首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescence in situ hybridization (FISH) of chromosome 21 specific yeast artificial chromosome (YAC) clones after Alu-PCR (polymerase chain reaction) amplification has been used to find new region-specific DNA probes for the heterochromatic region of chromosome 21. Six overlapping YAC clones from a pericentromeric contig map (region 21cen-21q11) were analyzed. Four YAC clones were characterized as hybridizing to several chromosomal locations. They are, therefore, either chimeric or shared by different chromosomes. Two of them containing alphoid satellite DNA, are localized at the centromeric regions of chromosomes 13 and 21 (clone 243A11), and on 13cen, 21cen and 1q3 (clone 781G5); the two others are localized at both 21q11 and 13q2 (clone 759D3), and at 18p (clone 770B3). Two YACs were strongly specific for chromosome 21q11 only (clones 124A7 and 881D2). These YACs were used effectively as probes for identifications of chromosome 21 during metaphase and interphase analysis of 12 individuals, including three families with Down syndrome offspring, and 6 amniocyte samples. The location of YAC clones on 21q11 close to the centromeric region allows the application of these clones as molecular probes for the analysis of marker chromosomes with partial deletions of the long arm as well as for pre- and postnatal diagnosis of trisomy 21 when alphoid or more distal region-specific DNA probes are uninformative. Overlapping YAC clones covering human chromosome 21q may be systematically used to detect a set of band-specific DNA probes for molecular-cytogenetic application.  相似文献   

2.
Employing the flow-sorted chromosome 20-specific DNA library LL20NS01, we isolated seven novel unique poly- and monomorphic DNA markers specific to human chromosome 20. Initially, 201 phage clones were analyzed regarding insert size and repetitivity. By testing 14 single- and low-copy number clones for their ability to detect RFLPs, three polymorphisms were revealed by two probes, pFMS22-1.4 [D20S22] and pFMS76 [D20S23]. Seven of twenty probes (35%) were assigned to chromosome 20 using a somatic cell hybrid DNA panel. Five of them were regionally mapped by in situ hybridization. Three DNA markers, pFMS51 [D20S29], pFMS76 [D20S23], and pFMS106 [D20S30], were assigned to 20p11.2-p12, and two markers, pFMS22-1.4 [D20S22] and pFMS135 [D20S31], to 20q12-q13.3. Our new chromosome 20-specific DNA markers should be useful for the molecular characterization of this rather underpopulated human chromosome.  相似文献   

3.
Eight single-copy DNA probes specific for human chromosome 3 were isolated by screening a human chromosome 3-derived genomic library. Southern blot analyses of DNAs isolated from a panel of somatic cell hybrids allowed us to regionally assign all probes to subregions on chromosome 3. Three clones were localized to the short arm of chromosome 3 (3p21----pter), two to the long arm (3q21----qter), and three to the 3q21----3p21 subregion. Six of these DNA sequences map to regions overlapping a segment of chromosome 3 (3p14----p23) frequently deleted in small cell lung cancer cells. Restriction fragment length polymorphism analyses indicate that at least three of the eight single-copy probes studies show MspI or BglII polymorphisms. This library is a useful source of chromosome 3-specific probes.  相似文献   

4.
Anonymous DNA probes specific for human chromosome 16 were isolated from a flow-purified human chromosome 16 library. The library was constructed at the Lawrence Livermore National Laboratory. Twenty-nine clones containing a unique or low-copy DNA insert were isolated. Of these, six were assigned to chromosome 16 and regionally mapped and 12 were shown not to map to chromosome 16. One clone mapped to 16pter----16p13.1, one clone to 16p11.1----16q13, one clone to 16q13----16q22.1, and three clones to 16q22.1----16q24. An additional clone from the same library was mapped to 16q13----16q22.1.  相似文献   

