首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Molecular cell》2023,83(9):1502-1518.e10
  1. Download : Download high-res image (167KB)
  2. Download : Download full-size image
  相似文献   

2.
The Ca2+/calmodulin-dependent protein phosphatase calcineurin (CN), a heterodimer composed of a catalytic subunit A and an essential regulatory subunit B, plays critical functions in various cellular processes such as cardiac hypertrophy and T cell activation. It is the target of the most widely used immunosuppressants for transplantation, tacrolimus (FK506) and cyclosporin A. However, the structure of a large part of the CNA regulatory region remains to be determined, and there has been considerable debate concerning the regulation of CN activity. Here, we report the crystal structure of full-length CN (β isoform), which revealed a novel autoinhibitory segment (AIS) in addition to the well-known autoinhibitory domain (AID). The AIS nestles in a hydrophobic intersubunit groove, which overlaps the recognition site for substrates and immunosuppressant-immunophilin complexes. Indeed, disruption of this AIS interaction results in partial stimulation of CN activity. More importantly, our biochemical studies demonstrate that calmodulin does not remove AID from the active site, but only regulates the orientation of AID with respect to the catalytic core, causing incomplete activation of CN. Our findings challenge the current model for CN activation, and provide a better understanding of molecular mechanisms of CN activity regulation.  相似文献   

3.
Truong AB  Masters SC  Yang H  Fu H 《Proteins》2002,49(3):321-325
14-3-3 proteins are a family of conserved dimeric molecules that interact with a broad range of target proteins, most of which contain phosphoserine/threonine. The amphipathic groove of 14-3-3 is the main structural feature involved in mediating its associations. We have studied another domain of 14-3-3, the C-terminal loop, to determine what role it plays in ligand interaction. A truncated form of 14-3-3zeta lacking this C-terminal loop was generated and found to bind with higher affinity than the wild-type 14-3-3zeta protein to the ligands Raf-1 and Bad. Interestingly, the truncated 14-3-3zeta also showed increased association with the 14-3-3 binding-deficient Bad/S136A mutant. Taken together, these data support a role for the C-terminal loop as a general inhibitor of 14-3-3/ligand interactions. This may provide a mechanism by which inappropriate associations with 14-3-3 are prevented.  相似文献   

4.
5.
Cyclic AMP can either activate or inhibit the mitogen-activated protein kinase (MAPK) pathway in different cell types; MAPK activation has been observed in B-Raf-expressing cells and has been attributed to Rap1 activation with subsequent B-Raf activation, whereas MAPK inhibition has been observed in cells lacking B-Raf and has been attributed to cAMP-dependent protein kinase (protein kinase A)-mediated phosphorylation and inhibition of Raf-1 kinase. We found that cAMP stimulated MAPK activity in CHO-K1 and PC12 cells but inhibited MAPK activity in C6 and NB2A cells. In all four cell types, cAMP activated Rap1, and the 95- and 68-kDa isoforms of B-Raf were expressed. cAMP activation or inhibition of MAPK correlated with activation or inhibition of endogenous and transfected B-Raf kinase. Although all cell types expressed similar amounts of 14-3-3 proteins, approximately 5-fold less 14-3-3 was associated with B-Raf in cells in which cAMP was inhibitory than in cells in which cAMP was stimulatory. We found that the cell type-specific inhibition of B-Raf could be completely prevented by overexpression of 14-3-3 isoforms, whereas expression of a dominant negative 14-3-3 mutant resulted in partial loss of B-Raf activity. Our data suggest that 14-3-3 bound to B-Raf protects the enzyme from protein kinase A-mediated inhibition; the amount of 14-3-3 associated with B-Raf may explain the tissue-specific effects of cAMP on B-Raf kinase activity.  相似文献   

