首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 966 毫秒
1.
Stretching exercise is effective for increasing joint range of motion (ROM). However, the Surgeon General's Report and the American College of Sports Medicine cite a lack of studies identifying strategies capable of increasing the effectiveness of stretching exercise. This investigation evaluated adding modest weight (0.45-1.35 kg) to a stretching exercise routine (Body Recall [BR]) on joint ROM. Forty-three subjects ages 55-83 years participated in 1 of 2 training groups, BR, BR with weights (BR+W), or a control group (C). ROM was evaluated at the neck, shoulder, hip, knee, and ankle before and after 10 weeks of exercise. Using ANCOVA, significant differences (p < 0.01) were observed for right and left cervical rotation, hip extension, ankle dorsiflexion, ankle plantar flexion, and shoulder flexion. Post hoc analysis revealed that cervical rotation (left and right), hip extension, and ankle dorsiflexion for BR+W subjects differed significantly from BR and C (p < 0.01). Significant differences with shoulder flexion and ankle plantar flexion were found for both BR and BR+W in comparison to C (p < 0.01). Results indicate that addition of weights enhanced the effectiveness of stretching exercise for increasing joint ROM with 4 of the 6 selected measurements. Thus, a modest intensity exercise program that is within the reach of most elderly may significantly affect joint ROM and flexibility.  相似文献   

2.
Purpose: The main objective of the present study was to evaluate the effects of laterality discrimination training on neck joint position sense and cervical range of motion (ROM) in patients with chronic non-specific neck pain (NSCNP).

Materials and methods: Forty-eight patients with NSCNP were randomly assigned to the neck group (NG) that observed neck images or the foot group (FG) that observed foot images. Response time, response accuracy, cervical ROM, and joint position error (JPE) were the main variables. The secondary outcome measures included psychosocial variables.

Results: Differences between groups in the cervical ROM for flexion (p?=?.043) were obtained, being NG group the one which obtained greater values. NG showed an improvement in right rotation (p?=?.018) and a decrease in flexion was found in the FG (p?=?.039). In JPE, differences between groups were obtained in the left rotation (p?=?.021) and significant changes were found in the NG for flexion, extension, and left rotation movements (p?<?.05). Moderate associations were found between left and right accuracy regarding to post-intervention flexion and right rotation (r?=?0.46, r?=?0.41; p?<?.05) in NG.

Conclusion: Improvements in cervical range of motion and joint position sense are obtained after the performance of the laterality discrimination task of images of the neck but not the feet. Visualization of images of the painful region presents moderate correlations with the accuracy and response time in the movements of flexion and right rotation.  相似文献   


3.
This study evaluated the flexion–relaxation phenomenon (FRP) and flexion–relaxation ratios (FR-ratios) using surface electromyography (sEMG) of the cervical extensor muscles of computer workers with and without chronic neck pain, as well as of healthy subjects who were not computer users. This study comprised 60 subjects 20–45 years of age, of which 20 were computer workers with chronic neck pain (CPG), 20 were computer workers without neck pain (NPG), and 20 were control individuals who do not use computers for work and use them less than 4 h/day for other purposes (CG). FRP and FR-ratios were analyzed using sEMG of the cervical extensors. Analysis of FR-ratios showed smaller values in the semispinalis capitis muscles of the two groups of workers compared to the control group. The reference FR-ratio (flexion relaxation ratio [FRR], defined as the maximum activity in 1 s of the re-extension/full flexion sEMG activity) was significantly higher in the computer workers with neck pain compared to the CG (CPG: 3.10, 95% confidence interval [CI95%] 2.50–3.70; NPG: 2.33, CI95% 1.93–2.74; CG: 1.99, CI95% 1.81–2.17; p < 0.001). The FR-ratios and FRR of sEMG in this study suggested that computer use could increase recruitment of the semispinalis capitis during neck extension (concentric and eccentric phases), which could explain our results. These results also suggest that the FR-ratios of the semispinalis may be a potential functional predictive neuromuscular marker of asymptomatic neck musculoskeletal disorders since even asymptomatic computer workers showed altered values. On the other hand, the FRR values of the semispinalis capitis demonstrated a good discriminative ability to detect neck pain, and such results suggested that each FR-ratio could have a different application.  相似文献   

