首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously showed that sphingosine inhibits prostaglandin F(2alpha) (PGF(2alpha))-stimulated interleukin-6 synthesis in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of sphingosine on phospholipase C-catalyzing phosphoinositide hydrolysis induced by PGF(2alpha) in these cells. Sphingosine inhibited the inositol phosphates formation by PGF(2alpha) or NaF, a GTP-binding protein activator. Sphingosine induced the phosphorylation of p38 mitogen-activated protein (MAP) kinase but did not affect the phosphorylation of p42/p44 MAP kinase. SB203580 and PD169316, inhibitors of p38 MAP kinase, rescued the inhibitory effect of sphingosine on the formation of inositol phosphates by PGF(2alpha) or NaF. These results indicate that sphingosine inhibits PGF(2alpha)-induced phosphoinositide hydrolysis by phospholipase C via p38 MAP kinase in osteoblasts.  相似文献   

2.
We previously reported that sphingosine 1-phosphate (S-1-P), a sphingomyelin metabolite, activates p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase in aortic smooth-muscle A10 cells. In the present study, we investigated the effect of sphingomyelin metabolites on phospholipase C-catalyzing phosphoinositide hydrolysis induced by arginine vasopressin (AVP) in A10 cells. C(2)-ceramide and sphingosine had little effect on inositol phosphate (IP) formation stimulated by AVP. S-1-P, which alone slightly stimulated the IPs formation, dose-dependently amplified the AVP-induced formation of IPs. Tumor necrosis factor-alpha enhanced the AVP-induced formation of IPs. However, S-1-P did not enhance the formation of IPs by NaF, a heterotrimeric GTP-binding protein activator. Pertussis toxin inhibited the effect of S-1-P. PD98059, an inhibitor of the upstream kinase that activates p44/p42 MAP kinase, had little effect on the enhancement by S-1-P. SB203580, an inhibitor of p38 MAP kinase, suppressed the effect of S-1-P on the formation of IPs by AVP. SB203580 inhibited the AVP-induced phosphorylation of p38 MAP kinase. Pertussis toxin suppressed the phosphorylation of p38 MAP kinase by S-1-P. These results indicate that S-1-P amplifies AVP-induced phosphoinositide hydrolysis by phospholipase C through p38 MAP kinase in vascular smooth-muscle cells.  相似文献   

3.
In an aortic smooth muscle cell line, A10 cells, we investigated the effect of sphingosine 1-phosphate on the induction of heat shock protein 27 (HSP27), a low-molecular-weight heat shock protein. Sphingosine 1-phosphate significantly induced the accumulation of HSP27 in a pertussis toxin-sensitive manner. The effect was dose-dependent in the range between 0.1 and 30 microM. Sphingosine 1-phosphate stimulated an increase in the levels of mRNA for HSP27. Sphingosine 1-phosphate stimulated both p42/p44 mitogen-activated protein (MAP) kinase and p38 MAP kinase activation. PD98059, an inhibitor of the upstream kinase that activates p42/p44 MAP kinase, did not affect sphingosine 1-phosphate-stimulated HSP27 induction. In contrast, SB203580, an inhibitor of p38 MAP kinase, reduced sphingosine 1-phosphate-induced HSP27 induction. SB203580 reduced the levels of mRNA for HSP27 induced by sphingosine 1-phosphate. These results indicate that sphingosine 1-phosphate stimulates the induction of HSP27 via p38 MAP kinase activation in aortic smooth muscle cells.  相似文献   

