首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 537 毫秒
1.
Bacillus subtilis expresses a cytochrome c-550nm that participates in respiratory electron transfer and is an integral membrane protein. Analysis of the B. subtilis cytochrome c-550nm amino acid sequence predicts a single N-terminal transmembrane helix attached to a water-soluble heme binding domain [C. von Wachenfeldt and L. Hederstedt (1990) J. Biol. Chem. 265, 13939-13948]. We have purified cytochrome c-550nm from wild-type B. subtilis and B. subtilis transformed with the shuttle vector pHP13 containing the gene for B. subtilis cytochrome c-550nm (cccA). In B. subtilis transformed with pHP13/cccA there is better than eightfold more membrane-bound cytochrome c-550nm than in wild-type B. subtilis. The overexpressed cytochrome c-550nm can be purified by chromatography on hydroxylapatite and Q-Sepharose media. A six-histidine tag has been added to the C-terminus of cytochrome c-550nm from B. subtilis as a further aid for purification. This strain produces cytochrome c-550nm to a level fourfold greater than wild type and allows for one-step purification using metal affinity chromatography. UV-Vis spectroscopy detects no change in the heme C spectrum due to the addition of six histidines. Neither form of B. subtilis cytochrome c-550nm is stable in its reduced state in aerated buffer, unless EDTA is added. The two forms, wild-type and his-tagged, of cytochromes c have similar midpoint redox potentials of 195 and 185 mV, respectively, and are equally good substrates for B. subtilis cytochrome c oxidase. We conclude that the addition of the histidine tag eases the purification of cytochrome c-550nm from B. subtilis plasma membranes and that the additional metal binding site does not compromise the stability or functional properties of the protein.  相似文献   

2.
The ctaBCDEF genes coding for cytochrome c oxidase were found to reside adjacent to a regulatory gene ctaA at 127 degrees on the Bacillus subtilis chromosome. The structural genes for subunits I and II, ctaD and ctaC, were deleted by gene-replacement using a phleomycin-resistance marker. The mutant was unable to oxidize N,N,N',N'-tetramethyl-p-phenylene-diamine and oxidized cytochrome c at a significantly lower rate. Absorption spectra of the mutant and wild-type membranes confirmed the presence of two haem A-containing enzymes in B. subtilis. Another mutant, with a spontaneous deletion upstream from ctaC, was found to express neither of these enzymes. Radioactive haem-labelling was used to identify subunit II, which contains a haem C, and cytochrome c-550 among the membrane-bound c-type cytochromes of B. subtilis.  相似文献   

3.
A detailed study of the soluble cytochrome composition of Rhodopseudomonas sphaeroides (ATCC 17023) indicates that there are five c-type cytochromes and one b-type cytochrome present. The molecular weights, heme contents, amino acid compositions, isoelectric points, and oxidation-reduction potentials were determined and the proteins were compared with those from other bacterial sources. Cytochromes c2 and c' have previously been well characterized. Cytochrome c-551.5 is a diheme protein which has a very low redox potential, similar to certain purple bacterial and algal cytochromes. Cytochrome c-554 is an oligomer, which is spectrally similar to the low-spin isozyme of cytochrome c' found in other purple bacteria (e.g., Rhodopseudomonas palustris cytochrome c-556). An unusual high-spin c-type heme protein has also been isolated. It is spectrally distinguishable from cytochrome c' and binds a variety of heme ligands including oxygen. A large molecular-weight cytochrome b-558 is also present which appears related to a similar protein from Rhodospirillum rubrum, and the bacterioferritin from Escherichia coli. None of the soluble proteins appear to be related to the abundant membrane-bound c-type cytochrome in Rps. sphaeroides which has a larger subunit molecular weight similar to mitochondrial cytochrome c1 and chloroplast cytochrome f.  相似文献   

