首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The technique of nuclear transplantation – popularly known as cloning – has been integrated into several different histories of twentieth century biology. Historians and science scholars have situated nuclear transplantation within narratives of scientific practice, biotechnology, bioethics, biomedicine, and changing views of life. However, nuclear transplantation has never been the focus of analysis. In this article, I examine the development of nuclear transplantation techniques, focusing on the people, motivations, and institutions associated with the first successful nuclear transfer in metazoans in 1952. The conflict between embryologists and geneticists over the mechanisms of differentiation motivated Robert Briggs to pursue nuclear transplantation experiments as a way to resolve the debate. Briggs worked at the Lankenau Hospital Research Institute, a research facility devoted to the study of cancer. The goal of understanding cancer would play a role in the development of the technique, and the story of nuclear transplantation sheds light on the role that biomedical contexts play in biological research in the second half of the twentieth century.  相似文献   

2.
Mammalian telomeres are composed of long arrays of TTAGGG repeats complexed with the TTAGGG repeat binding factor, TRF. Biochemical and ultrastructural data presented here show that the telomeric DNA and TRF colocalize in individual, condensed structures in the nuclear matrix. Telomeric TTAGGG repeats were found to carry an array of nuclear matrix attachment sites occurring at a frequency of at least one per kb. The nuclear matrix association of the telomeric arrays extended over large domains of up to 20-30 kb, encompassing the entire length of most mammalian telomeres. TRF protein and telomeric DNA cofractionated in nuclear matrix preparations and colocalized in discrete, condensed sites throughout the nuclear volume. FISH analysis indicated that TRF is an integral component of the telomeric complex and that the presence of TRF on telomeric DNA correlates with the compact configuration of telomeres and their association with the nuclear matrix. Biochemical fractionation of TRF and telomeric DNA did not reveal an interaction with the nuclear lamina. Furthermore, ultrastructural analysis indicated that the mammalian telomeric complex occupied sites throughout the nuclear volume, arguing against a role for the nuclear envelope in telomere function during interphase. These results are consistent with the view that mammalian telomeres form nuclear matrix- associated, TRF-containing higher order complexes at dispersed sites throughout the nuclear volume.  相似文献   

3.
The outer nuclear membrane is morphologically similar to rough endoplasmic reticulum. The presence of ribosomes bound to its cytoplasmic surface suggests that it could be a site of synthesis of membrane glycoproteins. We have examined the biogenesis of the vesicular stomatitis virus G protein in the nuclear envelope as a model for the biogenesis of membrane glycoproteins. G protein was present in nuclear membranes of infected Friend erythroleukemia cells immediately following synthesis and was transported out of nuclear membranes to cytoplasmic membranes with a time course similar to transport from rough endoplasmic reticulum (t 1/2 = 5-7 min). Temperature-sensitive mutations in viral membrane proteins which block transport of G protein from endoplasmic reticulum also blocked transport of G protein from the nuclear envelope. Friend erythroleukemia cells and NIH 3T3 cells differed in the fraction of newly synthesized G protein found in nuclear membranes, apparently reflecting the relative amount of nuclear membrane compared to endoplasmic reticulum available for glycoprotein synthesis. Nuclear membranes from erythroleukemia cells appeared to have the enzymatic activities necessary for cleavage of the signal sequence and core glycosylation of newly synthesized G protein. Signal peptidase activity was detected by the ability of detergent-solubilized membranes of isolated nuclei to correctly remove the signal sequence of human preplacental lactogen. RNA isolated from the nuclear envelope was highly enriched for G protein mRNA, suggesting that G protein was synthesized on the outer nuclear membrane rather than redistributing to nuclear membranes from endoplasmic reticulum before or during cell fractionation. These results suggest a mechanism for incorporation of membrane glycoproteins into the nuclear envelope and suggest that in some cell types the nuclear envelope is a major source of newly synthesized membrane glycoproteins.  相似文献   