4.
We previously reported that sphingosine 1‐phosphate (S‐1‐P), a sphingomyelin metabolite, activates p44/p42 mitogen‐activated protein (MAP) kinase and p38 MAP kinase in aortic smooth‐muscle A10 cells. In the present study, we investigated the effect of sphingomyelin metabolites on phospholipase C‐catalyzing phosphoinositide hydrolysis induced by arginine vasopressin (AVP) in A10 cells. C2‐ceramide and sphingosine had little effect on inositol phosphate (IP) formation stimulated by AVP. S‐1‐P, which alone slightly stimulated the IPs formation, dose‐dependently amplified the AVP‐induced formation of IPs. Tumor necrosis factor‐α enhanced the AVP‐induced formation of IPs. However, S‐1‐P did not enhance the formation of IPs by NaF, a heterotrimeric GTP‐binding protein activator. Pertussis toxin inhibited the effect of S‐1‐P. PD98059, an inhibitor of the upstream kinase that activates p44/p42 MAP kinase, had little effect on the enhancement by S‐1‐P. SB203580, an inhibitor of p38 MAP kinase, suppressed the effect of S‐1‐P on the formation of IPs by AVP. SB203580 inhibited the AVP‐induced phosphorylation of p38 MAP kinase. Pertussis toxin suppressed the phosphorylation of p38 MAP kinase by S‐1‐P. These results indicate that S‐1‐P amplifies AVP‐induced phosphoinositide hydrolysis by phospholipase C through p38 MAP kinase in vascular smooth‐muscle cells. J. Cell. Biochem. 80:46–52, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

5.
We previously reported that prostaglandin F2alpha (PGF2alpha) induces phosphoinositide hydrolysis by phospholipase C and phosphatidylcholine hydrolysis by phospholipase D through heterotrimeric GTP-binding protein, resulting in the activation of protein kinase C (PKC) in osteoblast-like MC3T3-E1 cells and that PGF2alpha stimulates the synthesis of interleukin-6 (IL-6) via PKC-dependent p44/p42 mitogen-activated protein (MAP) kinase activation. In the present study, we investigated whether zinc affects the PGF2alpha-induced IL-6 synthesis in these cells. Zinc complex of l-carnosine (l-CAZ) dose-dependently suppressed the PGF2alpha-stimulated IL-6 synthesis. In addition, zinc alone reduced the IL-6 synthesis. L-CAZ suppressed the PGF2alpha-induced p44/p42 MAP kinase phosphorylation. However, the p44/p42 MAP kinase phosphorylation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), a direct activator of PKC, or NaF, a direct activator of GTP-binding protein, was not affected by l-CAZ. l-CAZ reduced the PGF2alpha-stimulated formation of inositol phosphates and choline. However, l-CAZ did not affect the formation of inositol phosphates or choline induced by NaF. These results strongly suggest that zinc reduces PGF2alpha-induced IL-6 synthesis via suppression of phosphoinositide-hydrolyzing phospholipase C and phosphatidylcholine-hydrolyzing phospholipase D in osteoblasts.  相似文献   

6.
7.
Transforming growth factor-beta (TGF-beta) reportedly induces vascular endothelial growth factor (VEGF) synthesis in osteoblast-like MC3T3-E1 cells. We have recently shown that TGF-beta activates p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase in these cells. In the present study, we investigated the exact mechanism of TGF-beta behind the synthesis of VEGF in MC3T3-E1 cells. PD98059 and U-0126, specific inhibitors of MEK, suppressed the VEGF synthesis induced by TGF-beta. U-0126 inhibited the TGF-beta-induced p44/p42 MAP kinase phosphorylation. SB203580 and PD169316, inhibitors of p38 MAP kinase, reduced the TGF-beta-stimulated VEGF synthesis. SB202474, a negative control for p38 MAP kinase inhibitor, did not affect the VEGF synthesis. A combination with PD98059 and SB203580 almost completely suppressed the TGF-beta-induced VEGF synthesis. Retinoic acid, which alone failed to affect VEGF synthesis, markedly enhanced the VEGF synthesis stimulated by TGF-beta. Retinoic acid enhanced the TGF-beta-increased levels of VEGF mRNA. The amplifications by retinoic acid of TGF-beta-increased VEGF synthesis and levels of VEGF mRNA were reduced by PD98059 or SB203580. The combination of PD98059 and SB203580 almost completely suppressed the enhancement by retinoic acid of VEGF synthesis induced by TGF-beta. Taken together, our results strongly suggest that both p44/p42 MAP kinase and p38 MAP kinase take part in TGF-beta-stimulated VEGF synthesis in osteoblasts, and that retinoic acid upregulates the VEGF synthesis.  相似文献   

