首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The visinin-like-proteins VILIP-1 and -3 are EF-hand calcium-binding proteins and belong to the family of neuronal calcium sensor (NCS) proteins. Members of this family are involved in the calcium-dependent regulation of signal transduction cascades mainly in the nervous system. VILIP-1 and VILIP-3 are expressed in different populations of neuronal cells. To gain insights into the different functional characteristics of VILIP-1 and -3, we have compared the localization of the proteins in intact cells and the calcium-dependent membrane association in subcellular fractions. Furthermore, we have investigated the different functional properties of the two proteins in activating cGMP signal pathways and have defined different sets of protein interaction partners. Our data indicate that VILIP-3, which is mainly expressed in Purkinje cells, and VILIP-1, which is expressed in granule cells in the cerebellum, show a different calcium-dependent subcellular localization, may activate different cellular signaling pathways, and thus have signaling functions which seem to be cell-type specific.  相似文献   

2.
Leucine-rich repeat (LRR) proteins feature tandem leucine-rich motifs that form a protein-protein interaction domain. Plants contain diverse classes of LRR proteins, many of which take part in signal transduction. We have identified a novel family of nine Arabidopsis LRR proteins that, based on predicted intracellular location and LRR motif consensus sequence, are related to Ras-binding LRR proteins found in signaling complexes in animals and yeast. This new class has been named plant intracellular Ras group-related LRR proteins (PIRLs). We have characterized PIRL cDNAs, rigorously defined gene and protein annotations, investigated gene family evolution and surveyed mRNA expression. While LRR regions suggested a relationship to Ras group LRR proteins, outside of their LRR domains PIRLs differed from Ras group proteins, exhibiting N- and C-terminal regions containing low complexity stretches and clusters of charged amino acids. PIRL genes grouped into three subfamilies based on sequence relationships and gene structures. Related gene pairs and dispersed chromosomal locations suggested family expansion by ancestral genomic or segmental duplications. Expression surveys revealed that all PIRL mRNAs are actively transcribed, with three expressed differentially in leaves, roots or flowers. These results define PIRLs as a distinct, plant-specific class of intracellular LRR proteins that probably mediate protein interactions, possibly in the context of signal transduction. T-DNA knock-out mutants have been isolated as a starting point for systematic functional analysis of this intriguing family.  相似文献   

3.
14-3-3 proteins: regulation of signal-induced events   总被引:9,自引:1,他引:8  
The field of signal transduction has experienced a significant paradigm shift as a result of an increased understanding of the roles of 14-3-3 proteins. There are many cases where signal-induced phosphorylation itself may cause a change in protein function. This simple modification is, in fact, the primary basis of signal transduction events in many systems. There are a large and growing number of cases, however, where simple phosphorylation is not enough to effect a change in protein function. In these cases, the 14-3-3 proteins can be required to complete the change in function. Therefore signal transduction can be either the relatively simple process where phosphorylation alters target activity, or it can be a more complex, multistep process with the 14-3-3 proteins playing the major role of bringing the signal transduction event to completion. This makes 14-3-3-modulated signal transduction a more complicated process with additional avenues for regulation and variety. Adding further complexity to the process is the fact that 14-3-3 proteins are present as multigene families in most organisms (Aitken et al. Trends Biochem Sci 17: 498–501, 1992; Ferl Annu Rev Plant Physiol Plant Molecular Biology 47: 49–73, 1996), with each member of the family being differentially expressed in various tissues and with potentially differential affinity for various target proteins. This review focuses on the 14-3-3 family of Arabidopsis as a model for further developing understanding of the roles of the 14-3-3 proteins as modulators of signal transduction events in plants. The primary approaches to these questions are not unlike the approaches that would be used in the functional dissection of any multigene family, but the interpretation of these data will have wide implications since the 14-3-3 s physically interact with other protein families.  相似文献   

4.
LDL receptor-related proteins in neurodevelopment   总被引:2,自引:1,他引:1  
Low-density lipoprotein receptor-related proteins (LRPs) are evolutionarily ancient cell-surface receptors with diverse biological functions. All are expressed in the central nervous system and, for most receptors, animal models have shown that they are indispensable for successful neurodevelopment. The mechanisms by which they regulate the formation of the nervous system are varied and include the transduction of extracellular signals and the modulation of intracellular signal propagation, as well as cargo transport, the function most commonly attributed to this gene family. Here, we will summarize recent advances in our understanding of the molecular basis on which these receptors function during development .  相似文献   

