首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Advances in systems biology and bioinformatics have highlighted that no cell population is truly uniform and that stochastic behavior is an inherent property of many biological systems. As a result, bulk measurements can be misleading even when particular care has been taken to isolate a single cell type, and measurements averaged over multiple cell populations in a tissue can be as misleading as the average height at an elementary school. There is a growing need for experimental techniques that can provide a combination of single cell resolution, large cell populations, and the ability to track cells over multiple time points. In this article, a microwell array cytometry platform was developed to meet this need and investigate the heterogeneity and stochasticity of cell behavior on a single cell basis. The platform consisted of a microfabricated device with high‐density arrays of cell‐sized microwells and custom software for automated image processing and data analysis. As a model experimental system, we used primary hepatocytes labeled with fluorescent probes sensitive to mitochondrial membrane potential and free radical generation. The cells were exposed to oxidative stress and the responses were dynamically monitored for each cell. The resulting data was then analyzed using bioinformatics techniques such as hierarchical and k‐means clustering to visualize the data and identify interesting features. The results showed that clustering of the dynamic data not only enhanced comparisons between the treatment groups but also revealed a number of distinct response patterns within each treatment group. Heatmaps with hierarchical clustering also provided a data‐rich complement to survival curves in a dose response experiment. The microwell array cytometry platform was shown to be powerful, easy to use, and able to provide a detailed picture of the heterogeneity present in cell responses to oxidative stress. We believe that our microwell array cytometry platform will have general utility for a wide range of questions related to cell population heterogeneity, biological stochasticity, and cell behavior under stress conditions. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

2.
The usefulness of multidimensional slit-scan flow cytometry in whole cell measurements is dependent on extracting relevant features from the cellular fluorescence distributions (slit-scan contours). In addition, the extraction of these features must be rapid to allow for real-time data processing during acquisition. This paper describes two algorithms that have been used successfully to count the numbers of local maxima (peaks) and to find nuclear boundaries in a cellular fluorescence distribution. These routines are efficient, use only simple integer arithmetic, and have been implemented on several different microprocessors.  相似文献   

3.
Discovery of novel immune biomarkers for monitoring of disease prognosis and response to therapy in immune-mediated inflammatory diseases is an important unmet clinical need. Here, we establish a novel framework for immunological biomarker discovery, comparing a conventional (liquid) flow cytometry platform (CFP) and a unique lyoplate-based flow cytometry platform (LFP) in combination with advanced computational data analysis. We demonstrate that LFP had higher sensitivity compared to CFP, with increased detection of cytokines (IFN-γ and IL-10) and activation markers (Foxp3 and CD25). Fluorescent intensity of cells stained with lyophilized antibodies was increased compared to cells stained with liquid antibodies. LFP, using a plate loader, allowed medium-throughput processing of samples with comparable intra- and inter-assay variability between platforms. Automated computational analysis identified novel immunophenotypes that were not detected with manual analysis. Our results establish a new flow cytometry platform for standardized and rapid immunological biomarker discovery with wide application to immune-mediated diseases.  相似文献   

4.
Cell death is a stochastic process, often initiated and/or executed in a multi-pathway/multi-organelle fashion. Therefore, high-throughput single-cell analysis platforms are required to provide detailed characterization of kinetics and mechanisms of cell death in heterogeneous cell populations. However, there is still a largely unmet need for inert fluorescent probes, suitable for prolonged kinetic studies. Here, we compare the use of innovative adaptation of unsymmetrical SYTO dyes for dynamic real-time analysis of apoptosis in conventional as well as microfluidic chip-based systems. We show that cyanine SYTO probes allow non-invasive tracking of intracellular events over extended time. Easy handling and “stain-no wash” protocols open up new opportunities for high-throughput analysis and live-cell sorting. Furthermore, SYTO probes are easily adaptable for detection of cell death using automated microfluidic chip-based cytometry.Overall, the combined use of SYTO probes and state-of-the-art Lab-on-a-Chip platform emerges as a cost effective solution for automated drug screening compared to conventional Annexin V or TUNEL assays. In particular, it should allow for dynamic analysis of samples where low cell number has so far been an obstacle, e.g. primary cancer stems cells or circulating minimal residual tumors.  相似文献   

