首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 917 毫秒
1.
Yoon M  Spear PG 《Journal of virology》2002,76(14):7203-7208
Nectin-1, a cell adhesion molecule belonging to the immunoglobulin superfamily, can bind to virion glycoprotein D (gD) to mediate entry of herpes simplex viruses (HSV) and pseudorabies virus (PRV). Nectin-1 colocalizes with E-cadherin at adherens junctions in epithelial cells. The disruption of cell junctions can result in the redistribution of nectin-1. To determine whether disruption of junctions by calcium depletion influenced the susceptibility of epithelial cells to viral entry, Madin-Darby canine kidney cells expressing endogenous nectin-1 or transfected human nectin-1 were tested for the ability to bind soluble forms of viral gD and to be infected by HSV and PRV, before and after calcium depletion. Confocal microscopy revealed that binding of HSV and PRV gD was localized to adherens junctions in cells maintained in normal medium but was distributed, along with nectin-1, over the entire cell surface after calcium depletion. Both the binding of gD and the fraction of cells that could be infected by HSV-1 and PRV were enhanced by calcium depletion. Taken together, these results provide evidence that nectin-1 confined to adherens junctions in epithelial cells is not very accessible to virus, whereas dissociation of cell junctions releases nectin-1 to serve more efficiently as an entry receptor.  相似文献   

2.
Herpes simplex virus (HSV) entry requires the interaction between the envelope glycoprotein D (gD) and a cellular receptor such as nectin-1 (also named herpesvirus entry mediator C [HveC]) or HveA/HVEM. Nectin-1 is a cell adhesion molecule found at adherens junctions associated with the cytoplasmic actin-binding protein afadin. Nectin-1 can act as its own ligand in a homotypic interaction to bridge cells together. We used a cell aggregation assay to map an adhesive functional site on nectin-1 and identify the effects of gD binding and HSV early infection on nectin-1 function. Soluble forms of nectin-1 and anti-nectin-1 monoclonal antibodies were used to map a functional adhesive site within the first immunoglobulin-like domain (V domain) of nectin-1. This domain also contains the gD-binding site, which appeared to overlap the adhesive site. Thus, soluble forms of gD were able to prevent nectin-1-mediated cell aggregation and to disrupt cell clumps in an affinity-dependent manner. HSV also prevented nectin-1-mediated cell aggregation by occupying the receptor. Early in infection, nectin-1 was not downregulated from the cell surface. Rather, detection of nectin-1 changed gradually over a 30-min period of infection, as reflected by a decrease in the CK41 epitope and an increase in the CK35 epitope. The level of detection of virion gD on the cell surface increased within 5 min of infection in a receptor-dependent manner. These observations suggest that cell surface nectin-1 and gD may undergo conformational changes during HSV entry as part of an evolving interaction between the viral envelope and the cell plasma membrane.  相似文献   

3.
Nectin-1 and nectin-2 are related molecules that can function with different specificities as entry receptors for mammalian alphaherpesviruses through interaction with viral glycoprotein D (gD). The normal function of members of the nectin family is to mediate cell-cell adhesion through homotypic and heterotypic nectin-nectin interactions in cadherin-based adherens junctions. We examined mutations in three equivalent regions of the N-terminal V-like domains of nectin-1 and nectin-2 to test the effects on entry of various alphaherpesviruses, nectin-nectin interactions, and interactions of the mutant nectins with gD. Mutations in region I previously shown to severely impair herpes simplex virus (HSV) entry activity, but not pseudorabies virus (PRV) or bovine herpesvirus 1 (BHV-1) entry, did not reduce homotypic trans interactions for either nectin-1 or nectin-2 or binding of nectin-3 to nectin-1. Mutations in region II, patterned after a reported single-nucleotide polymorphism in nectin-2, enhanced intracellular accumulation of both nectin-1 and nectin-2 and had a deleterious effect on all of the activities under study. Mutations in region III previously shown to reduce homotypic trans interactions of nectin-2 impaired the entry of PRV and BHV-1 when introduced into either nectin-1 or nectin-2, but only the nectin-2 mutation reduced HSV entry activity. Binding of nectin-1 to nectin-3 was not affected. Effects of the nectin-1 and nectin-2 mutations on interactions with gD did not necessarily correlate with entry activity of the mutant receptors. We can conclude that structural requirements for HSV entry, PRV and BHV-1 entry, and homotypic and heterotypic trans interactions are all different despite the previously reported ability of HSV and HSV gD to inhibit trans interactions.  相似文献   