4.
Based on DNA sequence data a novel c-type cytochrome, cytochrome cM, has been predicted to exist in the cyanobacterium Synechocystis 6803. The precursor protein consists of 105 amino acids with a characteristic heme-binding motif and a hydrophobic domain located at the N-terminal end that is proposed to act as either a signal peptide or a membrane anchor. For the first time we report the detection of cytochrome cM in Synechocystis 6803 using Western blot analysis. The soluble portion cytochrome cM has been overexpressed in Escherichia coli in two forms, one with a poly histidine tag to facilitate purification and one without such a tag. The overexpressed protein has been purified and shown to bind heme, exhibiting an absorption peak in the Soret band near 416 nm and a peak in the alpha band at 550 nm. The extinction coefficient of cytochrome cM is 23.2 +/- 0.5 mM-1.cm-1 for the reduced minus oxidized alpha band peak (550-535 nm). The isoelectric point of cytochrome cM is 5.6 (without the histidine tag), which is significantly lower than the pI of 7.2 predicted from the amino acid sequence. The redox midpoint potential of cytochrome cM expressed in E. coli is 151 +/- 5 mV (pH 7.1), which is quite low compared to other c-type cytochromes in which a histidine and a methionine residue serve as the axial ligands to the heme. This work opens the way for determining the three-dimensional structure of cytochrome cM and investigating its function in cyanobacteria.  相似文献   

5.
The gram-positive, endospore-forming bacterium Bacillus subtilis contains several membrane-bound c-type cytochromes. We have isolated a mutant pleiotropically deficient in cytochromes c. The responsible mutation resides in a gene which we have named ccdA (cytochrome c defective). This gene is located at 173 degrees on the B. subtilis chromosome. The ccdA gene was found to be specifically required for synthesis of cytochromes of the c type. CcdA is a predicted 26-kDa integral membrane protein with no clear similarity to any known cytochrome c biogenesis protein but seems to be related to a part of Escherichia coli DipZ/DsbD. The ccdA gene is cotranscribed with two other genes. These genes encode a putative 13.5-kDa single-domain response regulator, similar to B. subtilis CheY and Spo0F, and a predicted 18-kDa hydrophobic protein with no similarity to any protein in databases, respectively. Inactivation of the three genes showed that only ccdA is required for cytochrome c synthesis. The results also demonstrated that cytochromes of the c type are not needed for growth of B. subtilis.  相似文献   

6.
V L Davidson  M A Kumar 《FEBS letters》1989,245(1-2):271-273
Electron transfer from periplasmic cytochromes c to the membrane-bound respiratory chain has been studied with the isolated cytochromes and membrane preparations from Paracoccus denitrificans. When reduced cytochromes were incubated with spheroplasts only the constitutive cytochrome c-550 was rapidly oxidized. The inducible cytochromes c-551i and c-553i were not oxidized at appreciable rates. Cytochrome c-550 was able to mediate the transfer of electrons from either cytochrome c-551i or cytochrome c-553i to the membrane preparation.  相似文献   

7.
Soluble c-type cytochromes are central to metabolism of C1 compounds in methylotrophic bacteria. In order to characterize the role of c-type cytochromes in methane-utilizing bacteria (methanotrophs), we have purified four different cytochromes, cytochromes c-554, c-553, c-552, and c-551, from the marine methanotroph Methylomonas sp. strain A4. The two major species, cytochromes c-554 and c-552, were monoheme cytochromes and accounted for 57 and 26%, respectively, of the soluble c-heme. The approximate molecular masses were 8,500 daltons (Da) (cytochrome c-554) and 14,000 Da (cytochrome c-552), and the isoelectric points were pH 6.4 and 4.7, respectively. Two possible diheme c-type cytochromes were also isolated in lesser amounts from Methylomonas sp. strain A4, cytochromes c-551 and c-553. These were 16,500 and 34,000 Da, respectively, and had isoelectric points at pH 4.75 and 4.8, respectively. Cytochrome c-551 accounted for 9% of the soluble c-heme, and cytochrome c-553 accounted for 8%. All four cytochromes differed in their oxidized versus reduced absorption maxima and their extinction coefficients. In addition, cytochromes c-554, c-552, and c-551 were shown to have different electron paramagnetic spectra and N-terminal amino acid sequences. None of the cytochromes showed significant activity with purified methanol dehydrogenase in vitro, but our data suggested that cytochrome c-552 is probably the in vivo electron acceptor for the methanol dehydrogenase.  相似文献   