5.
6.
In fluorescence-based flow cytometry, cellular viability is determined with membrane-impermeable fluorescent reagents that specifically enter and label plasma membrane-compromised nonviable cells. A recent technological advance in flow cytometry uses antibodies conjugated to elemental metal isotopes, rather than to fluorophores, to allow signal detection by atomic mass spectrometry. Unhampered by the limitations of overlapping emission fluorescence, mass cytometry increases the number of parameters that can be measured in single cells. However, mass cytometry is unable to take advantage of current fluorescent viability dyes. An alternative methodology was therefore developed here in which the platinum-containing chemotherapy drug cisplatin was used to resolve live and dead cells by mass cytometry. In a 1-min incubation step, cisplatin preferentially labeled nonviable cells from both adherent and suspension cultures, resulting in a platinum signal quantifiable by mass cytometry. This protocol was compatible with established sample processing steps for intracellular cytometry. Furthermore, the live/dead ratios were comparable between mass- and fluorescence-based cytometry. Importantly, although cisplatin is a known DNA-damaging agent, a 1-min "pulse" of cisplatin did not induce observable DNA damage or apoptotic responses even within 6-h post-exposure. Cisplatin can therefore be used as a viability reagent for a wide range of mass cytometry protocols.  相似文献   

7.
There is significant interest in the development of methods with the potential to increase access to 'the interactome' for both experimental and clinical applications. Immunoprecipitation detected by flow cytometry (IP-FCM) is a robust, biochemical method that can be used for measuring physiologic protein-protein interactions (PPI) in multiprotein complexes (MPC) with high sensitivity. Because it is based on antibody-mediated capture of protein complexes onto microspheres, IP-FCM is potentially compatible with a multiplex platform that could allow simultaneous assessment of many physiologic PPI. Here, we consider the principles of ambient analyte conditions (AAC) and inter-bead independence, and provide a template set of experiments showing how to convert singleplex IP-FCM to multiplex IP-FCM, including assays to confirm the validity of the experimental conditions for data acquisition. We conclude that singleplex IP-FCM can be successfully upgraded to multiplex format, and propose that the unique strengths of multiplex IP-FCM make it a method that is likely to facilitate the acquisition of new PPI data from primary cell sources.  相似文献   

8.
Flow cytometry has been used over the past 5 years to begin detailed exploration of the distribution and abundance of picoplankton in the oceans. Light scattering and fluorescence measurements on individual plankton cells in seawater samples allow construction of population signatures from size and pigment characteristics. The use of "list mode" data has made these studies possible, but on-shore analysis of copious data does not permit on-site reexamination of important or unexpected observations, and overall effort is greatly handicapped by data analysis time. Here we describe the application of neural net computer technology to the analysis of flow cytometry data. Although the data used in this study are from oceanographic research, the results are general and should be directly applicable to flow cytometry data of any sort. Neural net computers are ideally suited to perform the pattern recognition required for the quantitative analysis of flow cytometry data. Rather than being programmed to perform analysis, the neural net computer is "taught" how to analyze the cell populations by presenting examples of inputs and correct results. Once the system is "trained," similar data sets can be analyzed rapidly and objectively, minimizing the need for laborious user interaction. The neural network described here offers the advantages of 1) adaptability to changing conditions and 2) potential real-time analysis. High accuracy and processing speed near that required for real-time classification have been achieved in a software simulation of the neural network on a Macintosh SE personal computer.  相似文献   

9.
Suspension array technology: new tools for gene and protein analysis.   总被引:10,自引:0,他引:10  
Flow cytometry has long been a key tool in the analysis of lymphocytes and other cells, owing to its ability to make quantitative, homogeneous, multiparameter measurements of particles. New developments in illumination sources, digital signal processing and microsphere chemistry are driving the development of flow cytometry in new areas of biomedical research. In particular. the maturation of approaches to perform highly parallel analyses using suspension arrays of microspheres with different morphospectral features is making flow cytometry an important tool in protein and genetic analysis. In this paper, we review the development of suspension array technology (SAT), current applications in protein and genomic analysis, and the prospects for this platform in a variety of large scale screening applications.  相似文献   