4.
The entry of herpes simplex virus (HSV) into cells requires the interaction of viral glycoprotein D (gD) with a cellular gD receptor to trigger the fusion of viral and cellular membranes. Nectin-1, a member of the immunoglobulin superfamily, can serve as a gD receptor for HSV types 1 and 2 (HSV-1 and HSV-2, respectively) as well as for the animal herpesviruses porcine pseudorabies virus (PRV) and bovine herpesvirus 1 (BHV-1). The HSV-1 gD binding domain of nectin-1 is hypothesized to overlap amino acids 64 to 104 of the N-terminal variable domain-like immunoglobulin domain. Moreover, the HSV-1 and PRV gDs compete for binding to nectin-1. Here we report that two amino acids within this region, at positions 77 and 85, are critical for HSV-1 and HSV-2 entry but not for the entry of PRV or BHV-1. Replacement of either amino acid 77 or amino acid 85 reduced HSV-1 and HSV-2 gD binding but had a lesser effect on HSV entry activity, suggesting that weak interactions between gD and nectin-1 are sufficient to trigger the mechanism of HSV entry. Substitution of both amino acid 77 and amino acid 85 in nectin-1 significantly impaired entry activity for HSV-1 and HSV-2 and eliminated binding to soluble forms of HSV-1 and HSV-2 gDs but did not impair the entry of PRV and BHV-1. Thus, amino acids 77 and 85 of nectin-1 form part of the interface with HSV gD or influence the conformation of that interface. Moreover, the binding sites for HSV and PRV or BHV-1 gDs on nectin-1 may overlap but are not identical.  相似文献   

5.
Binding of herpes simplex virus (HSV) glycoprotein D (gD) to a cell surface receptor is required to trigger membrane fusion during entry into host cells. Nectin-1 is a cell adhesion molecule and the main HSV receptor in neurons and epithelial cells. We report the structure of gD bound to nectin-1 determined by x-ray crystallography to 4.0 Å resolution. The structure reveals that the nectin-1 binding site on gD differs from the binding site of the HVEM receptor. A surface on the first Ig-domain of nectin-1, which mediates homophilic interactions of Ig-like cell adhesion molecules, buries an area composed by residues from both the gD N- and C-terminal extensions. Phenylalanine 129, at the tip of the loop connecting β-strands F and G of nectin-1, protrudes into a groove on gD, which is otherwise occupied by C-terminal residues in the unliganded gD and by N-terminal residues in the gD/HVEM complex. Notably, mutation of Phe129 to alanine prevents nectin-1 binding to gD and HSV entry. Together these data are consistent with previous studies showing that gD disrupts the normal nectin-1 homophilic interactions. Furthermore, the structure of the complex supports a model in which gD-receptor binding triggers HSV entry through receptor-mediated displacement of the gD C-terminal region.

Authors Summary

Herpes simplex virus (HSV) is a widespread human pathogen. Four viral glycoproteins (gD, gB, gH/gL) are required for HSV entry into host cells. gD binding to a cell surface receptor triggers conformational changes in the other viral glycoproteins leading to membrane fusion and viral entry. Two structurally unrelated cellular protein receptors, nectin-1 and HVEM, can mediate HSV entry upon binding to gD. The structure presented here reveals the molecular basis for the stable interaction between HSV-1 gD and the receptor nectin-1. Comparison with the previously determined structures of the gD/HVEM complex and unliganded gD shows that, despite the fact that the two receptors interact with different binding sites, they both cause a similar conformational change in gD. Therefore, our data point to a conserved mechanism for receptor mediated activation of the HSV entry process. In addition, the gD/Nectin-1 structure reveals that the gD-binding site overlaps with a surface involved in nectin-1 homo-dimerization. This observation explains how gD interferes with the cell adhesion function of nectin-1. Finally, the gD/Nectin-1 complex displays similarities with other viral ligands bound to immunoglobulin-like receptors suggesting a convergent mechanism for receptors selection and usage.  相似文献   

