首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
In order to clarify whether or not the electronegative olfactory mucosal potentials (EOG) are generator potentials, the effects of changed ionic enviroment were studied. The EOG decreased in amplitude and in some cases nearly or completely disappeared, when Na+ in the bathing Ringer solution was replaced by sucrose, Li+, choline+, tetraethylammonium+ (TEA), or hydrazine. In the K+-free Ringer solution, the negative EOG's initially increased and then decreased in amplitude. In Ringer's solution with increased K+, the negative EOG's increased in amplitude. When K+ was increased in exchange for Na+ in Ringer's solution, the negative EOG's decreased, disappeared, and then reversed their polarity (Fig. 6). Next, when the K+ was replaced by equimolar sucrose, Li+, choline+, TEA+, hydrazine, or Na+, the reversed potentials recovered completely only in Na+-Ringer's solution, but never in the other solutions. Thus, the essential role of Na+ and K+ in the negative EOG's was demonstrated. Ba++ was found to depress selectively the electropositive EOG, but it hardly decreased and never increased the negative EOG. Hence, it is concluded that Ba++ interferes only with Cl- influx, and that the negative EOG's are elicited by an increase in permeability of the olfactory receptive membrane to Na+ and K+, but not to Cl-. From the ionic mechanism it is inferred that the negative EOG's are in most cases composites of generator and positive potentials.  相似文献   

2.
The influx of Na+, K+, Rb+, and Cs+ into frog sartorius muscle has been followed. The results show that a maximum rate is found for K+, while Na+ and Cs+ penetrate much more slowly. Similar measurements with Ca++, Ba++, and Ra++ show that Ba++ penetrates at a rate somewhat greater than that of either Ca++ or Ra++. All these divalent cations, however, penetrate at rates much slower than do the alkali cations. The results obtained are discussed with reference to a model that has been developed to explain the different penetration rates for the alkali cations.  相似文献   

3.
White erythrocyte membranes, or ghosts, were monoconcave discocytes when incubated in 50mM N-tris (hydroxymethyl) methyl-2-aminoethane sulfonic acid titrated to pH 7.4 with triethanolamine. If 3mM MgCl2 was included in the incubation medium, the ghosts were predominantly echinocytes. The echinocytic form could also be induced by Co++, Ni++, Li+, Na+, K+, NH4+ and tetramethylammonium ion, all as chloride salts. The concentration of cation necessary for 50% of the ghosts to be echinocytes was correlated with the hydrated charge density of the cation with the most highly charged cations being the most effective. The cations Ca++, Sr++, Ba++ and La+++, (also as chloride salts) did not induce the normal echinocytic form, but at high levels induced a few misshapen forms with some resemblance to echinocytes. Instead Ca++, Sr++, Ba++ and La+++ suppressed the formation of echinocytes in the presence of Mg++ and other ions. This suggests the presence of a specific Ca++ binding site important to shape control in the erythrocyte membrane.  相似文献   

4.
ABSTRACT. Strains of Tetrahymena thermophila were examined in an attempt to establish what role certain ions (Na+, K+, Li+, Ba++, Ca++, Mg++, Mn++, Al+++, Fe+++) play in influencing cell survival time in a culture medium. In short-term experiments (20–30 min), cell survival time in a 1% peptone medium is directly related to the valence of the ion employed. Long-term observations (lasting up to five days) in a 1% peptone medium containing lower ion concentrations revealed that the effects on cell-cycle time are not correlated with the valence state of the ion. Comparisons were made among the ionic resistances of strains of T. thermophila, of T. pyriformis sensu stricto, and of two subspecies of T. pigmentosa. Strains within a species are highly correlated in their patterns of ionic response, while marked differences between species occur. The most distinctive group of strains examined came from one of the subspecies (syngen 6) of T. pigmentosa.  相似文献   

