首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 413 毫秒
1.
The ultrastructure and physiology of the maxillary palp of Drosophila melanogaster have been studied in wild-type and lozenge mutants. Olfactory physiology in the maxillary palp is shown to depend upon the lozenge(lz) gene. Reduced response amplitudes were recorded for all odorants tested, and the physiological defect was shown to map to the lz locus. The structure of the maxillary palp sensilla is described by scanning electron microscopy (SEM) at high magnification, initially in the wild-type. A linear arrangement of pores, connected by furrows, was found in one class of sensilla, the basiconic sensilla. In the lz 3 mutant, morphological alterations in the basiconic sensilla and duplications of sensilla are documented by SEM. The correlation of structural abnormalities in the lz sensilla and physiological abnormalities in odorant response are consistent with an olfactory role for the basiconic sensilla of the maxillary palp. Accepted: 10 September 1996  相似文献   

2.
The morphology and ultrastructure of the olfactory sensilla on the antennae and maxillary palps were investigated through scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and their responses to five volatile compounds were measured using electroantenogram (EAG) and electropalpogram (EPG) techniques in the pumpkin fruit fly, Bactrocera depressa (Shiraki; Diptera: Tephritidae). Male and female B. depressa displayed distinct morphological types of olfactory sensilla in the antennae and maxillary palps, with predominant populations of trichoid, basiconic, and coeloconic sensilla. Basiconic sensilla, the most abundant type of olfactory sensilla in the antennae, could be further classified into two different types. In contrast, the maxillary palps exhibited predominant populations of a single type of curved basiconic sensilla. High‐resolution SEM observation revealed the presence of multiple nanoscale wall‐pores on the cuticular surface of trichoid and basiconic sensilla, indicating that their primary function is olfactory. In contrast, coeloconic sensilla displayed several longitudinal grooves around the sensillum peg. The TEM observation of individual antennal olfactory sensilla indicates that the basiconic sensilla are thin‐walled, while the trichoid sensilla are thick‐walled. The profile of EAG responses of male B. depressa was different from their EPG response profile, indicating that the olfactory function of maxillary palps is different from that of antennae in this species. The structural and functional variation in the olfactory sensilla between antennae and maxillary palps suggests that each plays an independent role in the perception of olfactory signals in B. depressa.  相似文献   

3.
4.
《Journal of Asia》2020,23(4):1165-1180
Drosophila suzukii is a serious horticultural and quarantine pest, damaging various berry crops. Although the active use of olfactory communication in D. suzukii is well-known, their olfactory sensory system has not been comprehensively reported. Therefore, the present study was carried out to understand the morphology, distribution and ultrastructure of olfactory sensilla present in the antennae and maxillary palps of D. suzukii, through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The olfactory sensilla on the antennae of D. suzukii in both sexes could be classified into three major morphological types, basiconic, trichoid and coeloconic sensilla, according to their shapes. The antennal basiconic sensilla were further divided into three subtypes and the antennal trichoid sensilla into two subtypes, respectively, according to the size of individual sensillum. In contrast to the antennal olfactory sensilla showing diverse morphology, basiconic sensilla was the only type of olfactory sensilla in the maxillary palps of D. suzukii. The basiconic sensilla in the maxillary palps could be further classified into three subtypes, based on their size. Our SEM and TEM observations indicated that multiple nanoscale pores are present on the surface of all types of olfactory sensilla in the antennae and maxillary palps, except coeloconic sensilla. The difference in the morphological types and the distribution of olfactory sensilla suggests that their olfactory functions are different between antennae and maxillary palps in D. suzukii. The results of this study provide useful information for further studies to determine the function of olfactory sensilla in D. suzukii and to understand their chemical communication system.  相似文献   