5.
Yang H  Sasaki T  Minoshima S  Shimizu N 《Genomics》2007,90(2):249-260
We report a novel protein family consisting of three members, each of which contains RUN and TBC motifs and appears to be associated with small G protein-mediated signal transduction pathway. We named these proteins as small G protein signaling modulators (SGSM1/2/3). Northern blot analysis revealed that human SGSM2/3 are expressed ubiquitously in various tissues, whereas SGSM1 is expressed mainly in brain, heart, and testis. Mouse possessed the same protein family genes, and the in situ hybridization and immunohistochemical staining of tissue sections revealed that mouse Sgsm1/2/3 are expressed in the neurons of central nervous system, indicating the strong association of Sgsm family with neuronal function. Furthermore, endogenous Sgsm1 protein was localized in the trans-Golgi network of mouse Neuro2a cells by immunofluorescence microscopy. Expression of various cDNA constructs followed by immunoprecipitation assay revealed that human SGSM1/2/3 proteins are coprecipitated with RAP and RAB subfamily members of the small G protein superfamily. Based on these results, we postulated that the SGSM family members function as modulators of the small G protein RAP and RAB-mediated neuronal signal transduction and vesicular transportation pathways.  相似文献   

6.
The Homer family of adaptor proteins consists of three members in mammals, and homologs are also known in other animals but not elsewhere. They are predominantly localized at the postsynaptic density in mammalian neurons and act as adaptor proteins for many postsynaptic density proteins. As a result of alternative splicing each member has several variants, which are classified primarily into the long and short forms. The long Homer forms are constitutively expressed and consist of two major domains: the amino-terminal target-binding domain, which includes an Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) homology 1 (EVH1) domain, and the carboxy-terminal self-assembly domain containing a coiled-coil structure and leucine zipper motif. Multimers of long Homer proteins, coupled through their carboxy-terminal domains, are thought to form protein clusters with other postsynaptic density proteins, which are bound through the amino-terminal domains. Such Homer-mediated clustering probably regulates or facilitates signal transduction or cross-talk between target proteins. The short Homer forms lack the carboxy-terminal domain; they are expressed in an activity-dependent manner as immediate-early gene products, possibly disrupting Homer clusters by competitive binding to target proteins. Homer proteins are also involved in diverse non-neural physiological functions.  相似文献   

7.
We have isolated a gene, termed CORO1C (human coronin-like actin-binding protein 1C), that encodes a new member of the coronin-like family of proteins. The cDNA consists of 3,857 nucleotides, with an open reading frame of 1,422 bp encoding a 474 amino acid protein. The deduced amino acid sequence shared 65% identity with p57 (human coronin-like actin-binding protein), as well as 46% identity with coronin, a protein first isolated from the slime mold Dictyostelium discoideum. Computer analysis predicted that the product of the CORO1C gene would contain five WD repeats in its N-terminal region and a coiled-coil motif in its C-terminal region, both of which are conserved among coronin-like proteins. CORO1C was ubiquitously expressed in all human tissues examined, in contrast to other known coronin-like molecules, each of which is expressed in a tissue-specific manner. Immunocytochemical staining demonstrated that CORO1C was co-localized with F-actin; therefore, the gene product is likely to be important in cytokinesis, motility, and signal transduction, as are the other members of this molecular family. We assigned this novel gene to chromosome 12q24.1 by fluorescence in situ hybridization.  相似文献   

8.
SENTRA, available via URL http://wit.mcs.anl.gov/WIT2/Sentra/, is a database of proteins associated with microbial signal transduction. The database currently includes the classical two-component signal transduction pathway proteins and methyl-accepting chemotaxis proteins, but will be expanded to also include other classes of signal transduction systems that are modulated by phosphorylation or methylation reactions. Although the majority of database entries are from prokaryotic systems, eukaroytic proteins with bacterial-like signal transduction domains are also included. Currently SENTRA contains signal transduction proteins in 34 complete and almost completely sequenced prokaryotic genomes, as well as sequences from 243 organisms available in public databases (SWISS-PROT and EMBL). The analysis was carried out within the framework of the WIT2 system, which is designed and implemented to support genetic sequence analysis and comparative analysis of sequenced genomes.  相似文献   