8.
We investigated whether transforming growth factor-beta (TGF-beta) stimulates the induction of heat shock protein (HSP) 27 and HSP70 in osteoblast-like MC3T3-E1 cells and the mechanism underlying the induction. TGF-beta increased the level of HSP27 but had no effect on the HSP70 level. TGF-beta stimulated the accumulation of HSP27 dose-dependently, and induced an increase in the level of mRNA for HSP27. TGF-beta induced the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase. The HSP27 accumulation induced by TGF-beta was significantly suppressed by PD98059, an inhibitor of the upstream kinase of p44/p42 MAP kinase, or SB203580, an inhibitor of p38 MAP kinase. PD98059 and SB203580 suppressed the TGF-beta-stimulated increase in the level of mRNA for HSP27. Retinoic acid, a vitamin A (retinol) metabolite, which alone had little effect on the HSP27 level, markedly enhanced the HSP27 accumulation stimulated by TGF-beta. Retinoic acid enhanced the TGF-beta-induced increase of mRNA for HSP27. The amplification of TGF-beta-stimulated HSP27 accumulation by retinoic acid was reduced by PD98059 or SB203580. Retinoic acid failed to affect the TGF-beta-induced phosphorylation of p44/p42 MAP kinase or p38 MAP kinase. These results strongly suggest that p44/p42 MAP kinase and p38 MAP kinase take part in the pathways of the TGF-beta-stimulated HSP27 induction in osteoblasts, and that retinoic acid upregulates the TGF-beta-stimulated HSP27 induction at a point downstream from p44/p42 MAP kinase and p38 MAP kinase.  相似文献   

9.
We previously reported that p38 mitogen-activated protein (MAP) kinase plays a part in sphingosine 1-phosphate-stimulated heat shock protein 27 (HSP27) induction in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) is involved in the induction of HSP27 in these cells. Sphingosine 1-phosphate time dependently induced the phosphorylation of Akt. Akt inhibitor, 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, reduced the HSP27 induction stimulated by sphingosine 1-phosphate. The sphingosine 1-phosphate-induced phosphorylation of GSK-3beta was suppressed by Akt inhibitor. The sphingosine 1-phosphate-induced HSP27 levels were attenuated by LY294002 or wortmannin, PI3K inhibitors. Furthermore, LY294002 or Akt inhibitor did not affect the sphingosine 1-phosphate-induced phosphorylation of p38 MAP kinase and SB203580, a p38 MAP kinase inhibitor, had little effect on the phosphorylation of Akt. These results suggest that PI3K/Akt plays a part in the sphingosine 1-phosphate-stimulated induction of HSP27, maybe independently of p38 MAP kinase, in osteoblasts.  相似文献   

10.
Catechin, one of the major flavonoids presented in plants such as tea, reportedly suppresses bone resorption. We previously reported that prostaglandin F(2alpha) (PGF(2alpha)) stimulates the synthesis of vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase in osteoblast-like MC3T3-E1 cells. To clarify the mechanism of catechin effect on osteoblasts, we investigated the effect of (--)-epigallocatechin gallate (EGCG), one of the major green tea flavonoids, on the VEGF synthesis by PGF(2alpha) in MC3T3-E1 cells. The PGF(2alpha)-induced VEGF synthesis was significantly enhanced by EGCG. The amplifying effect of EGCG was dose dependent between 10 and 100 microM. EGCG did not affect the PGF(2alpha)-induced phosphorylation of p44/p42 MAP kinase. SB203580, a specific inhibitor of p38 MAP kinase, and SP600125, a specific inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), reduced the PGF(2alpha)-induced VEGF synthesis. EGCG markedly enhanced the phosphorylation of SAPK/JNK induced by PGF(2alpha) without affecting the PGF(2alpha)-induced phosphorylation of p38 MAP kinase. SP600125 markedly reduced the amplification by EGCG of the SAPK/JNK phosphorylation. In addition, the PGF(2alpha)-induced phosphorylation of c-Jun was amplified by EGCG. These results strongly suggest that EGCG upregulate PGF(2alpha)-stimulated VEGF synthesis resulting from amplifying activation of SAPK/JNK in osteoblasts.  相似文献   