5.
Fragments of the natural rat ceruloplasmin (Cp) gene and cDNA copies of rat Cp and transferring (Tf) mRNAs highly labelled by nick translation with 125I-dCTP were used as specific probes for assignment of these genes to the metaphase chromosomes of rat, mouse and man by in situ hybridization. Both Cp and Tf genes were found to be syntenic in rodents, occupying with high probability the regions 9D and 9F1–3 in mice and 7q11–13 and 7q31–34 in rats respectively. The significant increase in silver grain count over chromosome 15 in rats after hybridization with both the Cp and Tf probes suggests the presence of a related pseudogene cluster on this particular chromosome and thus favours its partial homeology to chromosome 7. The localization of silver grains in metaphase chromosome of man indicates subregional assignment of the Tf gene to 3q21. Use of the rat Cp DNA probe does not indicate synteny of the Cp and Tf genes in man and suggests the existence of a related DNA sequence in 15q11–13. The potential and limitations of the in situ hybridization technique with heterologous DNA probes for gene mapping in mammalian species are discussed.  相似文献   

6.
We have assigned six polymorphic DNA segments to chromosomal subregions and have established the physical order of these sequences on the long arm of chromosome 21 by in situ hybridization of cloned probes to normal metaphase chromosomes and chromosomes 21 from individuals with three different structural rearrangements: an interstitial deletion, a ring chromosome, and a reciprocal translocation involving four different breakpoints in band 21q22. Segments D21S1 and D21S11 map to region 21q11.2----q21, D21S8 to 21q21.1----q22.11, and D21S54 to 21q21.3----q22.11; D21S23 and D21S25 are both in the terminal subband 21q22.3, but they are separated by a chromosomal breakpoint in a ring 21 chromosome, a finding that places D21S23 proximal to D21S25. The physical map order D21S1/D21S11-D21S8-D21S54-D21S23-D21S25 agrees with the linkage map, but genetic distances are disproportionately larger toward the distal end of 21q.  相似文献   

7.
A series of human chromosome 3-specific DNA fragments isolated and characterized from a lamda phage genomic library were regionally localized on human chromosome 3. This was accomplished using filter hybridization blot analysis of a human chromosome 3 hybrid cell deletion mapping panel. Twenty-three new anonymous DNA fragments were assigned to one of four physical regions of chromosome 3. Seventeen DNA fragments were mapped to the long arm of chromosome 3, including one DNA fragment that demonstrated a restriction fragment length polymorphism (RFLP). Five DNA fragments were assigned to 3p14.2----pter, including one highly polymorphic fragment sublocalized at 3p25----pter by in situ hybridization. This DNA fragment is the second reported distal 3p polymorphic probe. One DNA fragment was localized to 3p14----p14.2. In addition, three fragments previously assigned to chromosome 3 were confirmed. Polymorphic DNA probes DNF15S2 (formerly D1S1) and D3S2 were mapped to 3p14.2----pter. The previous 3p25 in situ localization of the c-raf-1 oncogene was supported by deletion panel mapping. The physical localization of these twenty-three new DNA fragments has more than doubled the number of cloned DNA fragments assigned to chromosome 3. These and future regional assignments of DNA fragment probes will facilitate construction of both a physical and genetic linkage map of chromosome 3. They may also be useful in characterizing the chromosomal and molecular aberrations involved in small-cell lung cancer (SCLC), renal cell carcinoma, other malignancies, and the 3p14.2 common fragile site.  相似文献   

8.
We have characterized a panel of somatic cell hybrid cell lines which contain different portions of human chromosome 10. Genomic DNA from the somatic cell hybrids was tested for hybridization with each of an ordered set of probes used previously to construct a genetic map of chromosome 10, as well as several additional probes, previously localized by in situ hybridization. Hybridization of an unmapped probe to the cell line DNAs can be used to determine its most likely position on the chromosome relative to the mapped set of probes. Genomic DNA from two of the cell lines has been used to construct region-specific cosmid and bacteriophage libraries, and clones derived from these libraries were localized by hybridization to the panel of hybrid cell lines. Several of these probes reveal restriction fragment length polymorphisms which have been genetically mapped. Three of the probes map near the locus for multiple endocrine neoplasia type 2A, and one of these probes, BG-JC353 (D10S167), maps between RBP3 and TB14.34 (D10S34). Another probe, CRI-J282 (D10S104), is close to the FNRB locus. The panel of hybrid cell lines is thus useful for rapidly localizing unmapped probes and as a source of DNA for the construction of recombinant libraries derived from specific regions of the chromosome.  相似文献   