4.
Protein import into the cell nucleus requires specific binding of nuclear proteins to the nuclear pore complex. Based on amino acid sequence "motifs" of known nuclear targeting signals, we identified peptides within a number of nuclear proteins with likely nuclear targeting potential and tested their function by transfecting into cells fusion genes that produce the cytoplasmic "reporter" protein, pyruvate kinase (PK), joined to the test sequence. Sequences within c-myb (PLLKKIKQ), N-myc (PPQKKIKS), p53 (PQPKKKP), and c-erb-A (SKRVAKRKL) oncoproteins that direct PK hybrids into the nucleus were identified. A peptide (GRKKRRQRRRAP) of the human immunodeficiency virus (HIV) tat protein (Tat), which contains two short basic regions, targets fusion proteins to the nucleolus. The COOH-terminal basic Tat region (QRRRAP) does not target PK hybrid proteins into the nucleus, but mutation of two basic amino acids in this region decreases but does not abolish nucleolar accumulation mediated by the entire Tat nucleolar targeting sequence. Moreover, the c-Myc nuclear targeting sequence fused to the COOH-terminal basic Tat region (PAAKRVKLDQRRRAP) effectively localizes PK hybrids to the nucleus and nucleolus. A similar sequence (FKRKHKKDISQNKRAVRR) in the human heat-shock protein HSP70 also localizes PK to the nucleus and nucleolus.  相似文献   

5.
6.
The nuclear pore complex (NPC) is the sole gateway between the nucleus and the cytoplasm of interphase eukaryotic cells, and it mediates all trafficking between these 2 cellular compartments. As such, the NPC and nuclear transport play central roles in translocating death signals from the cell membrane to the nucleus where they initiate biochemical and morphological changes occurring during apoptosis. Recent findings suggest that the correlation between the NPC, nuclear transport, and apoptosis goes beyond the simple fact that NPCs mediate nuclear transport of key players involved in the cell death program. In this context, the accessibility of key regulators of apoptosis appears to be highly modulated by nuclear transport (e.g., impaired nuclear import might be an apoptotic trigger). In this review, recent findings concerning the unexpected tight link between NPCs, nuclear transport, and apoptosis will be presented and critically discussed.  相似文献   

7.
A key event in nuclear formation is the assembly of functional nuclear pores. We have used a nuclear reconstitution system derived from Xenopus eggs to examine the process of nuclear pore assembly in vitro. With this system, we have identified three reagents which interfere with nuclear pore assembly, NEM, GTP gamma S, and the Ca++ chelator, BAPTA. These reagents have allowed us to determine that the assembly of a nuclear pore requires the prior assembly of a double nuclear membrane. Inhibition of nuclear vesicle fusion by pretreatment of the membrane vesicle fraction with NEM blocks pore complex assembly. In contrast, NEM treatment of already fused double nuclear membranes does not block pore assembly. This indicates that NEM inhibits a single step in pore assembly--the initial fusion of vesicles required to form a double nuclear membrane. The presence of GTP gamma S blocks pore assembly at two distinct steps, first by preventing fusion between nuclear vesicles, and second by blocking a step in pore assembly that occurs on already fused double nuclear membranes. Interestingly, when the Ca2+ chelator BAPTA is added to a nuclear assembly reaction, it only transiently blocks nuclear vesicle fusion, but completely blocks nuclear pore assembly. This results in the formation of a nucleus surrounded by a double nuclear membrane, but devoid of nuclear pores. To order the positions at which GTP gamma S and BAPTA interfere with pore assembly, a novel anchored nuclear assembly assay was developed. This assay revealed that the BAPTA-sensitive step in pore assembly occurs after the second GTP gamma S-sensitive step. Thus, through use of an in vitro nuclear reconstitution system, it has been possible to biochemically define and order multiple steps in nuclear pore assembly.  相似文献   

