, MT, LT), erector spinae (ES) and external oblique (EO) muscles was collected during 5-repetition max of each exercise. Average activation was calculated during the concentric and eccentric phases of each exercises. Activation ratios (DEL/INF, UT/LT, UT/MT, UT/SA) were also calculated. Linear mixed models compared the activation by muscle collapsed across CC and OC exercises. A paired t-test compared the activation of each muscle and the activation ratios (DEL/INF, UT/LT, UT/MT, UT/SA) between each pair of CC and OC exercises.ResultsThe INF, LT, ES, and EO had greater activation during both concentric (p = 0.03) and eccentric (p < 0.01) phases of CC versus OC exercises. Activation ratios were lower in CC exercises compared to OC exercises (DEL/INF, 3 pairs; UT/LT, 2 pairs; UT/MT, 1 pair; UT/SA, 3 pairs).ConclusionUpper extremity CC exercises generated greater activation of shoulder and trunk muscles compared to OC exercises. Some of the CC exercises produced lower activation ratios compared to OC exercises.  相似文献   

18.
Despite the wide use of surface electromyography (EMG) to study pedalling movement, there is a paucity of data concerning the muscular activity during uphill cycling, notably in standing posture. The aim of this study was to investigate the muscular activity of eight lower limb muscles and four upper limb muscles across various laboratory pedalling exercises which simulated uphill cycling conditions. Ten trained cyclists rode at 80% of their maximal aerobic power on an inclined motorised treadmill (4%, 7% and 10%) with using two pedalling postures (seated and standing). Two additional rides were made in standing at 4% slope to test the effect of the change of the hand grip position (from brake levers to the drops of the handlebar), and the influence of the lateral sways of the bicycle. For this last goal, the bicycle was fixed on a stationary ergometer to prevent the lean of the bicycle side-to-side. EMG was recorded from M. gluteus maximus (GM), M. vastus medialis (VM), M. rectus femoris (RF), M. biceps femoris (BF), M. semimembranosus (SM), M. gastrocnemius medialis (GAS), M. soleus (SOL), M. tibialis anterior (TA), M. biceps brachii (BB), M. triceps brachii (TB), M. rectus abdominis (RA) and M. erector spinae (ES). Unlike the slope, the change of pedalling posture in uphill cycling had a significant effect on the EMG activity, except for the three muscles crossing the ankle's joint (GAS, SOL and TA). Intensity and duration of GM, VM, RF, BF, BB, TA, RA and ES activity were greater in standing while SM activity showed a slight decrease. In standing, global activity of upper limb was higher when the hand grip position was changed from brake level to the drops, but lower when the lateral sways of the bicycle were constrained. These results seem to be related to (1) the increase of the peak pedal force, (2) the change of the hip and knee joint moments, (3) the need to stabilize pelvic in reference with removing the saddle support, and (4) the shift of the mass centre forward.  相似文献   

19.
20.
Objective:The purpose of this study was to investigate the difference in back extensor muscle endurance before and after kinesiology tape application to all back stabilizer muscles and to the erector spinae alone.Methods:We assessed 32 adults (16 men and 16 women), randomly divided into two groups. In the erector spinae taping (EST) group, kinesiology tape was applied only to the erector spinae, and in the total muscle taping (TMT) group, kinesiology tape was applied to the erector spinae, latissimus dorsi, lower trapezius, internal oblique abdominis, and external oblique abdominis.Results:Both groups showed significant difference in terms of back extensor muscle endurance after kinesiology tape application (p<0.05). Between-group comparison revealed that the TMT group had more back extensor muscle endurance than the EST group (p<0.05) after kinesiology tape application.Conclusions:These findings indicate that, to improve back extensor muscle endurance, kinesiology tape should be applied to all back stabilizer muscles, rather than to the erector spinae muscles alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号