11.
12.
We previously reported that prostaglandin F(2alpha) (PGF(2alpha)) activates both phosphoinositide-hydrolyzing phospholipase C and phosphatidylcholine-hydrolyzing phospholipase D in osteoblast-like MC3T3-E1 cells and then induces the activation of protein kinase C (PKC). In this study, we investigated the effect of PGF(2alpha) on the induction of heat shock protein 27 (HSP27), a low-molecular-weight heat shock protein, in these cells. PGF(2alpha) significantly induced the accumulation of HSP27 dose-dependently within the range of 10 nM to 10 microM. PGF(2alpha) stimulated the increase in the levels of mRNA for HSP27. A total of 10 nM 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of PKC, induced the accumulation of HSP27. The stimulative effect of PGF(2alpha) was reduced in the PKC down-regulated cells. Calphostin C, a specific inhibitor of PKC, suppressed the PGF(2alpha)-induced HSP27 accumulation as well as that induced by TPA. HSP27 induction by PGF(2alpha) was reduced by U-73122, a phospholipase C inhibitor, or propranolol, a phosphatidic acid phosphohydrolase inhibitor. PGF(2alpha) and TPA stimulated p42/p44 mitogen-activated protein (MAP) kinase. PD98059, an inhibitor of the upstream kinase that activates p42/p44 MAP kinase, suppressed the induction of HSP27 stimulated by PGF(2alpha) or TPA. PD98059 and calphostin C reduced the levels of mRNA for HSP27 increased by PGF(2alpha). These results indicate that PGF(2alpha) stimulates the induction of HSP27 via p42/p44 MAP kinase activation, which depends on upstream PKC activation in osteoblasts.  相似文献   

13.
We previously showed that prostaglandin D(2) (PGD(2)) stimulates activation of protein kinase C (PKC). We investigated whether PGD(2) stimulates the induction of heat shock protein (HSP) 27 and HSP70 in osteoblast-like MC3T3-E1 cells and the mechanism underlying the induction. PGD(2) increased the levels of HSP27 while having little effect on HSP70 levels. PGD(2) stimulated the accumulation of HSP27 dose dependently in the range between 10 nM and 10 microM. PGD(2) induced an increase in the levels of mRNA for HSP27. The PGD(2)-stimulated accumulation of HSP27 was reduced by staurosporine or calphostin C, inhibitors of PKC. PGD(2) induced the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase. The HSP27 accumulation induced by PGD(2) was significantly suppressed by PD98059, an inhibitor of the upstream kinase of p44/p42 MAP kinase, or SB203580, an inhibitor of p38 MAP kinase. Calphostin C suppressed the PGD(2)-induced phosphorylation of p44/p42 MAP kinase and p38 MAP kinase. PD98059 or SB203580 suppressed the PGD(2)-increased levels of mRNA for HSP27. These results strongly suggest that PGD(2) stimulates HSP27 induction through p44/p42 MAP kinase activation and p38 MAP kinase activation in osteoblasts and that PKC acts at a point upstream from both the MAP kinases.  相似文献   

14.
Although it is known that transforming growth factor (TGF)-beta induces vascular endothelial growth factor (VEGF) synthesis in vascular smooth muscle cells, the underlying mechanisms are still poorly understood. In the present study, we examined whether the mitogen-activated protein (MAP) kinase superfamily is involved in TGF-beta-stimulated VEGF synthesis in aortic smooth muscle A10 cells. TGF-beta stimulated the phosphorylation of p42/p44 MAP kinase and p38 MAP kinase, but not that of SAPK (stress-activated protein kinase)/JNK (c-Jun N-terminal kinase). The VEGF synthesis induced by TGF-beta was not affected by PD98059 or U0126, specific inhibitors of the upstream kinase that activates p42/p44 MAP kinase. We confirmed that PD98059 or U0126 did actually suppress the phosphorylation of p42/p44 MAP kinase by TGF-beta in our preparations. PD169316 and SB203580, specific inhibitors of p38 MAP kinase, significantly reduced the TGF-beta-stimulated synthesis of VEGF (each in a dose-dependent manner). PD169316 or SB203580 attenuated the TGF-beta-induced phosphorylation of p38 MAP kinase. These results strongly suggest that p38 MAP kinase plays a part in the pathway by which TGF-beta stimulates the synthesis of VEGF in aortic smooth muscle cells.  相似文献   