10.
Renal cell carcinoma (RCC) represents the most common malignant tumor in the kidney and is resistant to conventional therapies. The diagnosis of RCC is often delayed leading to progression and metastatic spread of the disease. Thus, validated markers for the early detection of the disease as well as selection of patients undergoing specific therapy is urgently needed. Using treatment with the monoclonal antibody (mAb) G250 as a model, proteome-based strategies were implemented for the identification of markers which may allow the discrimination between responders and nonresponders prior to application of G250-mediated immunotherapy. Flow cytometry revealed G250 surface expression in approximately 40% of RCC cell lines, but not in the normal kidney epithelium cell lines. G250 expression levels significantly varied thereby distinguishing between low, medium and high G250 expressing cell lines. Comparisons of two-dimensional gel electrophoresis expression profiles of untreated RCC cell lines versus RCC cell lines treated with a mAb directed against G250 and the characterization of differentially expressed proteins by mass spectrometry and/or Edman sequencing led to the identification of proteins such as chaperones, antigen processing components, transporters, metabolic enzymes, cytoskeletal proteins and unknown proteins. Moreover, some of these differentially expressed proteins matched with immunoreactive proteins previously identified by proteome analysis combined with immunoblotting using sera from healthy donors and RCC patients, a technique called PROTEOMEX. Immunohistochemical analysis of a panel of surgically removed RCC lesions and corresponding normal kidney epithelium confirmed the heterogeneous expression pattern found by proteome-based technologies. In conclusion, conventional proteome analysis as well as PROTEOMEX could be successfully employed for the identification of markers which may allow the selection of patients prior to specific immunotherapy.  相似文献   

11.
Fluorescence is a mainstay of bioanalytical methods, offering sensitive and quantitative reporting, often in multiplexed or multiparameter assays. Perhaps the best example of the latter is flow cytometry, where instruments equipped with multiple lasers and detectors allow measurement of 15 or more different fluorophores simultaneously, but increases beyond this number are limited by the relatively broad emission spectra. Surface enhanced Raman scattering (SERS) from metal nanoparticles can produce signal intensities that rival fluorescence, but with narrower spectral features that allow a greater degree of multiplexing. We are developing nanoparticle SERS tags as well as Raman flow cytometers for multiparameter single cell analysis of suspension or adherent cells. SERS tags are based on plasmonically active nanoparticles (gold nanorods) whose plasmon resonance can be tuned to give optimal SERS signals at a desired excitation wavelength. Raman resonant compounds are adsorbed on the nanoparticles to confer a unique spectral fingerprint on each SERS tag, which are then encapsulated in a polymer coating for conjugation to antibodies or other targeting molecules. Raman flow cytometry employs a high resolution spectral flow cytometer capable of measuring the complete SERS spectra, as well as conventional flow cytometry measurements, from thousands of individual cells per minute. Automated spectral unmixing algorithms extract the contributions of each SERS tag from each cell to generate high content, multiparameter single cell population data. SERS-based cytometry is a powerful complement to conventional fluorescence-based cytometry. The narrow spectral features of the SERS signal enables more distinct probes to be measured in a smaller region of the optical spectrum with a single laser and detector, allowing for higher levels of multiplexing and multiparameter analysis.  相似文献   

12.
BACKGROUND: The breast cancer resistance protein (BCRP) is an ATP-binding cassette (ABC) half-transporter that mediates energy-dependent drug efflux. Assessing the clinical relevance of the BCRP will require sensitive and specific methods for detecting its expression and function that allow high-volume specimen throughput and employ widely available instrumentation. METHODS: The BXP-34 and BXP-21 monoclonal antibodies were evaluated for flow cytometric detection of BCRP expression. The modulation of efflux of rhodamine-123, 3,3'-diethyloxacarbocyanine iodide, doxorubicin, and mitoxantrone by fumitremorgin C was studied as an assay for BCRP function in BCRP-overexpressing cell lines and controls. RESULTS: BXP-34 and BXP-21 allowed detection of BCRP expression by flow cytometry in all BCRP-expressing cell lines. Mitoxantrone was the only substrate transported by BCRP in all lines, and with mitoxantrone at a 3-microM concentration, light emission (>670 nm) caused by excitation at 488 nm was sufficiently intense to allow detection of differences in retention associated with low levels of BCRP expression. CONCLUSIONS: Immunophenotyping with BXP-21 or BXP-34 and fumitremorgin C modulation of mitoxantrone retention allow detection of BCRP expression and function by flow cytometry with standard instrumentation. These assays will facilitate determination of the role of BCRP in clinical drug resistance.  相似文献   