9.
PII proteins are small homotrimeric signal transduction proteins that regulate the activities of metabolic enzymes and permeases, and control the activities of signal transduction enzymes. The protein family shows high conservation, with examples in eukaryota (plants and eukaryotic algae), archaea, and bacteria. This distribution indicates that PII is one of the most ancient signalling proteins known.  相似文献   

10.
The neuronal calcium sensor (NCS) proteins regulate signal transduction processes and are highly conserved from yeast to humans. We report complete NMR chemical shift assignments of the NCS homolog from fission yeast (Schizosaccharomyces pombe), referred to in this study as Ncs1p. (BMRB no. 16446).  相似文献   

11.
Many glycosylphosphatidyl-inositol-anchored proteins (GPI-AP) are expressed on T lymphocytes. Ligand or mAb-mediated aggregation of all GPI-AP tested to date results in the initiation of signal transduction pathways via the activation of src family protein tyrosine kinases. Src family kinases co-localise with GPI-AP in specialised sub-domains of the plasma membrane, referred to as detergent insoluble membrane microdomains (DIGS), which are thought to function as signalling platforms. GPI-AP may play a role in the regulation of T cell clonal expansion and effector functions at multiple levels, including the initiation of T cell activation through the antigen receptor complex, the regulation of ongoing responses supported by persisting antigen, as well as proliferative responses to the major T cell growth factor, IL-2. Evidence supporting the role of GPI-AP in the regulation of T cell development, activation and homeostasis is discussed, as well as insights provided by studies in humans and mice lacking GPI-AP.  相似文献   

12.
Proteins of the UBASH3/STS/TULA family recently emerged as potent regulators of cellular functions. They are characterized by a unique architecture, featuring at least three functional domains. One of them is a histidine phosphatase domain, which mediates the protein tyrosine phosphatase activity of these proteins. Recent studies demonstrated that UBASH3/STS/TULA‐family proteins play a key role in down‐regulating receptor‐mediated signal transduction and physiologic responses of T cells and platelets in vitro and in vivo. The Syk‐family protein tyrosine kinases Syk and Zap‐70 were identified as major targets of TULA‐2 in full agreement with the suppressive effect of this phosphatase in systems where Syk and Zap‐70 carry out the essential early steps of signal transduction. In spite of significant similarity between TULA and TULA‐2, there are also considerable functional differences between them. Thus, TULA‐2 is expressed ubiquitously in mammalian tissues and exhibits high phosphatase activity, whereas TULA is expressed specifically in lymphocytes and exhibits low phosphatase activity. However, TULA also functions as a down‐regulator of cellular responses, and therefore its role may be mediated by dephosphorylation of yet‐unknown substrates or by promoting T‐cell apoptosis (the latter activity is unique for this UBASH3/STS/TULA family member). The down‐regulatory role of TULA and TULA‐2 revealed in experimental systems is consistent with the recently discovered association of several autoimmune diseases with certain risk alleles encoding for these proteins. J. Cell. Physiol. 228: 43–49, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
In proteins of the neuronal calcium sensor (NCS) family, changes in structure as well as function are brought about by the binding of calcium. In this article, we demonstrate that these structural changes, solely due to calcium binding, can be assessed through electrophoresis in native gels. The results demonstrate that the NCS proteins undergo ligand-dependent conformational changes that are detectable in native gels as a gradual decrease in mobility with increasing calcium but not other tested divalent cations such as magnesium, strontium, and barium. Surprisingly, such a gradual change over the entire tested range is exhibited only by the NCS proteins but not by other tested calcium-binding proteins such as calmodulin and S100B, indicating that the change in mobility may be linked to a unique NCS family feature—the calcium–myristoyl switch. Even within the NCS family, the changes in mobility are characteristic of the protein, indicating that the technique is sensitive to the individual features of the protein. Thus, electrophoretic mobility on native gels provides a simple and elegant method to investigate calcium (small ligand)-induced structural changes at least in the superfamily of NCS proteins.  相似文献   

14.
Heterotrimeric G proteins are ubiquitous signaling partners of seven transmembrane-domain G-protein-coupled receptors (GPCRs), the largest (and most important pharmacologically) receptor family in mammals. A number of scaffolding proteins have been identified that regulate various facets of GPCR signaling. In this review, we summarize current knowledge concerning those scaffolding proteins that are known to directly bind heterotrimeric G proteins, and discuss the composition of the protein complexes they assemble and their effects on signal transduction. Emerging evidence about possible ways of regulation of activity of these scaffolding proteins is also discussed.  相似文献   