15.
Prostaglandin F2alpha (PGF2alpha) significantly induced p42/p44 mitogen-activated protein (MAP) kinase activity in osteoblast-like MC3T3-E1 cells. PD98059, a selective inhibitor of MAP kinase kinase, inhibited PGF2alpha-induced interleukin-6 (IL-6) synthesis as well as PGF2alpha-induced p42/p44 MAP kinase activation. PD98059 suppressed the IL-6 synthesis induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC) activator, or NaF, an activator of heterotrimeric GTP-binding protein, as well as the p42/p44 MAP kinase activation by TPA or NaF. Calphostin C, a highly potent and specific inhibitor of PKC, inhibited the PGF2alpha-induced p42/p44 MAP kinase activity. These results strongly suggest that PKC-dependent p42/p44 MAP kinase activatioin is involved in PGF2alpha-induced IL-6 synthesis in osteoblasts.  相似文献   

16.
We previously reported that transforming growth factor-beta (TGF-beta) activates p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase, resulting in the stimulation of vascular endothelial growth factor (VEGF) synthesis in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the involvement of stress-activated protein kinase/c- Jun N-terminal kinase (SAPK/JNK), another member of the MAP kinase superfamily, in TGF-beta-induced VEGF synthesis in these cells. TGF-beta markedly induced SAPK/JNK phosphorylation. SP600125, a specific inhibitor of SAPK/JNK, markedly reduced TGF-beta-induced VEGF synthesis. SP600125 suppressed TGF-beta-induced SAPK/JNK phosphorylation. PD98059, an inhibitor of upstream kinase of p44/p42 MAP kinase and SB203580, an inhibitor of p38 MAP kinase, each failed to reduce TGF-beta-induced SAPK/JNK phosphorylation. A combination of SP600125 and PD98059 or SP600125 and SB203580 suppressed TGF-beta-stimulated VEGF synthesis in an additive manner. These results strongly suggest that TGF-beta activates SAPK/JNK in osteoblasts, and that SAPK/JNK plays a role in addition to p42/p44 MAP kinase and p38 MAP kinase in TGF-beta-induced VEGF synthesis.  相似文献   

17.
Statins, specific inhibitors of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, are now widely used for treatment of patients with hypercholesterolemia. In addition to the reduction of cholesterol biosynthesis, accumulating evidence indicates that statins have several pleiotropic effects especially on cardiovascular system. However, the exact role of statin in cardiac myocytes remains unclear. In the present study, we investigated whether atorvastatin induces vascular endothelial growth factor (VEGF) release in cardiac myocytes, and the underlying mechanism. We observed that atorvastatin significantly stimulated VEGF release in a dose-dependent manner. It induced the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase but not SAPK (stress-activated protein kinase)/JNK (c-Jun N-terminal kinase). The atorvastatin-induced VEGF release was enhanced by PD98059, which is a specific inhibitor of the upstream kinase that activates p44/p42 MAP kinase (MEK). Further, it was significantly reduced by SB203580, a specific inhibitor of p38 MAP kinase. Furthermore, the atorvastatin-induced phosphorylation of p38 MAP kinase was attenuated by SB203580, whereas it was enhanced by PD98059. Taken together, these results suggest that the atorvastatin-induced VEGF release in cardiac myocytes is positively regulated by p38 MAP kinase and negatively regulated byp44/p42 MAP kinase and that the atorvastatin-induced phosphorylation of p38 MAP kinase is regulated by p44/p42 MAP kinase in these cells.  相似文献   