9.
染色体畸变是恶性肿瘤细胞的重要遗传学特征, 文章旨在应用BAC DNA克隆鉴定食管癌细胞中的染色体臂和染色体区段的畸变。针对染色体各区段选取5~10个1 Mb BAC DNA, 分别混合制备成特定染色体区段的BAC DNA混合克隆, 然后将染色体臂上覆盖所有区段的上述混合克隆进一步混合制备成特定染色体臂BAC DNA混合克隆。利用简并寡核苷酸引物聚合酶链反应(Degenerate oligonucleotide primed PCR, DOP-PCR)标记染色体臂探针, 利用切口平移法(Nick translation)标记染色体区段探针, 并对食管癌细胞中期染色体进行荧光原位杂交(Fluorescence in situ hybridization, FISH)分析。正常人外周血淋巴细胞中期染色体FISH结果显示, 上述方法标记的探针具有较高的特异性。进一步利用染色体臂混合探针, 确定了多个食管癌细胞中的染色体重排所涉及的特定染色体臂; 利用染色体区段混合探针, 鉴定出KYSE140的t(1q;7q)衍生染色体中1q上的断点范围位于1q32-q41。文章成功建立了1 Mb BAC DNA混合克隆探针标记技术, 并鉴定出多个食管癌细胞中的染色体臂和染色体区段畸变, 不仅为利用M-FISH技术鉴定肿瘤细胞中的染色体畸变提供了更为准确的方法, 而且还可能进一步将该法推广应用于恶性血液病的核型分析以及产前诊断。  相似文献   

10.
Localization of polymorphic DNA probes frequently deleted in lung carcinoma   总被引:8,自引:0,他引:8  
Summary Five polymorphic DNA segments from human chromosome 3, that are frequently deleted in lung carcinoma were mapped by non-isotopic in situ hybridization to metaphase chromosomes. The DNA segment D3S3 mapped to 3p13–p14.2, D3S6 to 3p14.3–p14.5, D3S48 to distal 3p21–p22, ERBAß to 3p24.3 and ERBA2 to 3p24.3. The map location of ERBAß and ERBA2 was confirmed by re-mapping each probe in combination with D3S6 as a marker for 3p14.  相似文献   

11.
Linking clones contain sequences flanking recognition sites for enzymes cutting rarely in mammalian DNA. They can be used to obtain and correlate both physical and genetic mapping information over subregions of mammalian chromosomes. We have constructed and used a NotI linking clone library representing unmethylated NotI sites from HHW693 DNA, a hamster hybrid cell line containing 4p15-4pter and a fragment of 5p as its only human chromosome contribution. Human clones were identified by hybridisation with a cloned human repeat sequence, and localised further to subregions of human chromosome 4p15-4pter using a panel of additional hybrids. Clones from the region distal to the DNA probes (D4S10, D4S43, D4S95) linked to the Huntington's disease mutation, were further analysed. Four markers close to the HD gene: D4S111, D4S113, D4S114 and clone 417 are described here. In addition to serving as markers in physical and genetic mapping experiments, these linking clones provide probes next to cleavable NotI sites, and can therefore be used to screen NotI based chromosome jumping libraries. They also provide indications for potential gene sequences, identifiable as evolutionarily conserved sequences.  相似文献   