6.
Herpes simplex virus 1 (HSV-1) is a ubiquitous human pathogen that enters cells by the receptor-mediated fusion of the viral envelope with a host cell membrane. The envelope glycoprotein gD of HSV must bind to one of its receptors for entry to take place. Recent studies using knockout (KO) mice demonstrated that the gD receptors herpesvirus entry mediator (HVEM) and nectin-1 are the primary entry receptors for HSV-2 in the mouse vagina and brain. Nectin-1 was most crucial for the neuronal spread of HSV-2, particularly in the brain. HVEM was dispensable for infection in these models, but when both HVEM and nectin-1 were absent, infection was completely prevented. We sought to determine the receptor requirements of HSV-1 in an ocular model of infection using knockout mice. Wild-type, HVEM KO, nectin-1 KO, and HVEM/nectin-1 double-KO mice were infected via corneal scarification and monitored for clinical signs of infection and viral replication in various tissues. We report that either HVEM or nectin-1 must be present for HSV-1 infection of the cornea. Additionally, we observed that the infection was attenuated in both HVEM KO and nectin-1 KO mice. This is in contrast to what was reported for studies of HSV-2 in vagina and brain and suggests that receptor requirements for HSV vary depending on the route of inoculation and/or serotype.  相似文献   

7.
Interaction of herpes simplex virus (HSV) glycoprotein D (gD) with specific cellular receptors is essential for HSV infection of susceptible cells. Virus mutants that lack gD can bind to the cell surface (attachment) but do not enter, implying that interaction of gD with its receptor(s) initiates the postattachment (entry) phase of HSV infection. In this report, we have studied HSV entry in the presence of the gD-binding variable (V) domain of the common gD receptor nectin-1/HveC to determine whether cell association of the gD receptor is required for HSV infection. In the presence of increasing amounts of the soluble nectin-1 V domain (sNec1(123)), increasing viral entry into HSV-resistant CHO-K1 cells was observed. At a multiplicity of 3 in the presence of optimal amounts of sNec1(123), approximately 90% of the cells were infected. The soluble V domain of nectin-2, a strain-specific HSV entry receptor, promoted entry of the HSV type 1 (HSV-1) Rid-1 mutant strain, but not of wild-type HSV-1. Preincubation and immunofluorescence studies indicated that free or gD-bound sNec1(123) did not associate with the cell surface. sNec1(123)-mediated entry was highly impaired by interference with the cell-binding activities of viral glycoproteins B and C. While gD has at least two functions, virus attachment to the cell and initiation of the virus entry process, our results demonstrate that the attachment function of gD is dispensable for entry provided that other means of attachment are available, such as gB and gC binding to cell surface glycosaminoglycans.  相似文献   

8.
Nectin-1 is an immunoglobulin (Ig)-like entry receptor for herpes simplex virus (HSV). Like other nectins, nectin-1 forms dimers and mediates cell adhesion through interactions with other nectins. We constructed a second-domain deletion mutant of nectin-1 (nectin-1-Delta2) to examine the role of the second Ig-like domain in HSV entry. Nectin-1-Delta2 exhibited a severely reduced ability to mediate HSV entry and accumulated in the endoplasmic reticulum but retained the ability to interact with its HSV ligand, gD. The failure of nectin-1-Delta2 to mediate HSV entry probably resulted from its failure to be transported to a membrane targeted by HSV for viral entry.  相似文献   