5.
Bioelectric effects of ions microinjected into the giant axon of Loligo   总被引:1,自引:0,他引:1  
1. A technique is described for recording the bioelectric activity of the squid giant axon during and following alteration of the internal axonal composition with respect to ions or other substances. 2. Experimental evidence indicates that the technique as described is capable of measuring changes in local bioelectric activity with an accuracy of 10 to 15 per cent or higher. 3. Alterations of the internal K+ or Cl- concentrations do not cause the change in resting potential expected on the basis of a Donnan mechanism. 4. The general effect of microinjection of K+ Rb+, Na+, Li+, Ba++, Ca++, Mg++, or Sr++ is to cause decrease in spike amplitude, followed by propagation block. 5. The resting potential decreases when the amplitude of the spike becomes low and block is incipient. 6. The decrease in resting potential and spike amplitude may be confined to the immediate vicinity of the injection. 7. At block, the resting potential decreases up to 50 per cent, but injection of small quantities of divalent cations may cause much larger localized depolarization. 8. The blocking effectiveness of K+, Na+, and Ca++ expressed as reciprocals of the relative amounts needed to cause block is approximately 1:5:100. Rb+ has the same low effectiveness as does K+. Li+ resembles Na+. Ba++ and Mg++ are approximately as effective as Ca++. 9. Microinjection of Na+ may cause marked prolongation of the spike at the injection site as well as decrease in its amplitude. 10. The anions used (Cl-, HCO3-, NO3-, SO4-, aspartate, and glutamate) do not seem to exert specific effects. 11. A tentative explanation is offered for the insensitivity of the resting potential to changes in the axonal ionic composition. 12. New data are presented on the range of variation, in a large sample, of the magnitude of the resting potential and spike amplitude.  相似文献   

6.
The ability of the macrotetrolide nactins to complex selectivity with a wide variety of cations makes these ionophorous antibiotics important model systems for the study of biologic ionic transport. We report a Raman spectroscopic investigation of the Na+, K+, Rb+, Cs+, Tl+, NH4+, NH3OH+, C(NH2)3+, and Ba++ complexes of nonactin, monactin, and dinactin in 4:1 (v/v) CH3OH/CHCl3 and in the solid state. The nactins display characteristic spectral changes upon complexation, some of which are specific for a given cation. In the K+, Rb+, Cs+, NH3OH+, and C(NH2)3+ complexes, which are apparently isosteric, the ester carbonyl stretch frequency is found to be linearly proportional to the cation–carbonyl electrostatic interaction energy, as calculated from a simplified model. Deviations for the Na+, NH4+, Tl+, and Ba++ complexes are interpreted as arising from additional nonelectrostatic interactions. Additional information is obtained from other spectral regions and from measurements of depolarization ratios. Spectra of the nactin complexes differ from each other more in the solid state than in solution, reflecting the effects of crystalline contact forces.  相似文献   

7.
Graded electrically excited responsiveness of Romalea muscle fibers is converted to all-or-none activity by Ba++, Sr++, or Ca++, the two former being much the more effective in this action. The change occurs with as little as 7 to 10 per cent of Na+ substituted by Ba++. The spikes now produced have overshoots and may be extremely prolonged, lasting many seconds. During the spike the membrane resistance is lower than in the resting fiber, but the resting resistance and time constant are considerably increased by the alkali-earth ions. The excitability is also increased, spikes arising neurogenically from spontaneous repetitive discharges in the axon as well as myogenically from spontaneous activity in the muscle fibers. Repetitive responses frequently occur on intracellular stimulation with a brief pulse. The data indicate that the alkali-earth ions exert a complex of effects on the different action components of electrically excitable membrane. They may be described in terms of the ionic theory as follows: The resting K+ conductance is diminished. The sodium inactivation process is also diminished, and sodium activation may be increased. Together these changes can act to convert graded responsiveness to the all-or-none variety. The alkali-earth ions can also to some degree carry inward positive charge during activity, since spikes are produced when Na+ is fully replaced with the divalent ions.  相似文献   

8.
Conversion of graded responsiveness of lobster muscle fibers to all-or-none activity by alkali-earth and tetraethylammonium (TEA) ions appears to be due to a combination of effects. The membrane is hyperpolarized, its resistance is increased, and its sensitivity to external K+ is diminished, all effects which indicate diminished K+ conductance. While the spikes are prolonged, the conductance is higher throughout the response than it is in the resting membrane. Repetitive activity becomes prominent. These effects indicate maintained high conductance for an ion which causes depolarization. This is normally Na+, since its presence in low concentrations potentiates the effects of Ba++, but the alkali-earth ions and TEA can also carry inward charge. Ba++, Sr++, and TEA appear to be more effective than is Ca++ in its normal role, which is probably to depress K+ conductance and Na inactivation. Thus, conversion of graded to all-or-none responsiveness appears to occur because of the relative increase of depolarizing inward ion flux and decrease of repolarizing outward flux.  相似文献   