12.
D1S1, a human anonymous DNA clone originally called lambda Ch4A-H3 or lambda H3, was mapped by two other laboratories to human chromosome 1p36 by in situ hybridization but its localization was not confirmed using a different mapping method. We used a panel of human-hamster somatic cell hybrids to show that there are copies of D1S1 on both chromosomes 1 and 3. The D1S1 clone itself is from chromosome 3, and part of it is duplicated at least twice on chromosome 1. A high frequency HindIII polymorphism detected by D1S1, believed to be at chromosome 1p36 on the basis of the in situ hybridization data, maps instead to chromosome 3. This finding demonstrates the importance of using two mapping methods to verify the localization of a gene or DNA segment, particularly a polymorphic one which itself may be used in mapping studies. It also raises the question of why in situ hybridization detected a duplicated portion of a clone but not the chromosomal origin of the clone itself.  相似文献   

13.
Summary The gene for Friedreich's ataxia (FA), an autosomal recessive neurodegenerative disorder, has been recently assigned to the long arm of chromosome 9. Linkage disequilibrium between FA and two diverse chromosome 9 markers, D9S5 and D9S15, has been detected in French, French-Canadian and Italian populations. Here, we report the physical localization of these loci by in situ hybridization of probes 26P and MCT112S identifying the D9S5 and D9S15 loci, respectively. Experiments performed on lymphocytes carrying a chromosome 9 pericentric inversion have allowed us to assign both the loci to band 9q21. Furthermore, in situ hybridization data and partial sequencing of the probe MCT112S indicate the presence of alphoid satellite DNA within this region. This suggests that MCT112S is more proximal to the centromere than 26P.  相似文献   

14.
The highly polymorphic locus D2S3 is revealed by three single-copy probes from cosmid C1-5. These probes, 1-30, 1-32, and 2-96, collectively reveal seven restriction fragment length polymorphisms. Fifty-three of 56 unrelated individuals (93%) were heterozygous at one or more of the seven loci, making the compound locus a very useful marker for gene mapping. Chromosomal assignment of D2S3 was obtained using a panel of human X hamster and human X mouse somatic cell hybrids. Molecular hybridization of EcoRI-digested DNA from these cell lines with the DNA inserts from subclones 1-30, 1-32, and 2-96 showed that all three probes mapped to the long arm of chromosome 2. Additionally, in situ hybridization of [3H]-labeled probe 2-96 to metaphase chromosome preparations allowed more precise assignment of the locus to the region 2q35----37.  相似文献   

15.
In an effort to characterize genes expressed in the cerebellum, we have isolated two cDNA clones, H11B (D16S286) and 507 (D5S344), that hybridized to a cerebellar cDNA probe. Using a panel of human-rodent somatic cell hybrids, cDNA clone H11B was mapped to human chromosome 16, and clone 507 was mapped to human chromosome 5. TaqI RFLPs were identified with both clones and were used for linkage analysis in the CEPH families. D16S286 was tightly linked to several markers near chromosome 16p13, and D5S344 was tightly linked to several markers on chromosome 5q. Sequence tagged sites or expressed sequence tags were generated from the 3' untranslated regions of both cDNA clones.  相似文献   

16.
We have discovered and characterized a compound polymorphic locus on chromosome 19, defined by an arbitrary genomic DNA segment cloned into a cosmid vector. Four different restriction fragment length polymorphisms with minor allele frequencies equal to or greater than 10% are revealed by Southern hybridization of subclones of cosmid 1-13 with TaqI, MspI, BamHI, and HindIII digests of human DNAs. Seventy-two percent of unrelated individuals are heterozygous at one or more loci, and seven of the 24 possible haplotypes occur with frequencies of 3%-38%. Using a somatic cell hybrid panel, we have mapped this locus to 19p13.2----19q13.3, whereas in situ hybridization suggests the probe is on 19p. Taken together, these results suggest localization to 19p13.2----19cen. The locus revealed by probes from cosmid 1-13 has been designated D19S11.  相似文献   