8.
Two distinct class I (monoheme) c-type cytochromes from the hyperthermophilic bacterium Aquifex aeolicus were studied by biochemical and biophysical methods (i.e., optical and EPR spectroscopy, electrochemistry). The sequences of these two heme proteins (encoded by the cycB1 and cycB2 genes) are close to identical (85% identity in the common part of the protein) apart from the presence of an N-terminal stretch of 62 amino acid residues present only in the cycB1 gene. A soluble cytochrome was purified and identified by N-terminal sequencing as the cycB2 gene product. It showed an alpha-peak at 555 nm, an E(m) value of +220 mV, and electron paramagnetic resonance parameters of gz = 2.89, gy = 2.287, and gx = 1.52. A firmly membrane-bound cytochrome characterized by nearly identical properties was detected and attributed to the cycB1 gene product. The very high degree of homology of its N-terminal part to cytochrome c553 from Heliobacterium gestii strongly suggests it to be anchored to the membrane via N-terminally attached lipid molecules. The two heme proteins were named cytochrome c555s (soluble) and cytochrome c555m (membranous). Electron paramagnetic resonance on partially ordered membrane multilayers suggests that the solvent-exposed heme domain of cytochrome c555m is flexible with respect to the membrane plane. Possible functional roles for both cytochromes are discussed.  相似文献   

9.
Flavocytochrome c from the Gram-negative, food-spoiling bacterium Shewanella putrefaciens is a soluble, periplasmic fumarate reductase. We have isolated the gene encoding flavocytochrome c and determined the complete DNA sequence. The predicted amino acid sequence indicates that flavocytochrome c is synthesized with an N-terminal secretory signal sequence of 25 amino acid residues. The mature protein contains 571 amino acid residues and consists of an N-terminal cytochrome domain, of about 117 residues, with four heme attachment sites typical of c-type cytochromes and a C-terminal flavoprotein domain of about 454 residues that is clearly related to the flavoprotein subunits of fumarate reductases and succinate dehydrogenases from bacterial and other sources. A second reading frame that may be cotranscribed with the flavocytochrome c gene exhibits some similarity with the 13-kDa membrane anchor subunit of Escherichia coli fumarate reductase. The sequence of the flavoprotein domain demonstrates an even closer relationship with the product of the yeast OSM1 gene, mutations in which result in sensitivity to high osmolarity. These findings are discussed in relation to the function of flavocytochrome c.  相似文献   

10.
A novel cytochrome c and a catalase-peroxidase with alkaline peroxidase activity were purified from the culture supernatant of Bacillus sp. No.13 and characterized. The cytochrome c exhibited absorption maxima at 408 nm (Soret band) in its oxidized state, and 550 (alpha-band), 521 (beta-band), and 415 (Soret band) nm in its reduced state. The native cytochrome c with a relative molecular mass of 15,000 was composed of two identical subunits. The cytochrome c showed over 50 times higher peroxidase activity than those of known c-type cytochromes from various sources. The optimum pH and temperature of the peroxidase activity were about 10.0 and 70 degrees C, respectively. The peroxidase activity is stable in the pH range of 6.0 to 10.8 (30 degrees C, 1-h treatment), and at temperatures up to 80 degrees C (pH 8.5, 20-min treatment). The heme content was determined to be 1 heme per subunit. The amino acid sequence of the cytochrome c showed high homology with those of the c-type cytochromes from Bacillus subtilis and Bacillus sp. PS3. The catalase-peroxidase showed high catalase activity and considerable peroxidase activity, the specific activities being 55,000 and 0.94 micromol/min/mg, respectively. The optimum pH and temperature of the peroxidase activity were in the range of 6.4 to 10.1 and 60 degrees C, respectively. The catalase-peroxidase showed a lower K(m) value (0.67 mM) as to H(2)O(2) than known catalase-peroxidases.  相似文献   