9.
Binding of Ca ions by Paramecium caudatum   总被引:1,自引:1,他引:0       下载免费PDF全文
Binding of 45Ca by live Paramecium caudatum was determined under various external ionic conditions. It was found that calcium uptake was separable into at least two components, a rapid and a slow one. The rapid component was influenced by the presence of certain other ions in a manner which agrees with the law of mass action. It appears that an ion exchange system may be involved in a binding equilibrium established between Paramecium, Ca++, and certain other ions. K+, Rb+, and Ba++ in the equilibrium medium are among those ions which inhibit calcium uptake. It is proposed that liberation of Ca++ from binding sites on Paramecium by an exchange reaction with competing ions is the first step in the mechanism of ciliary reversal in the response to external application of these ions.  相似文献   

10.
Summary Addition of the polyene antibiotic filipin (50 m) to the outside bathing solution (OBS) of the isolated frog skin resulted in a highly significant active outward transport of K+ because filipinper se increases the nonspecific Na+ and K+ permeability of the outward facing membrane. The K+ transport was calculated from the chemically determined changes in K+ concentrations in the solution bathing the two sides of the skin. The active transepithelial K+ transport required the presence of Na+ in the OBS, but not in the inside bathing solution (IBS), and it was inhibited by the Na+, K+-ATPase inhibitor ouabain. The addition of Ba++ to the IBS in the presence of filipin in the OBS resulted in an activation of the transepithelial K+ transport and in an inhibition of the active Na+ transport. This is in agreement with the notion that Ba++ decreases the passive K+ permeability of the inward facing membrane. In the presence of amiloride (which blocks the specific Na permeability of the outward facing membrane) and Ba++ there was a good correlation between the active Na+ and K+ transport. It is concluded that the active transepithelial K+ transport is carried out by a coupled electrogenic Na–K pump, and it is suggested that the pump ratio (Na/K) is 1.5.  相似文献   

11.
RNA G-quadruplexes, as their well-studied DNA analogs, require the presence of cations to fold and remain stable. This is the first comprehensive study on the interaction of RNA quadruplexes with metal ions. We investigated the formation and stability of two highly conserved and biologically relevant RNA quadruplex-forming sequences (24nt-TERRA and 18nt-NRAS) in the presence of several monovalent and divalent metal ions, namely Li+, Na+, K+, Rb+, Cs+, NH4 +, Mg2+, Ca2+, Sr2+, and Ba2+. Circular dichroism was used to probe the influence of these metal ions on the folded fraction of the parallel G-quadruplexes, and UV thermal melting experiments allowed to assess the relative stability of the structures in each cationic condition. Our results show that the RNA quadruplexes are more stable than their DNA counterparts under the same buffer conditions. We have observed that the addition of mainly Na+, K+, Rb+, NH4 +, as well as Sr2+ and Ba2+ in water, shifts the equilibrium to the folded quadruplex form, whereby the NRAS sequence responds stronger than TERRA. However, only K+ and Sr2+ lead to a significant increase in the stability of the folded structures, which is consistent with their coordination to the O6 atoms from the G-quartet guanosines. Compared to the respective DNA motives, dNRAS and htelo, the RNA sequences are not stabilized by Na+ ions. Finally, the difference in response between NRAS and TERRA, as well as to the corresponding DNA sequences with respect to different metal ions, could potentially be exploited for selective targeting purposes.  相似文献   

12.
Ion fluxes were studied in the cells of the moderately halophilic, halotolerant bacterium, Ba1. K+ and Rb+ ions rapidly penetrated the cell membrane in contrast to Na+ and Li+ ions which were found to be nearly nonpenetrant. Moreover, Na+ ions at millimolar concentrations inhibited the passive penetration of K+ and Rb+ into the cytosol. Under energized conditions a powerful pump mechanism became functional causing extrusion of the penetrated K or Rb salt, as revealed by light-scattering changes as well as by tracer methods. From the pattern of action of agents which are known to interfere with respiration or energy transformation it was concluded that this pump is activated by the electrochemcial proton gradient without the mediation of ATP. In the range of pH values between 7.0 and 8.0 the rate of respiration and that of the extrusion of the salt declined gradually and in a near-parallel manner. The presence of Na+ ions at low concentrations prevented this drop in the two activities. Some evidence is brought in favor of the view that the pump activity is controlling respiratory rate rather than vice versa. It is suggested that the pump responsible for the extrusion of the K salt may be involved in the regulation of the intracellular salt concentration and, as a corollary, in the mechanism of adaptation of Ba1 to variation in the salinity of the environment.  相似文献   