15.
Ras proteins function as critical relay switches that regulate diverse signaling pathways between cell surface receptors and the nucleus. Over the past 2-3 years researchers have identified many components of these pathways that mediate Ras activation and effector function. Among these proteins are several guanine nucleotide exchange factors (GEFs), which are responsible for directly interacting with and activating Ras in response to extracellular stimuli. Analogous GEFs regulate Ras-related proteins that serve other diverse cellular functions. In particular, a growing family of proteins (Dbl homology proteins) has recently been identified, which may function as GEFs for the Rho family of Ras-related proteins. This review summarizes our current knowledge of the structure, biochemistry and biology of Ras and Rho family GEFs. Additionally, we describe mechanisms of GEF activation of Ras in signal transduction and address the potential that deregulated GEFs might contribute to malignant transformation through chronic Ras protein activation.  相似文献   

16.
心脏疾病中G蛋白的变化   总被引:6,自引:0,他引:6  
Zhang L  Li L  Wu LL 《生理科学进展》2003,34(1):32-36
G蛋白是一类重要的信号转导分子,其生理功能是将细胞膜受体所识别的各种细胞外信号同细胞内一系列效应分子偶联起来,引起核基因转录及蛋白质结构和功能的变化。G蛋白在心脏表达的亚型有Gs、Gi/o、Gq/11、G12/13,参与心肌收缩力、心率、心律和心肌细胞生长的调节。本文着重讨论了心脏G蛋白的分类、结构和功能,以及在心肌肥大、心力衰竭、急性心肌缺血和心律失常等心脏疾病中的改变,以加深对这些疾病的发病机制和病理生理过程的认识。  相似文献   

17.
This review describes the main properties of a new family of cytokine-inducible proteins which interfere with the Jak/Stat transduction pathway and negatively regulate the duration of cytokine-induced signal activation. These proteins act not only as negative feedback regulators but also inhibit response to cytokines different from those used to induce their expression. These proteins are potentially important regulators of inflammatory and immune responses of hematopoiesis and hormone response.  相似文献   

18.
CIB1 (CIB) is an EF-hand-containing protein that binds multiple effector proteins, including the platelet alphaIIbbeta3 integrin and several serine/threonine kinases and potentially modulates their function. The crystal structure for Ca(2+)-bound CIB1 has been determined at 2.0 A resolution and reveals a compact alpha-helical protein containing four EF-hands, the last two of which bind calcium ions in the standard fashion seen in many other EF-hand proteins. CIB1 shares high structural similarity with calcineurin B and the neuronal calcium sensor (NCS) family of EF-hand-containing proteins. Most importantly, like calcineurin B and NCS proteins, which possess a large hydrophobic pocket necessary for ligand binding, CIB1 contains a hydrophobic pocket that has been implicated in ligand binding by previous mutational analysis. However, unlike several NCS proteins, Ca(2+)-bound CIB1 is largely monomeric whether bound to a relevant peptide ligand or ligand-free. Differences in structure, oligomeric state, and phylogeny define a new family of CIB1-related proteins that extends from arthropods to humans.  相似文献   

19.
植物GRAS蛋白结构和功能研究进展   总被引:1,自引:0,他引:1  
畅文军  刘习文  张治礼 《生命科学》2013,(11):1045-1052
GRAS蛋白是一类植物特有的蛋白家族,是许多重要生长发育过程中的关键调控蛋白,如赤霉素信号转导、光信号转导、根的发育、根瘤和菌根形成以及分生组织形成等。从蛋白分子结构、分类及生理功能等方面综述了植物GRAS蛋白的最新研究进展,并对未来的研究方向进行了讨论。  相似文献   

20.
MAGUK proteins: structure and role in the tight junction   总被引:23,自引:0,他引:23  
ZO-1, ZO-2 and ZO-3 are tight junction (TJ)-associated proteins that belong to the MAGUK family. In addition to the presence of the characteristic MAGUK modules (PDZ, SH3 and GK), ZOs have a distinctive carboxyl terminal with splicing domains, acidic- and proline-rich regions. The modular organization of these proteins allows them to function as scaffolds, which associate to transmembrane TJ proteins, the cytoskeleton and signal transduction molecules. ZOs shuttle between the TJ and the nucleus, where they may regulate gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号