9.
Martinez WM  Spear PG 《Journal of virology》2001,75(22):11185-11195
One step in the process of herpes simplex virus (HSV) entry into cells is the binding of viral glycoprotein D (gD) to a cellular receptor. Human nectin-2 (also known as HveB and Prr2), a member of the immunoglobulin (Ig) superfamily, serves as a gD receptor for the entry of HSV-2, variant forms of HSV-1 that have amino acid substitutions at position 25 or 27 of gD (for example, HSV-1/Rid), and porcine pseudorabies virus (PRV). The gD binding region of nectin-2 is believed to be localized to the N-terminal variable-like (V) Ig domain. In order to identify specific amino acid sequences in nectin-2 that are important for HSV entry activity, chimeric molecules were constructed by exchange of sequences between human nectin-2 and its mouse homolog, mouse nectin-2, which mediates entry of PRV but not HSV-1 or HSV-2. The nectin-2 chimeric molecules were expressed in Chinese hamster ovary cells, which normally lack a gD receptor, and tested for cell surface expression and viral entry activity. As expected, chimeric molecules containing the V domain of human nectin-2 exhibited HSV entry activity. Replacement of either of two small regions in the V domain of mouse nectin-2 with amino acids from the equivalent positions in human nectin-2 (amino acids 75 to 81 or 89) transferred HSV-1/Rid entry activity to mouse nectin-2. The resulting chimeras also exhibited enhanced HSV-2 entry activity and gained the ability to mediate wild-type HSV-1 entry. Replacement of amino acid 89 of human nectin-2 with the corresponding mouse amino acid (M89F) eliminated HSV entry activity. These results identify two different amino acid sequences, predicted to lie adjacent to the C' and C" beta-strands of the V domain, that are critical for HSV entry activity. This region is homologous to the human immunodeficiency virus binding region of CD4 and to the poliovirus binding region of CD155.  相似文献   

10.
Herpes simplex virus type 2 (HSV-2) is transmitted through the genital mucosa during sexual encounters. In recent years, HSV-1 has also become commonly associated with primary genital herpes. The mechanism of viral entry of HSV-1 and HSV-2 in the female genital tract is unknown. In order to understand the molecular interactions required for HSV entry into the vaginal epithelium, we examined the expression of herpesvirus entry mediator nectin-1 in the vagina of human and mouse at different stages of their hormonal cycle. Nectin-1 was highly expressed in the epithelium of human vagina throughout the menstrual cycle, whereas the mouse vaginal epithelium expressed nectin-1 only during the stages of the estrous cycle in which mice are susceptible to vaginal HSV infection. Furthermore, the ability of nectin-1 to mediate viral entry following intravaginal inoculation was examined in a mouse model of genital herpes. Vaginal infection with either HSV-1 or HSV-2 was blocked by preincubation of the virus with soluble recombinant nectin-1. Viral entry through the vaginal mucosa was also inhibited by preincubation of HSV-2 with antibody against gD. Together, these results suggest the importance of nectin-1 in mediating viral entry for both HSV-1 and HSV-2 in the genital mucosa in female hosts.  相似文献   

11.
Herpes simplex virus (HSV) entry requires the interaction of glycoprotein D (gD) with a cellular receptor such as herpesvirus entry mediator (HVEM or HveA) or nectin-1 (HveC). However, the fusion mechanism is still not understood. Since cholesterol-enriched cell membrane lipid rafts are involved in the entry of other enveloped viruses such as human immunodeficiency virus and Ebola virus, we tested whether HSV entry proceeds similarly. Vero cells and cells expressing either HVEM or nectin-1 were treated with cholesterol-sequestering drugs such as methyl-beta-cyclodextrin or nystatin and then exposed to virus. In all cases, virus entry was inhibited in a dose-dependent manner, and the inhibitory effect was fully reversible by replenishment of cholesterol. To examine the association of HVEM and nectin-1 with lipid rafts, we analyzed whether they partitioned into nonionic detergent-insoluble glycolipid-enriched membranes (DIG). There was no constitutive association of either receptor with DIG. Binding of soluble gD or virus to cells did not result in association of nectin-1 with the raft-containing fractions. However, during infection, a fraction of gB but not gC, gD, or gH associated with DIG. Similarly, when cells were incubated with truncated soluble glycoproteins, soluble gB but not gC was found associated with DIG. Together, these data favor a model in which HSV uses gB to rapidly mobilize lipid rafts that may serve as a platform for entry and cell signaling. It also suggests that gB may interact with a cellular molecule associated with lipid rafts.  相似文献   