5.
By immunizing mice with homogenized brains, heads, or a mixture of heads and antennae of D. melanogaster, we obtained six monoclonal antibodies (mabs) that bind to the olfactory system of Drosophila with various degrees of specificity. They can be divided into three groups with respect to their staining pattern: (1) The antibodies ca51/2, na21/2, and nb230 label both in the third (olfactory) antennal segment and in the visual ganglia. All of them bind to antennal structures that can be correlated with basiconic sensilla. The antibody ca51/2 labels sensory neurons of these sensilla. In the antenna of the lozenge 3 mutant, which lacks basiconic sensilla, no labeling is present. In Western blots ca51/2 recognizes in the antenna an antigen of 43.5 kDa, which is expressed in the antenna only in the presence of basiconic sensilla. The antibody na21/2 binds to basiconic and coeloconic sensilla, most likely to the apical part of sheath cells. In immunoblots it recognizes in the antenna two antigens of 42.2 kDa and 46.7 kDa. The latter appears to be correlated in the antenna with the presence of basiconic sensilla. (2) The staining pattern of antibody nc10 is associated with the sheath cells of basiconic and coeloconic sensilla. Moreover, nc10 binds to a subset of glomeruli in the antennal lobe. (3) The staining pattern of the antibodies VG2 and I24B5 is restricted to the antenna. I24B5 recognizes coeloconic sensilla and VG2 recognizes both coeloconic and basiconic sensilla. Staining patterns in both cases include sheath cells.  相似文献   

6.
This review surveys the organization of the olfactory and gustatory systems in the imago and in the larva of Drosophila melanogaster, both at the sensory and the central level. Olfactory epithelia of the adult are located primarily on the third antennal segment (funiculus) and on the maxillary palps. About 200 basiconic (BS), 150 trichoid (TS) and 60 coeloconic sensilla (CS) cover the surface of the funiculus, and an additional 60 BS are located on the maxillary palps. Males possess about 30% more TS but 20% fewer BS than females. All these sensilla are multineuronal; they may be purely olfactory or multimodal with an olfactory component. Antennal and maxillary afferents converge onto approximately 35 glomeruli within the antennal lobe. These projections obey precise rules: individual fibers are glomerulus-specific, and different types of sensilla are associated with particular subsets of glomeruli. Possible functions of antennal glomeruli are discussed. In contrast to olfactory sensilla, gustatory sensilla of the imago are located at many sites, including the labellum, the pharynx, the legs, the wing margin and the female genitalia. Each of these sensory sites has its own central target. Taste sensilla are usually composed of one mechano-and three chemosensory neurons. Individual chemosensory neurons within a sensillum respond to distinct subsets of molecules and project into different central target regions. The chemosensory system of the larva is much simpler and consists essentially of three major sensillar complexes on the cephalic lobe, the dorsal, terminal and ventral organs, and a series of pharyngeal sensilla.  相似文献   

7.
We have found that the phenol oxidase activity in 50-hr Drosophila melanogaster pupae is much greater than that of adult flies. The mutants lz and lz g have all of the phenol oxidase components present in wild type, whereas the mutant tyr-1 has all of the wild-type components but the activity of each component is greatly reduced in comparison with wild-type activity. The newly discovered lozenge allele, lz rfg, lacks all phenol oxidase activity.Predoctoral fellow supported by Grant GM 1974 from the National Institute of General Medical Sciences, National Institutes of Health.The Oak Ridge National Laboratory is operated for the U.S. Atomic Energy Commission by Union Carbide Corporation.  相似文献   

8.
By immunizing mice with homogenized brains, heads, or a mixture of heads and antennae of D. melanogaster, we obtained six monoclonal antibodies (mabs) that bind to the olfactory system of Drosophila with various degrees of specificity. They can be divided into three groups with respect to their staining pattern: (1) The antibodies ca51/2, na21/2, and nb230 label both in the third (olfactory) antennal segment and in the visual ganglia. All of them bind to antennal structures that can be correlated with basiconic sensilla. The antibody ca51/2 labels sensory neurons of these sensilla. In the antenna of the lozenge 3 mutant, which lacks basiconic sensilla, no labeling is present. In Western blots ca51/2 recognizes in the antenna an antigen of 43.5 kDa, which is expressed in the antenna only in the presence of basiconic sensilla. The antibody na21/2 binds to basiconic and coeloconic sensilla, most likely to the apical part of sheath cells. In immunoblots it recognizes in the antenna two antigens of 42.2 kDa and 46.7 kDa. The latter appears to be correlated in the antenna with the presence of basiconic sensilla. (2) The staining pattern of antibody nc10 is associated with the sheath cells of basiconic and coeloconic sensilla. Moreover, nc10 binds to a subset of glomeruli in the antennal lobe. (3) The staining pattern of the antibodies VG2 and I24B5 is restricted to the antenna. I24B5 recognizes coeloconic sensilla and VG2 recognizes both coeloconic and basiconic sensilla. Staining patterns in both cases include sheath cells.  相似文献   