4.
Flexion relaxation (FR) is characterized by the lumbar erector spinae (LES) becoming myoelectrically silent near full trunk flexion. This study was designed to: (1) determine if decreasing the lumbar moment during flexion would induce FR to occur earlier; (2) characterize thoracic and abdominal muscle activity during FR. Ten male participants performed four trunk flexion/extension movement conditions; lumbar moment was altered by attaching 0, 5, 10, or 15 lb counterweights to the torso. Electromyography (EMG) was recorded from eight trunk muscles. Lumbar moment, lumbar flexion and trunk inclination angles were calculated at the critical point of LES inactivation (CPLES). Results demonstrated that counterweights decreased the lumbar moment and lumbar flexion angle at CPLES (p < 0.0001 and p = 0.0029, respectively); the hypothesis that FR occurs earlier when lumbar moment is reduced was accepted. The counterweights did not alter trunk inclination at CPLES (p = 0.1987); this is believed to result from an altered hip to spine flexion ratio when counterweights were attached. Lumbar multifidus demonstrated FR, similar to LES, while thoracic muscles remained active throughout flexion. Abdominal muscles activated at the same instant as CPLES, except in the 15 lb condition where abdominal muscles activated before CPLES resulting in a period of increased co-contraction.  相似文献   

5.

Objective

The objective of this biomechanical study was to evaluate the stability provided by a newly developed shape memory alloy hook (SMAH) in a cadaveric transforaminal lumbar interbody fusion (TLIF) model.

Methods

Six human cadaveric spines (L1-S2) were tested in an in vitro flexibility experiment by applying pure moments of ±8 Nm in flexion/extension, left/right lateral bending, and left/right axial rotation. After intact testing, a TLIF was performed at L4-5. Each specimen was tested for the following constructs: unilateral SMAH (USMAH); bilateral SMAH (BSMAH); unilateral pedicle screws and rods (UPS); and bilateral pedicle screws and rods (BPS). The L3–L4, L4–L5, and L5-S1 range of motion (ROM) were recorded by a Motion Analysis System.

Results

Compared to the other constructs, the BPS provided the most stability. The UPS significantly reduced the ROM in extension/flexion and lateral bending; the BSMAH significantly reduced the ROM in extension/flexion, lateral bending, and axial rotation; and the USMAH significantly reduced the ROM in flexion and left lateral bending compared with the intact spine (p<0.05). The USMAH slightly reduced the ROM in extension, right lateral bending and axial rotation (p>0.05). Stability provided by the USMAH compared with the UPS was not significantly different. ROMs of adjacent segments increased in all fixed constructs (p>0.05).

Conclusions

Bilateral SMAH fixation can achieve immediate stability after L4–5 TLIF in vitro. Further studies are required to determine whether the SMAH can achieve fusion in vivo and alleviate adjacent segment degeneration.  相似文献   

6.

Objective

it has been established that chronic neck pain following whiplash is associated with the phenomenon of central sensitization, in which injured and uninjured parts of the body exhibit lowered pain thresholds due to an alteration in central pain processing. it has furthermore been hypothesized that peripheral sources of nociception in the muscles may perpetuate central sensitization in chronic whiplash. the hypothesis explored in the present study was whether myofascial trigger points serve as a modulator of central sensitization in subjects with chronic neck pain.

Design

controlled case series.

Setting

outpatient chronic pain clinic.

Subjects

seventeen patients with chronic and intractable neck pain and 10 healthy controls without complaints of neck pain.