12.
We recently found a novel cell-cell adhesion system at cadherin-based adherens junctions (AJs), consisting at least of nectin, a Ca(2+)-independent homophilic immunoglobulin-like adhesion molecule, and afadin, an actin filament-binding protein that connects nectin to the actin cytoskeleton. Nectin is associated with cadherin through afadin and alpha-catenin. The cadherin-catenin system increases the concentration of nectin at AJs in an afadin-dependent manner. Nectin constitutes a family consisting of three members: nectin-1, -2, and -3. Nectin-1 serves as an entry and cell-cell spread mediator of herpes simplex virus type 1 (HSV-1). We studied here a role of the interaction of nectin-1alpha with afadin in entry and/or cell-cell spread of HSV-1. By the use of cadherin-deficient L cells overexpressing the full length of nectin-1alpha capable of interacting with afadin and L cells overexpressing a truncated form of nectin-1alpha incapable of interacting with afadin, we found that the interaction of nectin-1alpha with afadin increased the efficiency of cell-cell spread, but not entry, of HSV-1. This interaction did not affect the binding to nectin-1alpha of glycoprotein D, a viral component mediating entry of HSV-1 into host cells. Furthermore, the cadherin-catenin system increased the efficiency of cell-cell spread of HSV-1, although it also increased the efficiency of entry of HSV-1. It is likely that efficient cell-cell spread of HSV-1 is caused by afadin-dependent concentrated localization of nectin-1alpha at cadherin-based AJs.  相似文献   

13.
A cDNA encoding the murine homolog of human nectin-1alpha (also known as poliovirus receptor-related protein 1 [Prr1] and herpesvirus entry protein C [HveC]) was isolated. The protein encoded by this cDNA proved to be 95% identical in sequence to the human protein and to have similar herpesvirus entry activity. Upon expression of the murine cDNA in hamster cells resistant to alphaherpesvirus entry, the cells became susceptible to the entry of herpes simplex virus types 1 and 2 (HSV-1 and -2), pseudorabies virus, and bovine herpesvirus 1. HSV envelope glycoprotein D (gD), a viral ligand for human nectin-1alpha, is also a ligand for the murine homolog based on evidence that (i) a soluble hybrid protein composed in part of the murine nectin-1 ectodomain bound specifically to purified soluble forms of HSV-1 and HSV-2 gD as demonstrated by enzyme-linked immunosorbent assay, (ii) a soluble hybrid of HSV-1 gD bound to hamster cells expressing murine nectin-1alpha but not to control cells, and (iii) cells expressing both murine nectin-1alpha and one of the alphaherpesvirus gDs were resistant to entry of HSV-1, indicative of interference with entry resulting from interactions of cell-associated gD with the entry receptor. Northern blot analysis revealed that nectin-1 is expressed in most of the mouse tissues examined and at high levels in the brain, skin, and kidneys. Immunocytochemical localization demonstrated the presence of nectin-1 in epithelial cells of the mouse vagina and also in neuronal cells of the central nervous system, suggesting an expression pattern relevant to both infection at a portal of entry and spread of infection to the brain.  相似文献   

14.
The molecular mechanisms underlying the directional neuron-to-epithelial cell transport of herpesvirus particles during infection are poorly understood. To study the role of the viral glycoprotein D (gD) in the directional spread of herpes simplex virus (HSV) and pseudorabies virus (PRV) infection, a culture system consisting of sympathetic neurons or epithelial cells in different compartments was employed. We discovered that PRV infection could spread efficiently from neurons to cells and back to neurons in the absence of gD, the viral ligand required for entry of extracellular particles. Unexpectedly, PRV infection can also spread transneuronally via axo-axonal contacts. We show that this form of interaxonal spread between neurons is gD independent and is not mediated by extracellular virions. We also found that unlike PRV gD, HSV-1 gD is required for neuron-to-cell spread of infection. Neither of the host cell gD receptors (HVEM and nectin-1) is required in target primary fibroblasts for neuron-to-cell spread of HSV-1 or PRV infection.  相似文献   

15.
AF6 and its rat homologue afadin are multidomain proteins localized at cell junctions and involved in intercellular adhesion. AF6 interacts via its PDZ domain with nectin-1 at epithelial adherens junctions. Nectin-1 serves as a mediator of cell-to-cell spread for Herpes simplex virus 1 (HSV-1). We analyzed the role of AF6 protein in the viral spread and nectin-1 clustering at cell-cell contacts by knockdown of AF6 in epithelial cells. AF6 knockdown reduced efficiency of HSV-1 spreading, however, the clustering of nectin-1 at cell-cell contacts was not affected. Thus, AF6 protein is important for spreading of HSV-1 in epithelial cells, independently of nectin clustering, possibly by stabilization of the E-cadherin-dependent cell adhesion.  相似文献   