6.
Galectin-3 (Gal-3), a member of a family of highly conserved carbohydrate-binding proteins, has recently emerged as a novel cellular modulator at inflammatory foci. Here we investigated the effects of Gal-3 on central effector functions of human neutrophils, including phagocytosis, exocytosis of secretory granules, and survival. We examined the effects of Gal-3 alone or in combination with soluble fibrinogen (sFbg), an extracellular mediator that plays a key role during the early phase of the inflammatory response through binding to integrin receptors. In addition we evaluated the intracellular signals triggered by these mediators in human neutrophils. Human neutrophils incubated with recombinant Gal-3 alone increased their phagocytic activity and CD66 surface expression. In contrast to the known antiapoptotic effect of Gal-3 on many cellular types, Gal-3 enhanced PMN apoptotic rate. Preincubation with Gal-3 primed neutrophils to the effects of sFbg, resulting in a synergistic action on degranulation. On the other hand, Gal-3 and sFbg had opposite effects on PMN survival, and the simultaneous action of both agonists partially counteracted the proapoptotic effects of Gal-3. In addition, although sFbg induced its effects through the activation of the ERKs, Gal-3 led to p38 phosphorylation. Disruption of this signaling pathway abrogated Gal-3-mediated modulation of neutrophil degranulation, phagocytosis, and apoptosis. Together, our results support the notion that Gal-3 and sFbg are two physiological mediators present at inflammatory sites that activate different components of the MAPK pathway and could be acting in concert to modulate the functionality and life span of neutrophils.  相似文献   

7.
8.
9.
10.
B-Raf mutation was identified as a key target in cancer treatment. Based on structural features of dabrafenib (potent FDA approved B-Raf inhibitor), the design of new NH2-based imidazothiazole derivatives was carried out affording new highly potent derivatives of imidazothiazole-based scaffold with amino substitution on the terminal phenyl ring as well as side chain with sulfonamide group and terminal substituted phenyl ring. In vitro enzyme assay was investigated against V600E B-Raf kinase. Compounds 10l, 10n and 10o showed higher inhibitory activities (IC50 = 1.20, 4.31 and 6.21 nM, respectively). In vitro cytotoxicity evaluation was assessed against NCI-60 cell lines. Most of tested derivatives showed cytotoxic activities against melanoma cell line. Compound 10k exhibited most potent activity (IC50 = 2.68 µM). Molecular docking study revealed that the new designed derivatives preserved the same binding mode of dabrafenib with V600E B-Raf active site. It was investigated that the new modification in the synthesized derivatives (substituted with NH2) had a significant inhibitory activity towards V600E B-Raf. This core scaffold is considered a key compound for further structural and molecular optimization.  相似文献   

11.
Electrically evoked dopamine release as measured by voltammetry in the rat striatum is heterogeneous in both amplitude and temporal profile. Previous studies have attributed this heterogeneity to variations in the density of dopamine (DA) terminals at the recording site. We reach the alternate conclusion that the heterogeneity of evoked DA release derives from variations in the extent to which DA terminals are autoinhibited. We demonstrate that low-amplitude, slow evoked DA responses occur even though recording electrodes are close to DA terminals. Moreover, the D2 agonist and antagonist, quinpirole and raclopride, respectively, affect the slow responses in a manner consistent with the known functions of pre-synaptic D2 autoreceptors. Recording sites that exhibit autoinhibited responses are prevalent in the dorsal striatum. Autoinhibition preceded electrical stimulation, which is consistent with our prior reports that the striatum contains a tonic pool of extracellular DA at basal concentrations that exceed the affinity of D2 receptors. We conclude that the striatum contains DA terminals operating on multiple time courses, determined at least in part by the local variation in autoinhibition. Thus, we provide direct, real-time observations of the functional consequence of tonic and phasic DAergic signaling in vivo .  相似文献   

12.
The epidermal growth factor receptor (EGFR) and its homologs ErbB3 and ErbB4 adopt a tethered conformation in the absence of ligand in which an extended hairpin loop from domain II contacts the juxtamembrane region of domain IV and tethers the domain I/II pair to the domain III/IV pair. By burying the hairpin loop, which is required for formation of active receptor dimers, the tether contact was thought to prevent constitutive activation of EGFR and its homologs. Amino‐acid substitutions at key sites within the tether contact region fail to result in constitutively active receptors however. We report here the 2.5 Å crystal structure of the N‐terminal three extracellular domains of ErbB4, which bind ligand but lack domain IV and thus the tether contact. This ErbB4 fragment nonetheless adopts a domain arrangement very similar to the arrangement adopted in the presence of the tether suggesting that regions in addition to the tether contribute to maintaining this conformation and inactivity in the absence of the tether contact. We suggest that the tether conformation may have evolved to prevent crosstalk between different EGFR homologs and thus allow diversification of EGFR and its homologs.  相似文献   