Intervention

symptomatic subjects received anesthetic infiltration of myofascial trigger points in the upper trapezius muscles and controls received the anesthetic in the thigh. Outcome measures: pre and post injection cervical range of motion, pressure pain thresholds (ppt) over the infraspinatus, wrist extensor, and tibialis anterior muscles. sensitivity to light (photophobia) and subjects' perception of pain using a visual analog scale (vas) were also evaluated before and after injections. only the ppt was evaluated in the asymptomatic controls.

Results

immediate (within 1 minute) alterations in cervical range of motion and pressure pain thresholds were observed following an average of 3.8 injections with 1–2 cc of 1% lidocaine into carefully identified trigger points. cervical range of motion increased by an average of 49% (p = 0.000) in flexion and 44% (p = 0.001) in extension, 47% (p = 0.000) and 28% (p < 0.016) in right and left lateral flexion, and a 27% (p = 0.002) and 45% (p = 0.000) in right and left rotation. ppt were found increased by 68% over the infraspinatus (p = 0.000), by 78% over the wrist extensors (p = 0.000), and by 64% over the tibialis anterior (p = 0.002). among 11 subjects with photophobia, only 2 remained sensitive to light after the trigger point injections (p = 0.033). average vas dropped by 57%, from 6.1 to 2.6 (p = 0.000). no significant changes in ppt were observed in the control group following lidocaine infiltration of the thigh.

Conclusion

the present data suggest that myofascial trigger points serve to perpetuate lowered pain thresholds in uninjured tissues. additionally, it appears that lowered pain thresholds associated with central sensitization can be immediately reversed, even when associated with long standing chronic neck pain. although the effects resulting from anesthesia of trigger points in the present study were temporary, it is possible that surgical excision or ablation of the same trigger points may offer more permanent solutions for chronic neck pain patients. further study is needed to evaluate these and other options for such patients.  相似文献   

7.
In this study, the three-dimensional stabilizing capabilities of the AO-Internal Fixator (IF) and the new Universal Spine System (USS) were investigated. Both devices were tested without and with the cross-link system (IF, IFC, USS, USSC). To determine biomechanical characteristics, a human thoracolumbar spine instability model with resection of the vertebral body Th12 was created. The vertebral body was replaced by a spacer and transpedicular posterior stabilization was performed from Th11 to L1. All devices reduced the range of motion (ROM) significantly compared to the values of the intact specimen. In flexion the IFC showed the highest reduction of ROM (85% of intact), followed by the USSC, USS and IF (79% of intact). In extension the ROM was restored again most by the IFC (52% of intact), followed by the USSC, IF and USS (44% of intact). In lateral bending stability was provided by the USSC (right 78% and left 81% of intact), followed in right lateral bending by the IF, IFC and USS and in left lateral bending by the USS, IF and IFC. In axial rotation the ROM was reduced primary by the IFC (right 51% and left 46% of intact), followed in right axial rotation by the USS, USSC and IF, in left axial rotation by the USSC, USS and IF. Additional stability by crosslinking has been provided in the IF and the USS in flexion and extension, in the USS in lateral bending and in the IF in axial rotation nonsignificantly. The neutral zone (NZ) was reduced by posterior instrumentation in flexion/extension and right/left lateral bending significantly. In axial rotation only the USSC decreased the NZ below intact levels. The study showed no statistical significant differences in the stabilizing capabilities of the USS compared to the IF. For both implants the cross-link system increased stability in the chosen instability model insignificantly only.  相似文献   