9.
The influence of precocene II, an antijuvenile agent, on morphological characters of the chemoreceptor apparatus of antennae and mouthparts was studied in fifth instar A. podana larvae. Treatment with different doses of precocene was performed at the egg stage. It proved to cause changes in the form and number of basiconic sensilla on the maxillary palps and galea and in the size of basiconic sensilla on the second and third antennal segments. The results are discussed with respect to the influence of precocenes on the insect sensory system and the role of the juvenile hormone in regulation of its development.  相似文献   

10.
This review surveys the organization of the olfactory and gustatory systems in the imago and in the larva of Drosophila melanogaster, both at the sensory and the central level. Olfactory epithelia of the adult are located primarily on the third antennal segment (funiculus) and on the maxillary palps. About 200 basiconic (BS), 150 trichoid (TS) and 60 coeloconic sensilla (CS) cover the surface of the funiculus, and an additional 60 BS are located on the maxillary palps. Males possess about 30% more TS but 20% fewer BS than females. All these sensilla are multineuronal; they may be purely olfactory or multimodal with an olfactory component. Antennal and maxillary afferents converge onto approximately 35 glomeruli within the antennal lobe. These projections obey precise rules: individual fibers are glomerulus-specific, and different types of sensilla are associated with particular subsets of glomeruli. Possible functions of antennal glomeruli are discussed. In contrast to olfactory sensilla, gustatory sensilla of the imago are located at many sites, including the labellum, the pharynx, the legs, the wing margin and the female genitalia. Each of these sensory sites has its own central target. Taste sensilla are usually composed of one mechano-and three chemosensory neurons. Individual chemosensory neurons within a sensillum respond to distinct subsets of molecules and project into different central target regions. The chemosensory system of the larva is much simpler and consists essentially of three major sensillar complexes on the cephalic lobe, the dorsal, terminal and ventral organs, and a series of pharyngeal sensilla.  相似文献   

11.
The olfactory organs on the head of Drosophila, antennae and maxillary palps, contain several hundred olfactory hairs, each with one or more olfactory receptor neurons. Olfactory hairs belong to one of three main morphological types, trichoid, basiconic, and coeloconic sensilla, and show characteristic spatial distribution patterns on the surface of the antenna and maxillary palps. Here we show that targeting expression of the cell-death gene reaper to basiconic sensilla (BS) causes the specific inactivation of most olfactory sensilla of this type with no detectable effect on other types of olfactory sensilla or the structure of the antennal lobe. Our data suggest that BS are required for a normal sensitivity to many odorants with a variety of chemical structures, through a wide range of concentrations. Interestingly, however, in contrast to other odorants tested, the behavioral response of ablated flies to intermediate concentrations of propionic and butyric acids is normal, suggesting the involvement of sensilla unaffected by ectopic reaper expression, probably coeloconic sensilla that respond strongly to these two organic acids. As inactivation of BS causes an underestimation of the concentration of both acids detectable at both the highest and lowest odorants concentrations, our results suggest that concentration coding for these two odorants relies on the integration of signals from different subsets of sensilla, most likely of different morphological types.  相似文献   

12.
In insects, olfactory receptor neurons (ORNs) are located in cuticular sensilla, that are present on the antennae and on the maxillary palps. Their axons project into spherical neuropil, the glomeruli, which are characteristic structures in the primary olfactory center throughout the animal kingdom. ORNs in insects often respond specifically to single odor compounds. The projection patterns of these neurons within the primary olfactory center, the antennal lobe, are, however, largely unknown.We developed a method to stain central projections of intact receptor neurons known to respond to host odor compounds in the malaria mosquito, Anopheles gambiae. Terminal arborizations from ORNs from antennal sensilla had only a few branches apparently restricted to a single glomerulus. Axonal arborizations of the different neurons originating from the same sensillum did not overlap.ORNs originating from maxillary palp sensilla all projected into a dorso-medial area in both the ipsi- and contralateral antennal lobe, which received in no case axon terminals from antennal receptor neurons. Staining of maxillary palp receptor neurons in a second mosquito species (Aedes aegypti) revealed unilateral arborizations in an area at a similar position as in An. gambiae.  相似文献   