11.
The complete amino acid sequence of a 26-kDa low redox potential cytochrome c-551 from Rhodocyclus tenuis was determined by a combination of Edman degradation and mass spectrometry. There are 240 residues including two heme binding sites at positions 41, 44, 128, and 132. There is no evidence for gene doubling. The only known homolog of Rc. tenuis cytochrome c-551 is the diheme cytochrome c-552 from Pseudomonas stutzeri which contains 268 residues and heme binding sites at nearly identical positions. There is 44% overall identity between the Rc. tenuis and Ps. stutzeri cytochromes with 10 internal insertions and deletions. The Ps. stutzeri cytochrome is part of a denitrification gene cluster, whereas Rc. tenuis is incapable of denitrification, suggesting different functional roles for the cytochromes. Histidines at positions 45 and 133 are the fifth heme ligands and conserved histidines at positions 29, 209, and 218 and conserved methionines at positions 114 and 139 are potential sixth heme ligands. There is no obvious homology to the low-potential diheme cytochromes characterized from other purple bacterial species such as Rhodobacter sphaeroides. There are therefore at least two classes of low-potential diheme cytochromes c found in phototrophic bacteria. There is no more than 11% helical secondary structure in Rc. tenuis cytochrome c-551 suggesting that there is no relationship to class I or class II c-type cytochromes.  相似文献   

12.
CcmE is a heme chaperone involved in the periplasmic maturation of c-type cytochromes in many bacteria and plant mitochondria. It binds heme covalently and subsequently transfers it to the apo form of cytochromes c. To examine the role of the C-terminal domain of CcmE in the binding of heme, in vitro heme binding to the apo form of a truncated (immediately before Pro-136) version of the periplasmic domain of the heme chaperone from Escherichia coli was studied. Removal of the C-terminal domain dramatically altered the ligation of non-covalently bound heme in CcmE' (the soluble form lacking the membrane anchor) but only slightly affected its affinity for protoporphyrin IX and 8-anilino-1-naphthalenesulfonate. This finding has significant mechanistic implications for in vivo holo-CcmE formation and indicates that the C-terminal region is not required for the recruitment and docking of heme into its binding site but is likely to contain amino acid(s) involved in heme iron axial coordination. Removal of the C-domain significantly impaired in vivo heme binding to CcmE and conversion of apocytochrome to holoprotein by a similar factor, suggesting that the C-terminal domain of the chaperone is primarily involved in heme binding to CcmE rather than in heme transfer to the apo cytochrome.  相似文献   

13.
Cytoplasmic membranes were isolated from the cells of a sulfate-reducing strict anaerobe Desulfovibrio vulgaris Miyazaki F and membrane-bound cytochromes were characterized. Redox difference spectra at 77 K revealed the presence of cytochromes with the alpha peaks at 552 and 556 nm while CO-binding difference spectra showed the presence of o-type cytochrome(s). Partial purification of the cytochromes demonstrated that the membranes contain cytochromes c550, c551, c556 and possibly d1 besides high molecular mass cytochrome c and cytochrome c3. It turned out that two kinds of novel CO-binding c-type cytochromes are present in the membrane. The membranes and a partially purified fraction showed weak ubiquinol-1 oxidase activity but no cytochrome c oxidase activity. Results suggest that D. vulgaris does not express the heme-copper terminal oxidase under our growth conditions in spite of the presence of the col gene, which is homologous to the gene of subunit I of the aa3-type oxidase.  相似文献   