18.
In the present study, we investigated whether the mitogen-activated protein (MAP) kinase superfamily is involved in the bone morphogenetic protein (BMP)-4-stimulated synthesis of osteocalcin in osteoblast-like MC3T3-E1 cells. BMP-4 dose-dependently stimulated osteocalcin synthesis. BMP-4 markedly induced the phosphorylation of p44/p42 MAP kinase and p38 MAP kinase, while having little effect on SAPK (stress-activated protein kinase)/JNK (c-Jun N terminal kinase) phosphorylation. SB203580 and PD169316, specific inhibitors of p38 MAP kinase, significantly reduced the osteocalcin synthesis stimulated by BMP-4. In contrast, PD98059 and U0126, inhibitors of upstream kinase of p44/p42 MAP kinase, markedly enhanced the BMP-4-stimulated osteocalcin synthesis. The BMP-4-induced phosphorylation of p44/p42 MAP kinase was suppressed by PD98059, which did not, however, affect the BMP-4-induced phosphorylation of p38 MAP kinase. Taken together, our results strongly suggest that p38 MAP kinase takes part in BMP-4-stimulated osteocalcin synthesis as a positive regulator in osteoblasts, whereas p44/p42 MAP kinase acts as a negative regulator in the synthesis.  相似文献   

19.
We have reported that prostaglandin F2(alpha) (PGF2(alpha)) activates p44/p42 mitogen-activated protein (MAP) kinase in osteoblast-like MC3T3-E1 cells, and that p44/p42 MAP kinase plays a role in the PGF2(alpha)-induced heat shock protein 27 (HSP27). In the present study, we investigated the involvement of stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), a member of the MAP kinase superfamily, in PGF2(alpha)-induced HSP27 in MC3T3-E1 cells. PGF2(alpha) time dependently induced the phosphorylation of SAPK/JNK. SP600125, a specific inhibitor of SAPK/JNK, markedly reduced the PGF2(alpha)-stimulated HSP27 accumulation. The inhibitory effect of SP600125 was dose dependent in the range between 0.1 and 30 microM. SP600125 reduced the PGF2(alpha)-increased level of HSP27 mRNA. SP600125 suppressed the phosphorylation of SAPK/JNK induced by PGF2(alpha), but did not affect the PGF2(alpha)-induced phosphorylation of p44/p42 MAP kinase. On the other hand, PD98059, a specific inhibitor of the upstream kinase of p44/p42 MAP kinase, which reduced the phosphorylation of p44/p42 MAP kinase stimulated by PGF2(alpha), had little effect on the PGF2(alpha)-induced phosphorylation of SAPK/JNK. These results strongly suggest that SAPK/JNK plays a part in PGF2(alpha)-induced HSP27 in addition to p44/p42 MAP kinase in osteoblasts.  相似文献   

20.
We have reported that prostaglandin F2alpha (PGF2alpha) stimulates the synthesis of vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase in osteoblast-like MC3T3-E1 cells. In addition, we recently showed that phosphatidylinositol 3 (PI3)-kinase activated by platelet-derived growth factor-BB (PDGF-BB) negatively regulates the interleukin-6 synthesis in these cells. In the present study, we investigated the effect of PDGF-BB on the PGF2alpha-induced VEGF synthesis in MC3T3-E1 cells. PDGF-BB, which alone did not affect the levels of VEGF, significantly enhanced the PGF2alpha-stimulated VEGF synthesis. The amplifying effect of PDGF-BB was dose dependent in the range between 10 and 70 ng/ml. LY294002 or wortmannin, specific inhibitors of PI3-kinase, which by itself failed to affect the PGF2alpha-stimulated VEGF synthesis, significantly suppressed the amplification by PDGF-BB. PD98059, a specific inhibitor of MEK1/2, suppressed the amplification by PDGF-BB of the PGF2alpha-stimulated VEGF synthesis similar to the levels of PGF2alpha with PD98059. PDGF-BB itself induced the phosphorylation of p44/p42 MAP kinase in these cells, and the effects of PDGF-BB and PGF2alpha on the phosphorylation of p44/p42 MAP kinase were additive. Moreover, LY294002 had little effect on the phosphorylation of p44/p42 MAP kinase induced by PGF2alpha with PDGF-BB. These results strongly suggest that PGF2alpha-stimulated VEGF synthesis is amplified by PI3-kinase-mediating PDGF-BB signaling in osteoblasts, and that the effect is exerted at a point downstream from p44/p42 MAP kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号