13.
The various sensilla on the antennae and on the labial and maxillary palps of Blattella germanica (L.) were studied. Thick-walled chemoreceptors with fluted shafts and articulated bases are located on the antennae and on the labial and maxillary palps. Thin-walled chemoreceptors, without fluted shafts or articulated bases, are restricted to the flagellar segments of the antennae and to the distal segments of the palps. Antennae of adult males have more thin-walled chemoreceptors than do those of females. Hair-plate sensilla are found at the scape-head and scape-pedicel joints, and at the joints of segments on the palps. Campaniform sensilla are concentrated as a ring around the distal margin of the pedicel, and are also scattered singly on the scape, pedicel, and flagellar segments of the antennae, and on the first segment of the maxillary palps. Occasionally, a few sensilla coeloconica and cold receptor sensilla are found on the antennal flagellum.  相似文献   

14.
Most species of Staphylinidae are predators in an agroecosystem. They acquire prey information from their environment through receptors. In this study, the sensilla on maxillary and labial palps of Philonthus kailiensis, Philonthus lewisius and Quedius robustus were examined with scanning electron microscopy to identify and analyse the external morphology and distribution of the sensilla to enhance our knowledge of the sensilla of Staphylinidae and provide a rationale of taxonomical studies on the two genus. Results showed that the sensilla are classified into six types: Böhm bristles, sensilla chaetica, sensilla furcate, sensilla coeloconica, sensilla placodea and sensilla basiconica. No sexual dimorphism exists among the three species. The relationships and functions of sensilla on maxillary and labial palps were also speculated. There may be a certain correlation between the sensilla on maxillary and labial palps of the staphylinid and its habitat.  相似文献   

15.
Neuronal architecture of the antennal lobe in Drosophila melanogaster   总被引:4,自引:0,他引:4  
Summary Computer reconstruction of the antennal lobe of Drosophila melanogaster has revealed a total of 35 glomeruli, of which 30 are located in the periphery of the lobe and 5 in its center. Several prominent glomeruli are recognizable by their location, size, and shape; others are identifiable only by their positions relative to prominent glomeruli. No obvious sexual dimorphism of the glomerular architecture was observed. Golgi impregnations revealed: (1) Five of the glomeruli are exclusive targets for ipsilateral antennal input, whereas all others receive afferents from both antennae. Unilateral amputation of the third antennal segment led to a loss of about 1000 fibers in the antennal commissure. Hence, about 5/6 of the approximately 1200 antennal afferents per side have a process that extends into the contralateral lobe. (2) Afferents from maxillary palps (most likely from basiconic sensilla) project into both ipsi-and contralateral antennal lobes, yet their target glomeruli are apparently not the same as those of antennal basiconic sensilla. (3) Afferents in the antennal lobe may also stem from pharyngeal sensilla. (4) The most prominent types of interneurons with arborizations in the antennal lobe are: (i) local interneurons ramifying in the entire lobe, (ii) unilateral relay interneurons that extend from single glomeruli into the calyx and the lateral protocerebrum (LPR), (iii) unilateral interneurons that connect several glomeruli with the LPR only, (iv) bilateral interneurons that link a small number of glomeruli in both antennal lobes with the calyx and LPR, (v) giant bilateral interneurons characterized by extensive ramifications in both antennal lobes and the posterior brain and a cell body situated in the midline of the suboesophageal ganglion, and (vi) a unilateral interneuron with extensive arborization in one antennal lobe and the posterior brain and a process that extends into the thorax. These structural results are discussed in the context of the available functional and behavioral data.Abbreviations AC antennal commissure - AMMC antennal mechanosensory and motor center - iACT, mACT, oACT inner/middle/outer antenno-cerebral tract - bACTI, uACTI bilateral/unilateral ACT relay interneuron - AN antennal nerve - AST antenno-suboesophageal tract - FAI fine arborization relay interneuron - GSI giant symmetric relay interneuron - LI local interneuron - LPR lateral protocerebrum - SOG suboesophageal ganglion - TI thoracic relay interneuron - bVI bilateral V-relay interneuron  相似文献   