8.
The objective of this study was to test the hypothesis that the human lumbosacral joint behaves differently from L1-L5 joints and provides primary moment-rotation responses under pure moment flexion and extension and left and right lateral bending on a level-by-level basis. In addition, range of motion (ROM) and stiffness data were extracted from the moment-rotation responses. Ten T12-S1 column specimens with ages ranging from 27 to 68 years (mean: 50.6+/-13.2) were tested at a load level of 4.0 N m. Nonlinear flexion and extension and left and right lateral bending moment-rotation responses at each spinal level are reported in the form of a logarithmic function. The mean ROM was the greatest at the L5-S1 level under flexion (7.37+/-3.69 degrees) and extension (4.62+/-2.56 degrees) and at the L3-L4 level under lateral bending (4.04+/-1.11 degrees). The mean ROM was the least at the L1-L2 level under flexion (2.42+/-0.90 degrees), L2-L3 level under extension (1.58+/-0.63 degrees), and L1-L2 level under lateral bending (2.50+/-0.75 degrees). The present study proved the hypothesis that L5-S1 motions are significantly greater than L1-L5 motions under flexion and extension loadings, but the hypothesis was found to be untrue under the lateral bending mode. These experimental data are useful in the improved validation of FE models, which will increase the confidence of stress analysis and other modeling applications.  相似文献   

9.
The mechanical coupling behaviour of the thoracic spine is still not fully understood. For the validation of numerical models of the thoracic spine, however, the coupled motions within the single spinal segments are of importance to achieve high model accuracy. In the present study, eight fresh frozen human thoracic spinal specimens (C7-L1, mean age 54 ± 6 years) including the intact rib cage were loaded with pure bending moments of 5 Nm in flexion/extension (FE), lateral bending (LB), and axial rotation (AR) with and without a follower load of 400 N. During loading, the relative motions of each vertebra were monitored. Follower load decreased the overall ROM (T1-T12) significantly (p < 0.01) in all primary motion directions (extension: −46%, left LB: −72%, right LB: −72%, left AR: −26%, right AR: −26%) except flexion (−36%). Substantial coupled motion was found in lateral bending with ipsilateral axial rotation, which increased after a follower load was applied, leading to a dominant axial rotation during primary lateral bending, while all other coupled motions in the different motion directions were reduced under follower load. On the monosegmental level, the follower load especially reduced the ROM of the upper thoracic spine from T1-T2 to T4-T5 in all motion directions and the ROM of the lower thoracic spine from T9-T10 to T11-T12 in primary lateral bending. The facet joints, intervertebral disc morphologies, and the sagittal curvature presumably affect the thoracic spinal coupled motions depending on axial compressive preloading. Using these results, the validation of numerical models can be performed more accurately.  相似文献   

10.
There is great interest in the relationships between growth hormone (GH), muscle loading and bone, in part, because GH increases muscle mass which provides the largest signals that control bone modeling and remodeling. This study was designed to examine the effects of GH and muscle loading by exercise (EX) independently and in combination on bone and skeletal muscle. Thirteen-month-old female F344 rats were divided into 6 groups: Group 1, baseline controls (B); Group 2, agematched controls (C); Group 3, GH treated (2.5 mg rhGH/kg b. wt/day, 5 days per week); Group 4, voluntary wheel running exercise (EX); Group 5, GH+EX, and rats in Group 6 were food restricted (FR) to lower their body weight and examine the effects of decreased muscle load on bone. All animals, except the baseline controls, were sacrificed after 4.5 months. Growth hormone increased the body weight and tibial muscle mass of the rats markedly, while EX caused a slight decrease in body weight and partially inhibited the increase caused by GH in the GH+EX group. Food restriction greatly decreased body weight below that of age-matched controls but neither FR nor EX had a significant effect on the mass of the muscles around the tibia. Growth hormone and EX independently increased tibial diaphyseal cortical bone area (p<0.0001), cortical thickness (p<0.0001), cortical bone mineral content (p<0.0001), periosteal perimeter (p<0.0001) and bone strength-strain index (SSI) (p<0.0001). The effects of GH were more marked, and the combination of GH and EX produced additive effects on many of the tibial diaphyseal parameters including bone SSI. GH+EX, but not GH or EX alone caused a significant increase in endocortical perimeter (p<0.0001). In the FR rats, cortical bone area and cortical mineral content increased above the baseline level (p<0.0001) but were below the levels for age-matched controls (p<0.0001). In addition, marrow area, endocortical perimeter and endocortical bone formation rate increased significantly in the FR rats (p<0.01, p<0.0001, p<0.0001). Three-point bending test of right tibial diaphysis resulted in maximum force (Fmax) values that reflected the group differences in indices of tibial diaphyseal bone mass except that GH+EX did not produce additive effect on Fmax. The latter showed good correlation with left tibial diaphyseal SSI (r=0.857, p<0.0001) and both indices of bone strength correlated well with tibial muscle mass (r=0.771, Fmax; r=0.700, SSI; p<0.0001). We conclude that the bone anabolic effects of GH with or without EX may relate, in part, to increased load on bone from tibial muscles and body weight, which were increased by the hormone. The osteogenic effects of EX with or without GH may relate, in part, to increased frequency of muscle load on bone as EX decreased body weight (p<0.05) but had no significant effect on tibial muscle mass. The enhanced loss of endocortical bone by FR may relate, in part, to decreased load on bone due to low body weight (p<0.0001) as FR did not cause a significant decrease in tibial muscle mass (p=0.357). The roles of humoral and local factors in the bone changes observed remain to be established.  相似文献   