13.
Hurthle cells are found in thyroid neoplasms and in reactive nodules in thyroiditis or goitrogenic processes. Cytometric studies have evaluated Hurthle cell neoplasms but not their reactive counterparts. DNA content of Hurthle cells in 22 cases of autoimmune thyroiditis was measured by flow cytometry and image content of Hurthle cells in 22 cases of autoimmune thyroiditis was measured by flow cytometry and image processing using nuclei extracted from paraffin-embedded tissue after microdissection of the Hurthle cell nodules. All 22 autoimmune thyroiditis Hurthle cell nodules were diploid, including 16 without associated neoplasms and six with associated malignant neoplasms (four papillary carcinomas, one follicular carcinoma and one follicular adenoma with papillary carcinoma). Concordance between flow cytometry and image processing was 100%. These findings indicate that the markedly atypical Hurthle cells in autoimmune thyroiditis are diploid by DNA quantitation. This suggests that atypia in Hurthle cells due to reactive or neoplastic processes may be differentiated by quantitative DNA analysis.  相似文献   

14.
A cell analyzer that combines the characteristics of image cytometry and flow cytometry is being designed and constructed at the University of Sydney. This paper describes the image acquisition and processing components and some preliminary applications. Cells stained by a fluorescent dye and suspended in a liquid medium are conveyed by a hydraulic system to a flow channel assembly, where they are detected and illuminated by a laser beam. A two-dimensional charge-coupled device is used to acquire the cell images. Image processing and classification is to be carried out by a special-purpose computer comprising an array of four conventional microprocessors and a highly parallel processor consisting of an array of 32 X 32 processing elements. The analyzer will be capable of using morphologic, immunologic and biochemical information to classify and sort up to 500 cells per second. Because of its unique characteristics, the instrument will be of particular use in tumor heterogeneity studies.  相似文献   

15.
FLOW CYTOMETRY AND THE SINGLE CELL IN PHYCOLOGY   总被引:1,自引:0,他引:1  
Flow cytometers measure light scattering and fluorescence characteristics from individual particles in a fluid stream as they cross one or more light beams at rates of up to thousands of events per second. Flow cytometrically detectable optical signals may arise naturally from algae, reflecting cell size, structure, and endogenous pigmentation, or may be generated by fluorescent stains that report the presence of otherwise undetected cellular constituents. Some flow cytometers can physically sort particles with desired optical characteristics out of the flow stream and collect them for subsequent culture or other analyses. The statistically rigorous, cell‐level perspective provided by flow cytometry has been advantageous in experimental investigations of phycological problems, such as the regulation of cell cycle progression. The capacity of flow cytometry to measure large numbers of cells in large numbers of samples rapidly and quantitatively has been used extensively by biological oceanographers to define the distributions and dynamics of marine picophytoplankton. Recent work has shown that flow cytometry can be used to elucidate relationships between the optical properties of individual cells and the bulk optical properties of the water they live in, and thereby may provide an explicit link between algal physiology and global biogeochemistry. Unfortunately, commercially available flow cytometers that are optimized for biomedical applications have a limited capacity to analyze larger phytoplankton. To circumvent these limitations, many investigators are developing flow cytometers specifically designed for analyzing the broad range of sizes, shapes, and pigments found among algae. These new instruments can perform some novel measurements, including simple fluorescence excitation spectra, detailed angular scattering measurements, and in‐flow digital imaging. The growing accessibility and power of flow cytometers may allow the technology to be applied to a wider array of problems in phycology, including investigations of nonplanktonic and multicellular algae, but also presents new challenges for effectively analyzing the large quantity of multiparameter data produced. Ultimately, the detection of molecular probes by flow cytometry may allow single‐cell taxonomic and physiological information to be garnered for a variety of algae, both in culture and in nature.  相似文献   

16.
Flow cytometric perpendicular and forward light scatters have been employed to evaluate whether the changes in chromatin organization due to ionic strength, Mg++ concentration and pH, visible in electron microscopy, can be monitored by flow cytometry. The average intensity of the perpendicular light scatter signal increased as nuclear chromatin became decondensed by lowering the ionic strength or releasing H1 histone at low pH values. These results indicate that flow cytometry signals and in particular the perpendicular light scatter allow the detection of the conformational transitions in chromatin and may therefore be useful for studying cell cycle associated morphological changes in isolated nuclei.  相似文献   