17.
Summary Anonymous DNA probes mapping to human chromosome 16 and the distal region of the human X chromosome were isolated from a genomic library constructed using lambda EMBL3 and DNA from a mouse/human hybrid. The hybrid cell contained a der(16)t(X;16)(q26;q24) as the only human chromosome. Fifty clones were isolated using total human DNA as a hybridisation probe. Forty six clones contained single copy DNA in addition to the repetitive DNA. Pre-reassociation with sonicated human DNA was used to map these clones by a combination of Southern blot analysis of a hybrid cell panel containing fragments of chromosomes 16 and X and in situ hybridisation. One clone mapped to 16pter 16p13.11, one clone to 16p13.316p13.11, four clones to 16p13.316p13.13, two clones to 16p13.1316p13.11, one clone to 16p13.11, seven clones to 16p13.1116q12 or 16q13, four clones to 16q12 or 16q13, three clones to 16q1316q22.1, four clones to 16q22.10516q24, and nineteen clones to Xq26Xqter. Two clones mapping to 16p13 detected RFLPs. VK5 (D16S94) detected an MspI RFLP, PIC 0.37. VK20 (D16S96) detected a TaqI RFLP, PIC 0.37 and two MspI RFLPs, PIC 0.30 and 0.50. The adult polycystic kidney disease locus (PKD1) has also been assigned to 16p13. The RFLPs described will be of use for genetic counselling and in the isolation of the PKD1 gene. Similarly, the X clones may be used to isolate RFLPs for genetic counselling and the isolation of genes for the many diseases that map to Xq26qter.  相似文献   

18.
We have constructed a high-resolution cytogenetic map with 168 DNA markers, including 90 RFLP markers for human chromosome 11. The cosmid clones were mapped by fluorescence in situ suppression hybridization, in which discrete fluorescent signals can be detected directly on prometaphase R-banded chromosomes. Although these cosmid clones were distributed throughout the chromosome, they had some tendency to localize in the regions of R-positive band, such as 11p15, 11p11.2, 11q13, 11q23, and 11q25. Since these regions of chromosome 11 are considered to contain genes responsible for certain genetic diseases, cancer breakpoints involved in chromosome rearrangements, and tumor-suppressor genes, this high-resolution cytogenetic map will contribute to the molecular characterization of such genes. This map will also provide many landmarks essential for construction of the complete physical map with contigs of cosmid and YAC clones.  相似文献   

19.
A human neuroreceptor clone (G21), which was isolated by cross-hybridization with the human clone for the beta 2-adrenergic receptor, has recently been shown to encode the gene for the 5HT1A receptor (HTR1A) subtype. In situ hybridization to human metaphase chromosomes mapped the G21 sequence to chromosome 5 at bands 5q11.2-q13. The clone G21 recognizes a SacI RFLP with low heterozygosity (0.13). To increase the informativeness of the HTR1A locus we have isolated two new cosmid clones containing the receptor gene. No polymorphic microsatellites were present in the cosmids. However, one cosmid revealed a new TaqI RFLP that showed tight linkage to new highly polymorphic microsatellites for the loci D5S76, D5S39, and D5S6 in seven British and Icelandic reference pedigrees (maximum LOD of 13.2 with D5S76).  相似文献   

20.
A number of unique sequence recombinant DNA clones were isolated from a recombinant DNA library constructed from DNA enriched for chromosome 21 by flow sorting. Of these, five were mapped to chromosome 21 using a somatic cell hybrid. Regional mapping of these probes and of a probe previously assigned to chromosome 21, was carried out with the aid of chromosome 21 rearrangements using both chromosome sorting and a somatic cell hybrid. Three probes were shown to be located on either side of the breakpoint 21q21.2. Two of the probes were shown to identify restriction fragment length polymorphisms (RFLPs) with high rare-allele frequencies (0.46 and 0.43). A Bgl II RFLP revealed the parental origin of non-disjunction in three of ten families with Down's syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号