11.
Occupations that involve sustained or repetitive neck flexion are associated with a higher incidence of neck pain. Little in vivo information is available on the impact of static neck flexion on cervical spinal tissue. The aim of this study was to assess changes in mechanical and neuromuscular behaviors to sustained neck flexion in healthy adults. Sixty healthy subjects aged 20–35 years participated in this study. The participants were exposed to static neck flexion at a fixed angle of full flexion for 10 min. Mechanical and neuromuscular responses of the cervical spine to sudden perturbations were measured pre- and post-exposure. Magnitude of load-relaxation during flexion exposure, stiffness, peak head angular velocity, and reflexive activities of cervical muscles were recorded. Effective neck stiffness decreased significantly, especially in female participants (P = 0.0001). The reflexive response of the cervical erector spinae muscles to head perturbation delayed significantly (P = 0.0001). Peak head angular velocity was significantly increased after exposure to neck flexion for 10 min, especially in female participants (P = 0.001). In the present study, static flexion resulted in changes in mechanical and neuromuscular behavior of the cervical spine, potentially leading to decreased stiffness of the cervical spine. The results confirm the importance of maintaining a correct head and neck position during work and improving the work environment to reduce the cervical spinal load and work-related neck pain.  相似文献   

12.
A novel surface electromyographic (EMG) technique was recently described for the detection of deep cervical flexor muscle activity. Further investigation of this technique is warranted to ensure EMG activity from neighbouring muscles is not markedly influencing the signals recorded. This study compared deep cervical flexor (DCF) muscle activity with the activity of surrounding neck and jaw muscles during various anatomical movements of the neck and jaw in 10 volunteer subjects. DCF EMG activity was recorded with custom electrodes inserted via the nose and fixed by suction to the posterior mucosa of the oropharynx. Surface electrodes were placed over the sternocleidomastoid, anterior scalene, masseter and suprahyoid muscles. Positioned in supine, subjects performed isometric cranio-cervical flexion, cervical flexion, right and left cervical rotation, jaw clench and resisted jaw opening. Across all movements examined, EMG amplitude of the DCF muscles was greatest during neck movements that would require activity of the DCF muscles, particularly during cranio-cervical flexion, their primary anatomical action. The actions of jaw clench and resisted jaw opening demonstrated significantly less DCF EMG activity than the cranio-cervical flexion action (p < 0.05). Across all other movements, the neighbouring neck and jaw muscles demonstrated greatest EMG amplitude during their respective primary anatomical actions, which occurred in the absence of increased EMG amplitude recorded from the DCF muscles. The finding of substantial EMG activity of the DCF muscles only during neck actions that would require their activity, particularly cranio-cervical flexion, and not during actions involving the jaw, provide further assurance that the majority of myoelectric signals detected from the nasopharyngeal electrode are from the DCF muscles.  相似文献   