13.
1. The combination of Cu++, Ca++, Mg++, Al+++, La+++, K+, Ag+, and Cl- with gelatin has been determined. 2. The equivalent combining value for copper is about 0.9 millimols per gm. of gelatin and is therefore the same as that of hydrogen. The value for copper with deaminized gelatin is about 0.4 to 0.5, again the same as that of hydrogen. The sum of the hydrogen and copper ions combined in the presence of an excess of either is 0.9 millimols showing that there is an equilibrium between the copper hydrogen and gelatin and that the copper and hydrogen are attached to the same group. 3. The equivalent combining value of La+++ and Al+++ is about 0.5 millimols per gm. of gelatin. This value is not significantly different with deaminized gelatin so that it is possible these salts combine only with groups not affected by deaminization. 4. No calcium is combined on the acid side of pH 3. The value rises rapidly from pH 3 to 4.7 and then remains constant. 5. No combination of K, Li, Na, NO3 or SO4 could be detected. 6. Cl combines less than the di- and trivalent metals so that the protein is positive in CaCl2 but negative in KCl.  相似文献   

14.
Two recessive mutations of Paramecium tetraurelia confer sensitivity to potassium: While wild-type cells survive when up to 30 mM KCI is added to their growth medium, mutants cease to grow and die when levels of added KCl reach 20–25 mM. Similar sensitivities are seen to Rb+ and Cs+, but not to Na+. Swimming behavior of mutants is indistinguishable from wild type when place in stimulating solutions containing Na+, K+, or Ba2+. Behavioral adaptation to low levels of K+ also is indistiguishable from wild type. Flame photometry reveals that one mutant is unable to keep out K+ when that ion is at high levels in the medium, while the other mutant readily leaks K+ and Na+ when those ions are at low levels in the medium. Both mutants have markedly lower internal Na+ than does wild type. Problem with K+ permeability account for the sensitivity of the one mutant to elevated external K+, but the basis of sensitivity in the other mutant is unclear. These mutants expand the range of ion regulation mutants in Paramecium and demonstrate that lesions in cellular ion regulation in this organism need not result in changes in swimming behavior.  相似文献   

15.
Ion conduction in K+-channels is usually described in terms of concerted movements of K+ progressing in a single file through a narrow pore. Permeation is driven by an incoming ion knocking on those ions already inside the protein. A fine-tuned balance between high-affinity binding and electrostatic repulsive forces between permeant ions is needed to achieve efficient conduction. While K+-channels are known to be highly selective for K+ over Na+, some K+ channels conduct Na+ in the absence of K+. Other ions are known to permeate K+-channels with a more moderate preference and unusual conduction features. We describe an extensive computational study on ion conduction in K+-channels rendering free energy profiles for the translocation of three different alkali ions and some of their mixtures. The free energy maps for Rb+ translocation show at atomic level why experimental Rb+ conductance is slightly lower than that of K+. In contrast to K+ or Rb+, external Na+ block K+ currents, and the sites where Na+ transport is hindered are characterized. Translocation of K+/Na+ mixtures is energetically unfavorable owing to the absence of equally spaced ion-binding sites for Na+, excluding Na+ from a channel already loaded with K+.  相似文献   

16.
Potassium channels are highly selective for K+ over the smaller Na+. Intriguingly, they are permeable to larger monovalent cations such as Rb+ and Cs+ but are specifically blocked by the similarly sized Ba2+. In this study, we used structural analysis to determine the binding profiles for these permeant and blocking ions in the selectivity filter of the potassium-selective NaK channel mutant NaK2K and also performed permeation experiments using single-channel recordings. Our data revealed that some ion binding properties of NaK2K are distinct from those of the canonical K+ channels KcsA and MthK. Rb+ bound at sites 1, 3, and 4 in NaK2K, as it does in KcsA. Cs+, however, bound predominantly at sites 1 and 3 in NaK2K, whereas it binds at sites 1, 3, and 4 in KcsA. Moreover, Ba2+ binding in NaK2K was distinct from that which has been observed in KcsA and MthK, even though all of these channels show similar Ba2+ block. In the presence of K+, Ba2+ bound to the NaK2K channel at site 3 in conjunction with a K+ at site 1; this led to a prolonged block of the channel (the external K+-dependent Ba2+ lock-in state). In the absence of K+, however, Ba2+ acts as a permeating blocker. We found that, under these conditions, Ba2+ bound at sites 1 or 0 as well as site 3, allowing it to enter the filter from the intracellular side and exit from the extracellular side. The difference in the Ba2+ binding profile in the presence and absence of K+ thus provides a structural explanation for the short and prolonged Ba2+ block observed in NaK2K.  相似文献   