14.
M C Liu  W J Payne  H D Peck  Jr    J LeGall 《Journal of bacteriology》1983,154(1):278-286
Pseudomonas perfectomarinus (ATCC 14405) is a facultative anaerobe capable of either oxygen respiration or anaerobic nitrate respiration, i.e., denitrification. A comparative study of the electron transfer components of cells revealed five c-type cytochromes and cytochrome cd in the soluble fraction from anaerobically grown cells and four c-type cytochromes in the soluble fraction from aerobically grown cells. Purification procedures yielded three c-type cytochromes (designated c-551, c-554, and acidic c-type) from both kinds of cells as indicated by similarities in absorption spectra, molecular weight, and electrophoretic mobility. Cytochrome cd, a diheme c-type cytochrome (cytochrome c-552), and a split-alpha c-type cytochrome were recovered only from anaerobically grown cells. A c-type cytochrome with a low ratio of alpha to beta absorption peak heights was uniquely present in the aerobically grown cells. Liquid N2 temperature absorption spectroscopy on the membrane fraction from anaerobically grown cells revealed residual cytochrome cd as well as differences in the relative amounts of c-type and b-type cytochromes in membranes prepared from cells grown under the two different conditions.  相似文献   

15.
Do photosynthetic bacteria contain cytochrome c1?   总被引:3,自引:0,他引:3       下载免费PDF全文
A method is described for characterizing, c-type cytochromes in bacterial membrane preparations according to molecular weight on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Applied to the photosynthetic bacterium Rhodopseudomonas sphaeroides this technique is used, together with spectroscopic measurements, to demonstrate that a membrane-bound cytochrome c of mol.wt. 30000 is active in photosynthetic electron transport in addition to the well-known soluble cytochrome, cytochrome c2. The membrane cytochrome has a midpoint potential (E'0) at pH 7 of +290 mV, as compared with +360 mV for purified cytochrome c2. Its alpha-band has a peak near 552 nm, as compared with 550 nm for cytochrome c2. Evidence is presented that chromatophores contain roughly equal amounts of the two cytochromes.  相似文献   

16.
Cytochromes c are metalloproteins that function in electron transfer reactions and contain a heme moiety covalently attached via thioether linkages between the co-factor and a CXXCH motif in the protein. Covalent attachment of the heme group occurs on the positive side of all energy-transducing membranes (bacterial periplasm, mitochondrial intermembrane space and thylakoid lumen) and requires minimally: 1) synthesis and translocation of the apocytochromes c and heme across at least one biological membrane, 2) reduction of apocytochromes c and heme and maintenance under a reduced form prior to 3) catalysis of the heme attachment reaction. Surprisingly, the conversion of apoforms of cytochromes c to their respective holoforms occurs through at least three different pathways (systems I, II and III). In this review, we detail the assembly process of soluble cytochrome c and membrane-bound cytochrome c1, the only two mitochondrial c-type cytochromes that function in respiration. Mitochondrial c-type cytochromes are matured in the intermembrane space via the system I or system III pathway, an intriguing finding considering that the biochemical requirements for cytochrome c maturation are believed to be common regardless of the energy-transducing membrane under study.  相似文献   

17.
Resonance Raman spectroscopy has been used to obtain complete spectra of each individual cytochrome type - a, b and c - in the reduced state within membrane vesicle preparations from two species of obligately alkalophilic bacteria: Bacillus alcalophilus and Bacillus firmus RAB. The vibrational spectra, in the range 250-1700 cm-1, were obtained with tunable dye laser excitation in the wavelength range 550-600 nm tuned to resonance with the appropriate reduced alpha band maximum for the cytochrome type of interest. The spectra reveal details which serve to characterize the specific type of cytochrome as well as to confirm the similarity of the heme prosthetic group to previously well-characterized cytochromes of the the a- b- or c-type. Preliminary evidence in support of heterogeneity of b-type, and possibly a-type cytochromes, or of heme-heme interaction within the membrane is presented.  相似文献   