16.
Herpes simplex virus (HSV) pathogenesis in mice differs based on availability of the principal entry receptors herpesvirus entry mediator (HVEM) and nectin-1 in a manner dependent upon route of inoculation. After intravaginal or intracranial inoculation of adult mice, nectin-1 is a major mediator of neurologic disease, while the absence of either receptor attenuates disease after ocular infection. We tested the importance of receptor availability and route of infection on disease in mouse models of neonatal HSV. We infected 7-day-old mice lacking neither or one principal HSV receptor or both principal HSV receptors with HSV-2 via a peripheral route (intranasal), via a systemic route (intraperitoneal), or by inoculation directly into the central nervous system (intracranial). Mortality, neurologic disease, and visceral dissemination of virus were significantly attenuated in nectin-1 knockout mice compared with HVEM knockout or wild-type mice after intranasal inoculation. Mice lacking both entry receptors (double-knockout mice) showed no evidence of disease after inoculation by any route. Nectin-1 knockout mice had delayed mortality after intraperitoneal inoculation relative to wild-type and HVEM knockout mice, but virus was able to spread to the brain and viscera in all genotypes except double-knockout mice. Unlike in adult mice, HVEM was sufficient to mediate disease in neonatal mice after direct intracranial inoculation, and the absence of HVEM delayed time to mortality relative to that of wild-type mice. Additionally, in wild-type neonatal mice inoculated intracranially, HSV antigen did not primarily colocalize with NeuN-positive neurons. Our results suggest that differences in receptor expression between adults and newborns may partially explain differences in susceptibility to HSV-2.  相似文献   

17.
Viral entry may preferentially occur at the apical or the basolateral surfaces of polarized cells, and differences may impact pathogenesis, preventative strategies, and successful implementation of viral vectors for gene therapy. The objective of these studies was to examine the polarity of herpes simplex virus (HSV) entry using several different human epithelial cell lines. Human uterine (ECC-1), colonic (CaCo-2), and retinal pigment (ARPE-19) epithelial cells were grown on collagen-coated inserts, and the polarity was monitored by measuring the transepithelial cell resistance. Controls were CaSki cells, a human cervical cell line that does not polarize in vitro. The polarized cells, but not CaSki cells, were 16- to 50-fold more susceptible to HSV infection at the apical surface than at the basolateral surface. Disruption of the tight junctions by treatment with EGTA overcame the restriction on basolateral infection but had no impact on apical infection. No differences in binding at the two surfaces were observed. Confocal microscopy demonstrated that nectin-1, the major coreceptor for HSV entry, sorted preferentially to the apical surface, overlapping with adherens and tight junction proteins. Transfection with small interfering RNA specific for nectin-1 resulted in a significant reduction in susceptibility to HSV at the apical surface but had little impact on basolateral infection. Infection from the apical but not the basolateral surface triggered focal adhesion kinase phosphorylation and led to nuclear transport of viral capsids and viral gene expression. These studies indicate that access to nectin-1 contributes to preferential apical infection of these human epithelial cells by HSV.  相似文献   

18.
The rapid spread of herpes simplex virus type 1 (HSV-1) in mucosal epithelia and neuronal tissue depends primarily on the ability of the virus to navigate within polarized cells and the tissues they constitute. To understand HSV entry and the spread of virus across cell junctions, we have previously characterized a human keratinocyte cell line, HaCaT. These cells appear to reflect cells infected in vivo more accurately than many of the cultured cells used to propagate HSV. HSV mutants lacking gE/gI are highly compromised in spread within epithelial and neuronal tissues and also show defects in cell-to-cell spread in HaCaT cells, but not in other, nonpolarized cells. HSV gD is normally considered absolutely essential for entry and cell-to-cell spread, both in cultured cells and in vivo. Here, an HSV-1 gD mutant virus, F-US6kan, was found to efficiently enter HaCaT cells and normal human keratinocytes and could spread from cell to cell without gD provided by complementing cells. By contrast, entry and spread into other cells, especially highly transformed cells commonly used to propagate HSV, were extremely inefficient. Further analyses of F-US6kan indicated that this mutant expressed extraordinarily low (1/500 wild-type) levels of gD. Neutralizing anti-gD monoclonal antibodies inhibited entry of F-US6kan, suggesting F-US6kan utilized this small amount of gD to enter cells. HaCaT cells expressed high levels of an HSV gD receptor, HveC, and entry of F-US6kan into HaCaT cells could also be inhibited with antibodies specific for HveC. Interestingly, anti-HveC antibodies were not fully able to inhibit entry of wild-type HSV-1 into HaCaT cells. These results help to uncover important properties of HSV and human keratinocytes. HSV, with exceedingly low levels of a crucial receptor-binding glycoprotein, can enter cells expressing high levels of receptor. In this case, surplus gD may be useful to avoid neutralization by anti-gD antibodies.  相似文献   