17.
The ability of acid-sensing ion channels (ASICs) to discriminate among cations was assessed based on changes in conductance and reversal potential with ion substitution. Human ASIC1a was expressed in Xenopus laevis oocytes, and acid-induced currents were measured using two-electrode voltage clamp. Replacement of extracellular Na+ with Li+, K+, Rb+, or Cs+ altered inward conductance and shifted the reversal potentials consistent with a selectivity sequence of Li ∼ Na > K > Rb > Cs. Permeability decreased more rapidly than conductance as a function of atomic size, with PK/PNa = 0.1 and GK/GNa = 0.7 and PRb/PNa = 0.03 and GRb/GNa = 0.3. Stimulation of Cl currents when Na+ was replaced with Ca2+, Sr2+, or Ba2+ indicated a finite permeability to divalent cations. Inward conductance increased with extracellular Na+ in a hyperbolic manner, consistent with an apparent affinity (Km) for Na+ conduction of 25 mM. Nitrogen-containing cations, including NH4+, NH3OH+, and guanidinium, were also permeant. In addition to passing through the channels, guanidinium blocked Na+ currents, implying competition for a site within the pore. The role of negative charges in an external vestibule of the pore was evaluated using the point mutation D434N. The mutant channel had a decreased single-channel conductance, measured in excised outside-out patches, and a macroscopic slope conductance that increased with hyperpolarization. It had a weakened interaction with Na+ (Km = 72 mM) and a selectivity that was shifted toward larger atomic sizes. We conclude that the selectivity of ASIC1 is based at least in part on interactions with binding sites both within and internal to the outer vestibule.  相似文献   

18.
Internal Cs+, Na+, Li+, and, to a lesser degree, Rb+ interfere with outward current through the K pores in voltage clamped squid axons. Addition of 100 mM NaF to the perfusion medium cuts outward current for large depolarizations about in half, and causes negative conductance over a range of membrane voltages. For example, suddenly reducing membrane potential from +100 to +60 mv increases the magnitude of the outward current. Internal Cs+ and, to a small extent, Li+, also cause negative conductance. Na+ ions permeate at least 17 times less well through the K pores than K+, and Cs+ does not permeate measurably. The results strongly suggest that K pores have a wide and not very selective inner mouth, which accepts K+, Na+, Li+, Cs+, tetraethylammonium ion (TEA+), and other ions. The diameter of the mouth must be at least 8 A, which is the diameter of a TEA+ ion. K+ ions in the mouths probably have full hydration shells. The remainder of the pore is postulated to be 2.6–3.0 A in diameter, large enough for K+ and Rb+ but too small for Cs+ and TEA+. We postulate that Na+ ions do not enter the narrower part of the pore because they are too small to fit well in the coordination cages provided by the pore as replacements for the water molecules surrounding an ion.  相似文献   

19.
In Na+- and K+-free solution, an inward-directed current can be detected in Xenopus oocytes, which is inhibited by cardic glycosides and activated by ATP. Therefore, it is assumed to be generated by the Na+, K+ pump. At negative membrane potentials, the pump current increases with more negative potentials and with increasing [H+] in the external medium. This current is not observed when Mg2+ instead of Ba2+ is the only divalent cation present in the bath medium, and it does not depend on whether Na+ or K+ is present internally. At 5 to 10 mM Na+ externally, maximum pump-generated current is obtained while no current can be detected in presence of physiological [Na+]. It is suggested that in low-Na+ and K+-free medium the Na+, K+ pump molecule can either form a conductive pathway that is permeable to Ba2+ or protons or operate in its conventional transport mode accepting Ba2+ as a K+ congener. A reversed pump mode or an electrogenic uncoupled Na+-efflux mode is excluded.  相似文献   

20.
The partition of sulfate, Ca++, and Mg++ across the membrane of the sartorius muscle has been studied, and the effect of various concentrations of these ions in the Ringer solution on the cellular level of Na+, K+, and Cl- has been determined. The level of the three divalent ions in toad plasma and muscle in vivo has been assayed. Muscle was found to contain an almost undetectable amount of inorganic sulfate. Increases in the external level of these ions brought about increases in intracellular content, calculated from the found extracellular space as determined with radioiodinated serum albumin or inulin. Less of the cell water is available to sulfate than to Cl-, and the Mg++ space is less than the Na+ space. An amount of muscle water similar to that found for Li+ and I- appears to be available to these divalent ions. Sulfate efflux from the cell was extremely rapid, and it was not found possible to differentiate kinetically between intra- and extracellular material. These results are consistent with the theory of a three phase system, assuming the muscle to consist of an extracellular phase and two intracellular phases. Mg++ and Ca++ are adsorbed onto the ordered phase, and increments in cellular content found on raising the external level are assumed to occur in the free intracellular phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号