18.
The coordination geometry at the heme iron of the cytochromes c-553 from Desulfovibrio vulgaris and Desulfovibrio desulfuricans was investigated by 1H-nuclear magnetic resonance and circular dichroism spectroscopy. Individual assignments were obtained for heme c and the axial ligands. From studies of nuclear Overhauser enhancements the axial histidine imidazole ring orientation relative to the heme group was found to coincide with other c-type cytochromes. In contrast, a new structure was observed for the axial methionine in the reduced cytochromes c-553. This includes S chirality at the iron-bound sulfur atom, but compared to cytochromes c-551 from Pseudomonads and Rhodopseudomonas gelatinosa and cytochrome c5 from Pseudomonas mendocina, which also contain S-chiral methionine, a different spatial arrangement of the gamma- and beta-methylene groups and the alpha carbon of methionine prevails. For the ferricytochromes c-553 R chirality was found for the iron-bound sulfur. This is the first observation of different methionine chirality in different oxidation states of the same c-type cytochrome.  相似文献   

19.
c-Type cytochromes are located partially or completely in the periplasm of gram-negative bacteria, and the heme prosthetic group is covalently bound to the protein. The cytochrome c maturation (Ccm) multiprotein system is required for transport of heme to the periplasm and its covalent linkage to the peptide. Other cytochromes and hemoglobins contain a noncovalently bound heme and do not require accessory proteins for assembly. Here we show that Bradyrhizobium japonicum cytochrome c550 polypeptide accumulation in Escherichia coli was heme dependent, with very low levels found in heme-deficient cells. However, apoproteins of the periplasmic E. coli cytochrome b562 or the cytosolic Vitreoscilla hemoglobin (Vhb) accumulated independently of the heme status. Mutation of the heme-binding cysteines of cytochrome c550 or the absence of Ccm also resulted in a low apoprotein level. These levels were restored in a degP mutant strain, showing that apocytochrome c550 is degraded by the periplasmic protease DegP. Introduction of the cytochrome c heme-binding motif CXXCH into cytochrome b562 (c-b562) resulted in a c-type cytochrome covalently bound to heme in a Ccm-dependent manner. This variant polypeptide was stable in heme-deficient cells but was degraded by DegP in the absence of Ccm. Furthermore, a Vhb variant containing a periplasmic signal peptide and a CXXCH motif did not form a c-type cytochrome, but accumulation was Ccm dependent nonetheless. The data show that the cytochrome c heme-binding motif is an instability element and that stabilization by Ccm does not require ligation of the heme moiety to the protein.  相似文献   

20.
Escherichia coli genes required for cytochrome c maturation.   总被引:9,自引:4,他引:5       下载免费PDF全文
The so-called aeg-46.5 region of Escherichia coli contains genes whose expression is induced under anaerobic growth conditions in the presence of nitrate or nitrite as the terminal electron acceptor. In this work, we have examined more closely several genes of this cluster, here designated ccmABCDEFGH, that are homologous to two separate Bradyrhizobium japonicum gene clusters required for the biogenesis of c-type cytochromes. A deletion mutant of E. coli which lacked all of these genes was constructed. Maturation of indigenous c-type cytochromes synthesized under anaerobic respiratory conditions, with nitrite, nitrate, or trimethylamine N-oxide as the electron acceptor, was found to be defective in the mutant. The biogenesis of foreign cytochromes, such as the soluble B. japonicum cytochrome c550 and the membrane-bound Bacillus subtilis cytochrome c550, was also investigated. None of these cytochromes was synthesized in its mature form when expressed in the mutant, as opposed to the situation in the wild type. The results suggest that the E. coli ccm gene cluster present in the aeg-46.5 region is required for a general pathway involved in cytochrome c maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号