19.
Two herpes simplex virus (HSV) glycoproteins E and I (gE and gI) form a heterooligomer which acts as an Fc receptor and also facilitates cell-to-cell spread of virus in epithelial tissues and between certain cultured cells. By contrast, gE-gI is not required for infection of cells by extracellular virus. HSV glycoproteins gD and gJ are encoded by neighboring genes, and gD is required for both virus entry into cells and cell-to-cell spread, whereas gJ has not been shown to influence these processes. Since HSV infects neurons and apparently spreads across synaptic junctions, it was of interest to determine whether gD, gE, gI and gJ are also important for interneuronal transfer of virus. We tested the roles of these glycoproteins in neuron-to-neuron transmission of HSV type 1 (HSV-1) by injecting mutant viruses unable to express these glycoproteins into the vitreous body of the rat eye. The spread of virus infection was measured in neuron-rich layers of the retina and in the major retinorecipient areas of the brain. Wild-type HSV-1 and a gJ- mutant spread rapidly between synaptically linked retinal neurons and efficiently infected major retinorecipient areas of the brain. gD mutants, derived from complementing cells, infected only a few neurons and did not spread in the retina or brain. Mutants unable to express gE or gI were markedly restricted in their ability to spread within the retina, produced 10-fold-less virus in the retina, and spread inefficiently to the brain. Furthermore, when compared with wild-type HSV-1, gE- and gI- mutants spread inefficiently from cell to cell in cultures of neurons derived from rat trigeminal ganglia. Together, our results suggest that the gE-gI heterooligomer is required for efficient neuron-to-neuron transmission through synaptically linked neuronal pathways.  相似文献   

20.

Background

Herpes simplex virus (HSV) can utilize multiple pathways to enter host cells. The factors that determine which route is taken are not clear. Chinese hamster ovary (CHO) cells that express glycoprotein D (gD)-binding receptors are model cells that support a pH-dependent, endocytic entry pathway for all HSV strains tested to date. Fusion-from-without (FFWO) is the induction of target cell fusion by addition of intact virions to cell monolayers in the absence of viral protein expression. The receptor requirements for HSV-induced FFWO are not known. We used the syncytial HSV-1 strain ANG path as a tool to evaluate the complex interplay between receptor usage, membrane fusion, and selection of entry pathway.

Results

Inhibitors of endocytosis and endosome acidification blocked ANG path entry into CHO cells expressing nectin-1 receptors, but not CHO-nectin-2 cells. Thus, under these conditions, nectin-2 mediates pH-independent entry at the plasma membrane. In addition, CHO-nectin-2 cells supported pH-dependent, endocytic entry of different strains of HSV-1, including rid1 and HFEM. The kinetics of ANG path entry was rapid (t1/2 of 5–10 min) regardless of entry route. However, HSV-1 ANG path entry by fusion with the CHO-nectin-2 cell plasma membrane was more efficient and resulted in larger syncytia. ANG path virions added to the surface of CHO-nectin-2 cells, but not receptor-negative CHO cells or CHO-nectin-1 cells, induced rapid FFWO.

Conclusion

HSV-1 ANG path can enter CHO cells by either endocytic or non-endocytic pathways depending on whether nectin-1 or nectin-2 is present. In addition to these cellular receptors, one or more viral determinants is important for the selection of entry pathway. HSV-induced FFWO depends on the presence of an appropriate gD-receptor in the target membrane. Nectin-1 and nectin-2 target ANG path to divergent cellular pathways, and these receptors may have different roles in triggering viral membrane fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号