13.
The eukaryotic regulatory protein 14-3-3 is involved in many important plant cellular processes including regulation of nitrate assimilation through inhibition of phosphorylated nitrate reductase (pNR) in darkened leaves. Divalent metal cations (Me2+) and some polyamines interact with the loop 8 region of the 14-3-3 proteins and allow them to bind and inhibit pNR in vitro. The role of the highly variant C-terminal regions of the 14-3-3 isoforms in regulation by polycations is not clear. In this study, we carried out structural analyses on the C-terminal tail of the Arabidopsis 14-3-3omega isoform and evaluated its contributions to the inhibition of pNR. Nested C-terminal truncations of the recombinant 14-3-3omega protein revealed that the removal of the C-terminal tail renders the protein partially Mg2+-independent in both pNR binding and inhibition of activity, suggesting that the C-terminus functions as an autoinhibitor. The C-terminus of 14-3-3omega appears to undergo a conformational change in the presence of polycations as demonstrated by its increased trypsin cleavage at Lys-247. C-terminal truncation of 14-3-3omega at Thr-255 increased its interaction with antibodies to the C-terminus of 14-3-3omega in non-denaturing conditions, but not in denaturing conditions, suggesting that the C-terminal tail contains ordered structures that might be disrupted by the truncation. Circular dichroism (CD) analysis of a C-terminal peptide, from Trp-234 to Lys-249, revealed that the C-terminal tail might contain a tenth alpha-helix, in agreement with the in silico predictions. The function of the putative tenth alpha-helix is not clear because substituting two prolyl residues within the predicted helix (E245P/I246P mutant), which prevented the corresponding peptide from adopting a helical conformation, did not affect the inhibition of pNR activity in the presence or absence of Mg2+. We propose that in the absence of polycations, access of target proteins to their binding groove in the 14-3-3 protein is restricted by the C-terminus, which acts as part of a gate that opens with the binding of polycations to loop 8.  相似文献   

14.
A series of novel dioxin-containing triaryl pyrazoline derivatives C1C20 have been synthesized. Their B-Raf inhibitory and anti-proliferation activities were evaluated. Compound C6 displayed the most potent biological activity against B-RafV600E and WM266.4 human melanoma cell line with corresponding IC50 value of 0.04 μM and GI50 value of 0.87 μM, being comparable with the positive controls and more potent than our previous best compounds. Moreover, C6 was selective for B-RafV600E from B-RafWT, C-Raf and EGFR and low toxic. The docking simulation suggested the potent bioactivity might be caused by breaking the limit of previous binding pattern. A new 3D QSAR model was built with the activity data and binding conformations to conduct visualized SAR discussion as well as to introduce new directions. Stretching the backbone to outer space or totally reversing the backbone are both potential orientations for future researches.  相似文献   

15.
A number of Raf-associated proteins have recently been identified, including members of the 14-3-3 family of phosphoserine-binding proteins. Although both positive and negative regulatory functions have been ascribed for 14-3-3 interactions with Raf-1, the mechanisms by which 14-3-3 binding modulates Raf activity have not been fully established. We report that mutational disruption of 14-3-3 binding to the B-Raf catalytic domain inhibits B-Raf biological activity. Expression of the isolated B-Raf catalytic domain (B-Rafcat) induces PC12 cell differentiation in the absence of nerve growth factor. By contrast, the B-Rafcat 14-3-3 binding mutant, B-Rafcat S728A, was severely compromised for the induction of PC12 cell differentiation. Interestingly, the B-Rafcat 14-3-3 binding mutant retained significant in vitro catalytic activity. In Xenopus oocytes, the analogous full-length B-Raf 14-3-3 binding mutant blocked progesterone-stimulated maturation and the activation of endogenous mitogen-activated protein kinase kinase and mitogen-activated protein kinase. Similarly, the full-length B-Raf 14-3-3 binding mutant inhibited nerve growth factor-stimulated PC12 cell differentiation. We conclude that 14-3-3 interaction with the catalytic domain is not required for kinase activity per se but is essential to couple B-Raf catalytic activity to downstream effector activation.  相似文献   