8.
Signaling of the apelin, angiotensin, and bradykinin peptides is mediated by G protein-coupled receptors related through structure and similarities of physiological function. We report nuclear expression as a characteristic of these receptors, including a nuclear localization for the apelin receptor in brain and cerebellum-derived D283 Med cells and the AT(1) and bradykinin B(2) receptors in HEK-293T cells. Immunocytochemical analyses revealed the apelin receptor with localization in neuronal nuclei in cerebellum and hypothalamus, exhibiting expression in neuronal cytoplasm or in both nuclei and cytoplasm. Confocal microscopy of HEK-293T cells revealed the majority of transfected cells displayed constitutive nuclear localization of AT(1) and B(2) receptors, whereas apelin receptors did not show nuclear localization in these cells. The majority of apelin receptor-transfected cerebellum D283 Med cells showed receptor nuclear expression. Immunoblot analyses of subcellular-fractionated D283 Med cells demonstrated endogenous apelin receptor species in nuclear fractions. In addition, an identified nuclear localization signal motif in the third intracellular loop of the apelin receptor was disrupted by a substituted glutamine in place of lysine. This apelin receptor (K242Q) did not exhibit nuclear localization in D283 Med cells. These results demonstrate the following: (i) the apelin receptor exhibits nuclear localization in human brain; (ii) distinct cell-dependent mechanisms for the nuclear transport of apelin, AT(1), and B(2) receptors; and (iii) the disruption of a nuclear localization signal sequence disrupts the nuclear translocation of the apelin receptor. This discovery of apelin, AT(1), and B(2) receptors with agonist-independent nuclear translocation suggests major unanticipated roles for these receptors in cell signaling and function.  相似文献   

9.
10.
The proteins of rat liver cytoplasm, nuclear washes, matrix, membrane, heterogeneous nuclear (hn)RNA proteins and chromatin were examined by two-dimensional gel electrophoresis. The inclusion in the gels of six common protein standards of carefully selected molecular weight and isoelectric point allowed us to clearly follow the distribution of specific proteins during nuclear extraction. In the nuclear washes and chromatin, we observed five classes of proteins: (a) Exclusively cytoplasmic proteins, present in the first saline-EDTA wash but rapidly disappearing from subsequent washes; (b) ubiquitous proteins of 75,000, 68,000, 57,000, and 43,000 mol wt, the latter being actin, found in the cytoplasm, all nuclear washes and the final chromatin pellet; (c) proteins of 94,000, 25,000, and 20,500 mol wt specific to the nuclear washes; (d) proteins present in the nuclear washes and final chromatin, represented by species at 62,000, 55,000, 54,000, and 48,000 mol wt, primarily derived from the nuclear matrix; and (e) two proteins of 68,000 mol wt present only in the final chromatin. The major 65,000- 75,000-mol wt proteins seen by one-dimensional gel electrophoresis of nuclear matrix were very heterogeneous and contained a major acidic, an intermediate, and a basic group. A single 68,000-mol wt polypeptide constituted the majority of the membrane-lamina fraction, consistent with immunological studies indicating that a distinct subset of matrix proteins occurs, associated with heterochromatin, at the periphery of the nucleus. Actin was the second major nuclear membrane-lamina protein. Two polypeptides at 36,000 and 34,000 mol wt constituted 60% of the hnRNP. Approximately 80% of the mass of the nonhistone chromosomal proteins (NHP) from unwashed nuclei is contributed by nuclear matrix and hnRNPs, and essentially the same patterns were seen with chromatin NHP. The concept of NHP being a distinct set of DNA- bound proteins is unnecessarily limiting. Many are derived from the nuclear matrix or hnRNp particles and vary in the degree to which they share different intracellular compartments.  相似文献   

11.
This short review deals with some properties of nuclear sugar-binding proteins also called nuclear lectins, the sugar-dependent nuclear import of neoglycoproteins and the attempts of using this pathway to enhance the nuclear import of plasmids in order to hopefully increase the expression of transferred genes.  相似文献   