13.
We examined the influence of the application of postural taping on the kinematics of the lumbo–pelvic–hip complex, electromyographic (EMG) activity of back extensor muscles, and the rating of perceived exertion (RPE) in the low back during patient transfer. In total, 19 male physical therapists with chronic low back pain performed patient transfers with and without the application of postural taping on the low back. The kinematics of the lumbo–pelvic–hip complex and EMG activity of the erector spinae were recorded using a synchronized 3-D motion capture system and surface EMG. RPE was measured using Borg’s CR-10 scale. Differences in kinematic data, EMG activity, and RPE between the two conditions were analyzed using a paired t-test. Peak angle and range of motion (ROM) of lumbar flexion, EMG activity of the erector spinae, and RPE decreased significantly, while peak angle and ROM of pelvic anterior tilt and hip flexion increased significantly during patient transfer under the postural taping condition versus no taping (p < 0.05). These findings suggest that postural taping can change back extensor muscle activity and RPE as well as the kinematics of the lumbo–pelvic–hip complex in physical therapists with chronic low back pain during patient transfer.  相似文献   

14.
In this study iliopsoas muscle strength was measured by portable dynamometer and it was explored to what extent independent predictors (age, body weight, body height and body mass index) affect iliopsoas strength in healthy subjects and in subjects with adolescent idiopathic scoliosis. The study population was consisted of 183 girls (90 healthy girls and 93 girls with adolescent idiopathic scoliosis). Student t test analysis showed no differences in maximal voluntary isometric contraction between healthy girls and girls with scoliosis. Independent variables predicted significantly iliopsoas strength in healthy group (r=0.96, p<0.01) and in scoliosis group (r=0.94, p<0.001). Separate analysis with respect to types of scoliosis demonstrated that independent variables significantly predict iliopsoas strength in right thoracic (r=0.97, p<0.01), left thoracic (r=0.98, p=0.004), right thoracic lumbar (r=0.97, p<0.01) and left lumbar (r=0.96, p<0.01) scoliosis subgroups. In healthy girls iliopsoas strength was mostly predicted by body weight, followed by body height and body mass index. In girls with scoliosis body weigth was the strongest predictor of iliopsoas strength and was followed by curvature angle degree.  相似文献   

15.
Animals are becoming more and more common as in vivo models for the human spine. Especially the sheep cervical spine is stated to be of good comparability and usefulness in the evaluation of in vivo radiological, biomechanical and histological behaviour of new bone replacement materials, implants and cages for cervical spine interbody fusion. In preceding biomechanical in vitro examinations human cervical spine specimens were tested after fusion with either a cubical stand-alone interbody fusion cage manufactured from a new porous TiO2/glass composite (Ecopore) or polymethylmethacrylate (PMMA) after discectomy. Following our first experience with the use of the new material and its influence on the primary stability after in vitro application we carried out fusions of 20 sheep cervical spines levels with either PMMA or an Ecopore-cage, and performed radiological examinations during the following 2-4 months. In this second part of the study we intended the biomechanical evaluation of the spine segments with reference to the previously determined morphological findings, like subsidence of the implants, significant increase of the kyphosis angle and degree of the bony fusion along with the interpretation of the results. 20 sheep cervical spines segments with either PMMA- or Ecopore-fusion in the levels C2/3 and C4/5 were tested, in comparison to 10 native corresponding sheep cervical spine segments. Non-destructive biomechanical testing was performed, including flexion/extension, lateral bending and axial rotation using a spine testing apparatus. Three-dimensional range of motion (ROM) was evaluated using an ultrasound measurement system. In the native spine segments C2/3 and C4/5 the ROM increased in cranio-caudal direction particulary in flexion/extension, less pronounced in lateral flexion and axial rotation (p < 0.05). The overall ROM of both tested segments was greatest in lateral flexion, reduced to 52% in flexion/extension and to 16% in axial rotation. After 2 months C2/3- and C4/5-segments with PMMA-fusion and C2/3-segments with Ecopore-interposition showed decrease of ROM in lateral flexion in comparison to the native segments, indicating increasing stiffening. However, after 4 months all operated segments, independent from level or implanted material, were stiffer than the comparable native segments. The decrease of the ROM correlated with the radiological-morphological degree of fusion. Our evaluation of the new porous TiO2/glass composite as interbody fusion cage has shown satisfactory radiological results as well as distinct biomechanical stability and fusion of the segments after 4 months in comparison to PMMA. After histological analysis of the bone-biomaterial-interface, further examinations of this biomaterial previous to an application as alternative to other customary cages in humans are necessary.  相似文献   