17.
Tissue microarrays enabling high-throughput molecular pathology   总被引:1,自引:0,他引:1  
The tissue microarray has enabled high-throughput pathology. Rather than the laborious review of individual slides and issues of assay reproducibility across large series of specimens, tissue microarrays allow the review of a single stain on a single slide containing tens to hundreds of samples. This is a paradigm shift in pathology, away from histomorphology and toward molecular characterization by immunohistochemistry. This platform allows large retrospective clinical studies of biomarkers for correlation with outcome and can equally well be applied toward high-throughput analysis of cell lines and xenografts. Tissue microarrays encourage novel approaches to assaying tissue with retained histomorphology and have enabled image analysis in pathology. The reduction of tissue to an analyte for high-throughput analysis has highlighted the importance of a high quality tissue and the impact of tissue handling and processing in the quality of data that can be obtained from analysis of tissue.  相似文献   

18.
An in situ microscope (ISM) device is utilised in this study to monitor hybridoma cells concentration in a stirred bioreactor. It generates images by using pulsed illumination of the liquid broth synchronised with the camera frame generation to avoid blur from the cell's motion. An appropriate image processing isolates the sharp objects from the blurred ones that are far from the focal plane. As image processing involves several parameters, this paper focuses on the robustness of the results of the cells counting. This stage determines the applicability of the measuring device and has seldom been tackled in the presentations of ISM devices. Calibration is secondly performed for assessing the cell-concentration from the cell automated numeration provided by the ISM. Flow cytometry and hemacytometer chamber were used as reference analytical methods. These measures and the output of the image processing allow estimating a single calibration parameter: the reference volume per image equal to 1.08 x 10(-6) mL. In these conditions, the correlation coefficient between both reference and ISM data sets becomes equal to 0.99. A saturation of this system during an ultrasonic wave perfusion phase that deeply changes the culture conditions is observed and discussed. Principal component analysis (PCA) is used to undergo the robustness study and the ISM calibration step.  相似文献   

19.
《Cytotherapy》2022,24(2):193-204
Immune effector cell (IEC) therapies have revolutionized our approach to relapsed B-cell malignancies, and interest in the investigational use of IECs is rapidly expanding into other diseases. Current challenges in the analysis of IEC therapies include small sample sizes, limited access to clinical trials and a paucity of predictive biomarkers of efficacy and toxicity associated with IEC therapies. Retrospective and prospective multi-center cell therapy trials can assist in overcoming these barriers through harmonization of clinical endpoints and correlative assays for immune monitoring, allowing additional cross-trial analysis to identify biomarkers of failure and success. The Consortium for Pediatric Cellular Immunotherapy (CPCI) offers a unique platform to address the aforementioned challenges by delivering cutting-edge cell and gene therapies for children through multi-center clinical trials. Here the authors discuss some of the important pre-analytic variables, such as biospecimen collection and initial processing procedures, that affect biomarker assays commonly used in IEC trials across participating CPCI sites. The authors review the recent literature and provide data to support recommendations for alignment and standardization of practices that can affect flow cytometry assays measuring immune effector function as well as interpretation of cytokine/chemokine data. The authors also identify critical gaps that often make parallel comparisons between trials difficult or impossible.  相似文献   

20.
Aptamers are nucleic acid oligomers with distinct conformational shapes that allow them to bind targets with high affinity and specificity. Aptamers are selected from a random oligonucleotide library by their capability to bind a certain molecular target. A variety of targets ranging from small molecules like amino acids to complex targets and whole cells have been used to select aptamers. These characteristics and the ability to create specific aptamers against virtually any cell type in a process termed “systematic evolution by exponential enrichment” make them interesting tools for flow cytometry. In this contribution, we review the application of aptamers as probes for flow cytometry, especially cell-phenotyping and detection of various cancer cell lines and virus-infected cells and pathogens. We also discuss the potential of aptamers combined with nanoparticles such as quantum dots for the generation of new multivalent detector molecules with enhanced affinity and sensitivity. With regard to recent advancements in aptamer selection and the decreasing costs for oligonucleotide synthesis, aptamers may rise as potent competitors for antibodies as molecular probes in flow cytometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号