12.
13.
T. Noguchi  H. Watanabe  R. Suzuki 《Protoplasma》1998,201(3-4):202-212
Summary The effects of brefeldin A (BFA) on the structure of the Golgi apparatus, the nuclear envelope, and the endoplasmic reticulum (ER), and on the thiamine pyrophosphatase (TPPase) activity in these organelles were examined in a green alga,Scenedesmus acutus, to obtain evidence for the existence of a retrograde transport from the Golgi apparatus to the ER via the nuclear envelope. InScenedesmus, Golgi bodies are situated close to the nuclear envelope throughout the cell cycle and receive the transition vesicles not directly from the ER, but from the nuclear envelope. BFA induced the disassembly of Golgi bodies and an increase in the ER cisternae at the trans-side of decomposed Golgi bodies in interphase cells and multinuclear cells before septum formation. The accumulated ER cisternae connected to the nuclear envelope at one part. TPPase activity was detected in all cisternae of Golgi bodies, but not in the nuclear envelope or the ER in nontreated cells. On the contrary, in BFA-treated cells, TPPase activity was detected in the nuclear envelope and the ER in addition to the decomposed Golgi bodies. When septum-forming cells were treated with BFA, the disassembly of Golgi bodies was less than that in interphase cells, and TPPase activity was detected in the Golgi cisternae but not in the nuclear envelope or the ER. These results suggest mat BFA blocks the anterograde transport from the nuclear envelope to the Golgi bodies but does not block the retrograde transport from the Golgi bodies to the nuclear envelope in interphase and multinuclear cells.Abbreviations BFA brefeldin A - ER endoplasmic reticulum - TPPase thiamine pyrophosphatase  相似文献   

14.
The endoplasmic reticulum (ER) in Saccharomyces cerevisiae consists of a reticulum underlying the plasma membrane (cortical ER) and ER associated with the nuclear envelope (nuclear ER). We used a Sec63p-green fluorescent protein fusion protein to study motility events associated with inheritance of cortical ER and nuclear ER in living yeast cells. During M phase before nuclear migration, we observed thick, apparently rigid tubular extensions emanating from the nuclear ER that elongate, undergo sweeping motions along the cell cortex, and shorten. Two findings support a role for microtubules in this process. First, extension of tubular structures from the nuclear ER is inhibited by destabilization of microtubules. Second, astral microtubules, structures that undergo similar patterns of extension, cortical surveillance and retraction, colocalize with nuclear ER extensions. During S and G(2) phases of the cell cycle, we observed anchorage of the cortical ER at the site of bud emergence and apical bud growth. Thin tubules of the ER that extend from the anchored cortical ER display undulating, apparently random movement and move into the bud as it grows. Finally, we found that cortical ER morphology is sensitive to a filamentous actin-destabilizing drug, latrunculin-A, and to mutations in the actin-encoding ACT1 gene. Our observations support 1) different mechanisms and cytoskeletal mediators for the inheritance of nuclear and cortical ER elements and 2) a mechanism for cortical ER inheritance that is cytoskeleton dependent but relies on anchorage, not directed movement.  相似文献   

15.
16.
17.
The nuclear envelope plays many roles, including organizing nuclear structure and regulating nuclear events. Molecular associations of nuclear envelope proteins may contribute to the implementation of these functions. Lamin, otefin, and YA are the three Drosophila nuclear envelope proteins known in early embryos. We used the yeast two-hybrid system to explore the interactions between pairs of these proteins. The ubiquitous major lamina protein, lamin Dm, interacts with both otefin, a peripheral protein of the inner nuclear membrane, and YA, an essential, developmentally regulated protein of the nuclear lamina. In agreement with this interaction, lamin and otefin can be coimmunoprecipitated from the vesicle fraction of Drosophila embryos and colocalize in nuclear envelopes of Drosophila larval salivary gland nuclei. The two-hybrid system was further used to map the domains of interaction among lamin, otefin, and YA. Lamin’s rod domain interacts with the complete otefin protein, with otefin’s hydrophilic NH2-terminal domain, and with two different fragments derived from this domain. Analogous probing of the interaction between lamin and YA showed that the lamin rod and tail plus part of its head domain are needed for interaction with full-length YA in the two-hybrid system. YA’s COOH-terminal region is necessary and sufficient for interaction with lamin. Our results suggest that interactions with lamin might mediate or stabilize the localization of otefin and YA in the nuclear lamina. They also suggest that the need for both otefin and lamin in mediating association of vesicles with chromatin might reflect the function of a protein complex that includes these two proteins.  相似文献   