16.
The mechanical environment during stair climbing has been associated with patellofemoral pain, but the contribution of loading to this condition is not clearly understood. It was hypothesized that the loading conditions during stair climbing induce higher patellofemoral pressures, a more lateral force distribution on the trochlea and a more lateral shift and tilt of the patella compared to walking at early knee flexion. Optical markers for kinematic measurements were attached to eight cadaveric knees, which were loaded with muscle forces at instances of walking and stair climbing cycles at 12° and 30° knee flexion. Contact mechanics were determined using a pressure sensitive film. At 12° knee flexion, stair climbing loads resulted in higher peak pressure (p=0.012) than walking, more lateral force distribution (p=0.012) and more lateral tilt (p=0.012), whilst mean pressure (p=0.069) and contact area (p=0.123) were not significantly different. At 30° knee flexion, although stair climbing compared to walking loads resulted in significantly higher patellofemoral mean (p=0.012) and peak pressures (p=0.012), contact area (p=0.025), as well as tilt (p=0.017), the medial–lateral force distribution (p=0.674) was not significantly different. No significant differences were observed in patellar shift between walking and stair climbing at either 12° (p=0.093) or 30° (p=0.575) knee flexion. Stair climbing thus leads to more challenging patellofemoral contact mechanics and kinematics than level walking at early knee flexion. The increase in patellofemoral pressure, lateral force distribution and lateral tilt during stair climbing provides a possible biomechanical explanation for the patellofemoral pain frequently experienced during this activity.  相似文献   

17.
Cervical spinal loads are predominately influenced by activities of cervical muscles. However, the coordination between deep and superficial muscles and their influence on the spinal loads is not well understood. This study aims to document the changes of cervical spinal loads and the differential contributions of superficial and deep muscles with varying head postures. Electromyography (EMG) of cervical muscles from seventeen healthy adults were measured during maximal isometric exertions for lateral flexion (at 10°, 20° and terminal position) as well as flexion/extension (at 10°, 20°, 30°, and terminal position) neck postures. An EMG-assisted optimization approach was used to estimate the muscle forces and subsequent spinal loads. The results showed that compressive and anterior-posterior shear loads increased significantly with neck flexion. In particular, deep muscle forces increased significantly with increasing flexion. It was also determined that in all different static head postures, the deep muscle forces were greater than those of the superficial muscle forces, however, such pattern was reversed during peak efforts where greater superficial muscle forces were identified with increasing angle of inclination. In summary, the identification of significantly increased spinal loads associated with increased deep muscle activation during flexion postures, implies higher risks in predisposing the neck to occupationally related disorders. The results also explicitly supported that deep muscles play a greater role in maintaining stable head postures where superficial muscles are responsible for peak exertions and reinforcing the spinal stability at terminal head postures. This study provided quantitative data of normal cervical spinal loads and revealed motor control strategies in coordinating the superficial and deep muscles during physical tasks.  相似文献   