16.
The fine structural characteristics of various sensory receptors on the antenna of a millipede, Orthomorphella pekuensis, were observed with field emission scanning electron microscopy. The antenna of this millipede has eight segments, called articles. On the surface of the antenna, there are a variety of sensory receptors, including olfactory and mechanical receptors. According to their morphological and fine structural characteristics, we could identify four basic types of antennal sensillum: chaetiform sensilla (CS), trichoid sensilla (TS), basiconic sensilla (BS) and apical cone sensilla (AS). The BS are divided further into three subtypes: large basiconic sensilla (BS1) on the 5th and 6th articles; small basiconic sensilla (BS2) on the 5th article; and a distinct type of basiconic spiniform sensilla (BS3) on the 7th article. The most prominent sensilla are four large AS on the distal tip of the 8th segment. Based on our results, we conclude that the main function of the CS and TS are related to mechanical reception, and that the BS and AS are likely to function in olfactory reception of volatile odors of plants, as these sensilla have base and apex pores, respectively.  相似文献   

17.
The third antennal segment (= funiculus) of wild-type Drosophila melanogaster shows a sexually dimorphic distribution of sensilla: Males possess about 20% less of large basiconic sensilla, but approx 30% more trichoid sensilla than the female. The funiculus of the mutant lozenge3 is much reduced in size. Moreover, basiconic sensilla are completely lacking, and the number and density of trichoid sensilla are reduced. In contrast, the number and density of coeloconic sensilla are increased. The loss of sensilla in lozenge3 leads to a corresponding loss of sensory fibers in the antennal nerve. The antennal commissure of the wild type consists essentially of afferents from the funiculus which extend into the contralateral half of the brain. In the antennal commissure of lozenge3, more than twice the number of fibers lacking in the antennal nerve have disappeared which suggests that most afferents establish purely ipsilateral terminals. A highly specific change in the brain of lozenge3 is the loss of a particular subunit of the antennal center, the glomerulus V. This has previously been shown to be a major target of fibers from basiconic sensilla. Mosaic flies exhibiting a lozenge3 antenna demonstrate that the elimination of glomerulus V is causally related to the change in the sensilla pattern. This implies that the development and/or survival of particular target regions in the antennal center depends on sensory input. Furthermore, it shows that glomerulus V is specifically involved in the processing of information from basiconic sensilla.  相似文献   

18.
The stem borer Busseola fusca (Fuller) (Lepidoptera: Noctuidae) is a major pest of maize, Zea mays L., and sorghum, Sorghum bicolor (L.) Moench (both Poaceae), in sub-Saharan Africa. Like in many other lepidopteran insects, the success of B. fusca in recognizing and colonizing a limited variety of plants is based on the interaction between its sensory systems and the physicochemical characteristics of its immediate environment. The sensilla on the maxillary galeae of B. fusca larvae are typical of Lepidoptera and comprise two uniporous styloconic sensilla, which are contact chemoreceptors, three basiconic sensilla, and two aporous sensilla chaetica. The maxillary palp is two-segmented and has eight small basiconic sensilla at the tip, which were also found to be gustatory. The antennae of B. fusca larvae are short and simple. The sensilla of the antenna are composed of two aporous sensilla chaetica, three multiporous cone-shaped basiconic sensilla, three small basiconic sensilla, and one aporous styloconic sensillum. The basiconic sensillum located on the third antennal segment displayed a contact chemoreception response. The other basiconic sensilla did not show any action potential activity in tip-recording tests. The significant and positive dose–response curve obtained for the antennal basiconic sensillum with sucrose indicated for the first time the presence of gustatory chemoreceptors on the antennae of a lepidopteran larva.  相似文献   

19.
The maxillary palps of the blowfly Calliphora vicina Robineau-Desvoidy are shown to bear, in addition to long mechanoreceptive hairs, small sensilla basiconica ccontaining three neurons. The electrical responses obtained with a simple qualitative olfactometer indicate an olfactory function. The palpal sensilla showed high sensitivity to cycloheptanon, whereas the antennal organs were more strongly stimulated by heptylalcohol, which indicates the presence of carrion receptors.  相似文献   

20.
Scanning and transmission electron microscopy studies were conducted on the antennal sensory sensilla of the hymenopteran parasitoid, Cardiochiles nigriceps Viereck, of the family Braconidae. Distinct morphological differences were found between the chemoreceptors of the male and female. Curved, non-fluted, thin-walled sensilla were found to be very abundant on the male and restricted in location and number on the female. Trichoid, placoid and fluted basiconic sensilla were numerous on the antennal flagella of both sexes. Smooth basiconic sensilla were restricted in number to one per flagellar segment in both sexes. Behavioral data suggest that bent-tipped, thick-walled sensilla unique to the female are involved in detecting a chemical(s) emitted from the host, Heliothis virescens (Fab.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号