18.
Nucleocytoplasmic transport is a broadly conserved process across eukaryotes. Despite its essential function and conserved mechanism, components of the nuclear transport apparatus have been implicated in genetic conflicts in Drosophila, especially in the male germ line. The best understood case is represented by a truncated RanGAP gene duplication that is part of the segregation distorter system in Drosophila melanogaster. Consistent with the hypothesis that the nuclear transport pathway is at the heart of mediating genetic conflicts, both nucleoporins and directionality imposing components of nuclear transport have previously been shown to evolve under positive selection. Here, we present a comprehensive phylogenomic analysis of importins (karyopherins) in Drosophila evolution. Importins are adaptor molecules that physically mediate the transport of cargo molecules and comprise the third component of the nuclear transport apparatus. We find that importins have been repeatedly gained and lost throughout various stages of Drosophila evolution, including two intriguing examples of an apparently coincident loss and gain of nonorthologous and noncanonical importin-α. Although there are a few signatures of episodic positive selection, genetic innovation in importin evolution is more evident in patterns of recurrent gene birth and loss specifically for function in Drosophila testes, which is consistent with their role in supporting host genomes defense against segregation distortion.  相似文献   

19.
Nuclear equivalence, nuclear transfer, and the cell cycle   总被引:18,自引:0,他引:18  
Campbell KH 《Cloning》1999,1(1):3-15
The last 20 years have seen the development of techniques for the production of mammals by nuclear transfer. Originally limited to the swapping of pronuclei and the use of early cleavage-stage embryos as nuclear donors, nuclear transfer came of age in 1995 with the birth of 2 Welsh Mountain lambs, Megan and Morag, that were produced using cultured differentiated cells as donors of genetic material. In 1996, Dolly was the first animal to be produced using the genetic material from an adult-derived somatic cell. The techniques used in the production of these animals have now been reproduced in both sheep and cattle, and as predicted, successful development has been obtained using donor cells taken directly ex vivo. This article reviews the current status of mammalian nuclear transfer and the biological background to these successes.  相似文献   

20.
TAR DNA-binding protein 43 (TDP-43) is the disease protein in frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). Although normal TDP-43 is a nuclear protein, pathological TDP-43 is redistributed and sequestered as insoluble aggregates in neuronal nuclei, perikarya, and neurites. Here we recapitulate these pathological phenotypes in cultured cells by altering endogenous TDP-43 nuclear trafficking and by expressing mutants with defective nuclear localization (TDP-43-DeltaNLS) or nuclear export signals (TDP-43-DeltaNES). Restricting endogenous cytoplasmic TDP-43 from entering the nucleus or preventing its exit out of the nucleus resulted in TDP-43 aggregate formation. TDP-43-DeltaNLS accumulates as insoluble cytoplasmic aggregates and sequesters endogenous TDP-43, thereby depleting normal nuclear TDP-43, whereas TDP-43-DeltaNES forms insoluble nuclear aggregates with endogenous TDP-43. Mutant forms of TDP-43 also replicate the biochemical profile of pathological TDP-43 in FTLD-U/ALS. Thus, FTLD-U/ALS pathogenesis may be linked mechanistically to deleterious perturbations of nuclear trafficking and solubility of TDP-43.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号