18.
目的:探讨针灸联合推拿手法对椎动脉型颈椎病(CSA)患者的疗效及其对血流动力学和颈椎活动度的影响。方法:选取2015年9月-2017年9月期间山东省医学科学院颈肩腰腿痛医院收治的CSA患者900例为研究对象。根据随机数字表法将患者分为对照组(n=450)与研究组(n=450)。对照组给予针灸治疗,研究组则在对照组的基础上联合推拿手法治疗,两组患者均治疗14d,同时进行为期3个月的随访。观察两组患者临床疗效、症状评分、血流动力学以及颈椎活动度等变化情况。结果:治疗后研究组患者临床总有效率为96.44%(434/450),显著高于对照组的83.78%(377/450)(P0.05)。两组患者治疗后眩晕、恶心或呕吐、头痛、肩颈痛、旋颈试验、生活及工作评分均较治疗前升高,且研究组高于对照组(P0.05)。两组治疗后平均血流速度(TMFV)、收缩期峰值血流速度(PSV)均较治疗前升高,搏动指数(PI)、阻力指数(RI)均较治疗前降低,且研究组治疗后TMFV、PSV高于对照组,PI、RI低于对照组(P0.05)。两组患者治疗3个月后前屈、后伸、左侧屈、右侧屈、左侧旋以及右侧旋活动度均较治疗前升高,且研究组后伸、左侧屈、右侧屈、左侧旋以及右侧旋活动度高于对照组(P0.05)。结论:针灸联合推拿手法治疗CSA效果优于单用针灸治疗,对患者症状评分、血流动力学以及颈椎活动度均有改善作用,可进一步推广应用。  相似文献   

19.
This study investigated whether pain-induced changes in cervical muscle activation affect myoelectric manifestations of cervical muscle fatigue. Surface EMG signals were detected from the sternocleidomastoid and splenius capitis muscles bilaterally from 14 healthy subjects during 20-s cervical flexion contractions at 25% of the maximal force. Measurements were performed before and after the injection of 0.5 ml of hypertonic (painful) or isotonic (control) saline into either the sternocleidomastoid or splenius capitis in two experimental sessions. EMG average rectified value and mean power spectral frequency were estimated throughout the sustained contraction. Sternocleidomastoid or splenius capitis muscle pain resulted in lower sternocleidomastoid EMG average rectified value on the side of pain (P < 0.01). However, changes over time of sternocleidomastoid EMG average rectified value and mean frequency (myoelectric manifestations of fatigue) during sustained flexion were not changed during muscle pain. These results demonstrate that pain-induced modifications of cervical muscle activity do not change myoelectric manifestations of fatigue. This finding has implications for interpreting the mechanisms underlying greater cervical muscle fatigue in people with neck pain disorders.  相似文献   

20.
Although muscles are assumed to be capable of stabilizing the spinal column in vivo, they have only rarely been simulated in vitro. Their effect might be of particular importance in unstable segments. The present study therefore tests the hypothesis that mechanically simulated muscle forces stabilize intact and injured cervical spine specimens. In the first step, six human occipito-cervical spine specimens were loaded intact in a spine tester with pure moments in lateral bending (+/- 1.5 N m), flexion-extension (+/- 1.5 N m) and axial rotation (+/- 0.5 N m). In the second step, identical flexibility tests were carried out during constant traction of three mechanically simulated muscle pairs: splenius capitits (5 N), semispinalis capitis (5 N) and longus colli (15 N). Both steps were repeated after unilateral and bilateral transection of the alar ligaments. The muscle forces strongly stabilized C0-C2 in all loading and injury states. This was most obvious in axial rotation, where a reduction of range of motion (ROM) and neutral zone to <50% (without muscles=100%) was observed. With increasing injury the normalized ROM (intact condition=100%) increased with and without muscles approximately to the same extend. With bilateral injury this increase was 125-132% in lateral bending, 112%-119% in flexion-extension and 103-116% in axial rotation. Mechanically simulated cervical spine muscles strongly stabilized intact and injured cervical spine specimens. Nevertheless, it could be shown that in vitro flexibility tests without muscle force simulation do not necessarily lead to an overestimation of spinal instability if the results are normalized to the intact state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号