16.
Twenty four pyrazoline derivatives modified from Celecoxib were designed and synthesized as bi-inhibitor of COX-2 and B-Raf. They were evaluated for their COX-1/COX-2/B-Raf inhibitory and anti-proliferation activities. Compound A3 displayed the most potent activity against COX-2 and HeLa cell line (IC50 = 0.008 μM; GI50 = 19.86 μM) and showed superb COX-1/COX-2 selectivity (>500), being more potent and selective than positive control Celecoxib or 5-fluorouracil. Compounds A5 and B5 were introduced best B-Raf inhibitory activities (IC50 = 0.15 μM and 0.12 μM, respectively). Compound A4 retained superb bioactivity against COX-2 and HeLa cell line (IC50 = 0.015 μM; GI50 = 23.82 μM) and displayed moderate B-Raf inhibitory activity (IC50 = 3.84 μM). Docking simulation was conducted to give binding patterns. QSAR models were built using bioactivity data and optimized conformations to provide a future modification of COX-2/B-Raf inhibitors.  相似文献   

17.
《Molecular cell》2022,82(22):4262-4276.e5
  1. Download : Download high-res image (223KB)
  2. Download : Download full-size image
  相似文献   

18.
Ligand-dependent or independent oligomerization of receptor protein tyrosine kinase (RPTK) is often an essential step for receptor activation and intracellular signaling. The novel oncogene with kinase-domain (NOK) is a unique RPTK that almost completely lacks an ectodomain, expresses intracellularly and activates constitutively. However, it is unknown whether NOK can form oligomer or what function oligomerization would have. In this study, two NOK deletion mutants were generated by either removing the ectodomain (NOKΔECD) or including the endodomain (NOK-ICD). Co-immunoprecipitation demonstrated that the transmembrane (TM) domain of NOK was essential for its intermolecular interaction. The results further showed that NOK aggregated more closely as lower order oligomers (the dimer- and trimer-sized) than either deletion mutant did since NOK could be cross-linked by both Sulfo-EGS and formaldehyde, whereas either deletion mutant was only sensitive to Sulfo-EGS. Removing the NOK TM domain (NOK-ICD) not only markedly promoted higher order oligomerization, but also altered the subcellular localization of NOK and dramatically elevated the NOK-mediated constitutive activation of extracellular signal-regulated kinase (ERK). Moreover, NOK-ICD but not NOK or NOKΔECD was co-localized with the upstream signaling molecule RAS on cell membrane. Thus, TM-mediated intermolecular contacting may be mainly responsible for the constitutive activation of NOK and contribute to the autoinhibitory effect on RAS/MAPK signaling.  相似文献   

19.
The fhy3 mutation of Arabidopsis impairs phytochrome A (phyA)-mediated inhibition of hypocotyl growth without affecting the levels of phyA measured spectrophotometrically or immunochemically. We investigated whether the fhy3-1 mutation has similar effects on very low fluence responses (VLFR) and high irradiance responses (HIR) of phyA. When exposed to hourly pulses of far-red light, etiolated seedlings of the wild type or of the fhy3-1 mutant showed similar inhibition of hypocotyl growth, unfolding of the cotyledons, anthocyanin synthesis, and greening upon transfer to white light. In the wild type, continuous far-red light was significantly more effective than hourly far-red pulses (at equal total fluence). In the fhy3-1 mutant, hourly pulses were as effective as continuous far-red light, i.e. the failure of reciprocity typical of HIR was not observed. Germination was similarly promoted by continuous or pulsed far-red in wild-type and fhy3-1 seeds. Thus, for hypocotyl growth, cotyledon unfolding, greening, and seed germination, the fhy3-1 mutant retains VLFR but is severely impaired in HIR. These data are consistent with the idea that VLFR and HIR involve divergent signaling pathways of phyA.  相似文献   

20.
The BCR/ABL fusion tyrosine kinase activates various intracellular signaling pathways, thus causing chronic myeloid leukemia (CML). Here we demonstrate that the inducible expression of BCR/ABL in a murine hematopoietic cell line, TonB210, leads to the activation of the Ras family small GTPase Rap1, which is inhibited by the ABL kinase inhibitor imatinib. The Rap1 activity in a CML cell line, K562, was also inhibited by imatinib. Inhibition of Rap1 activation by a dominant negative mutant of Rap1, Rap1-N17, or SPA-1 inhibited the BCR/ABL-induced activation of Elk-1. BCR/ABL also activated in a kinase activity-dependent manner the B-Raf kinase, which is an effector molecule of Rap1 and a potent activator of the MEK/Erk/Elk-1 signaling pathway. Together, these data suggest that, in addition to the well-established Ras/Raf-1 pathway, BCR/ABL activates the alternative signaling pathway involving Rap1 and B-Raf to activate Erk, which may play important roles in leukemogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号