首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The global degradation of coral reefs is having profound effects on the structure and species richness of associated reef fish assemblages. Historically, variation in the composition of fish communities has largely been attributed to factors affecting settlement of reef fish larvae. However, the mechanisms that determine how fish settlers respond to different stages of coral stress and the extent of coral loss on fish settlement are poorly understood. Here, we examined the effects of habitat degradation on fish settlement using a two-stage experimental approach. First, we employed laboratory choice experiments to test how settlers responded to early and terminal stages of coral degradation. We then quantified the settlement response of the whole reef fish assemblage in a field perturbation experiment. The laboratory choice experiments tested how juveniles from nine common Indo-Pacific fishes chose among live colonies, partially degraded colonies, and dead colonies with recent algal growth. Many species did not distinguish between live and partially degraded colonies, suggesting settlement patterns are resilient to the early stages of declining coral health. Several species preferred live or degraded corals, and none preferred to associate with dead, algal-covered colonies. In the field experiment, fish recruitment to coral colonies was monitored before and after the introduction of a coral predator (the crown-of-thorns starfish) and compared with undisturbed control colonies. Starfish reduced live coral cover by 95–100%, causing persistent negative effects on the recruitment of coral-associated fishes. Rapid reductions in new recruit abundance, greater numbers of unoccupied colonies and a shift in the recruit community structure from one dominated by coral-associated fishes before degradation to one predominantly composed of algal-associated fish species were observed. Our results suggest that while resistant to coral stress, coral death alters the process of replenishment of coral reef fish communities.  相似文献   

2.
Active restoration is being practiced to supplement conservation activities for the purpose of reversing the trend of reef degradation. In the last decade, the feasibility of different restoration approaches such as coral transplantation and restocking of other marine biota has been the focus of research and relatively few have examined experimentally its effects on the resultant communities. In this study, coral transplantation and giant clam restocking were applied on 25 degraded patch reefs (~ 25 m2) inside a marine sanctuary in Pangasinan, northwestern Philippines to examine their effects on the community structure of reef fishes. Five interventions or treatments were employed: 1) “coral” consisted of transplantation of a combination of Acropora spp. and Pocillopora spp. on concrete blocks; 2) “clam” consisted of restocking of Tridacna gigas; 3) “clam+coral” consisted of restocking of T. gigas with Acropora spp. transplanted on their shells; 4) “shell” consisted of deployment of T. gigas shells; and 5) “control” consisted of no intervention. Fish communities on the patch reefs were monitored monthly for 3 months before the intervention and were monitored further for 11 months after the intervention, including 1 recruitment season. After the intervention, the coral cover and the “other biota” category increased in the coral and clam+coral treatments, due to the transplanted corals and deployed giant clams. Consequently, the complexity of the substrate was enhanced. A month after the intervention, a rapid increase in the abundance and species richness of reef fishes on the coral, clam+coral and clam treatments was observed compared to the shell and control treatments. A change in species composition of reef fish assemblage was also apparent in the coral and clam+coral treatments relative to the clam, shell and control, especially 4 months after the intervention. The present experiment demonstrates the feasibility of improving the condition of degraded patch reefs, which can subsequently enhance the fish community. Results also show the importance of the underlying substratum and the abundance of live corals and clams to reef fishes.  相似文献   

3.
Habitat perturbations play a major role in shaping community structure; however, the elements of disturbance-related habitat change that affect diversity are not always apparent. This study examined the effects of habitat disturbances on species richness of coral reef fish assemblages using annual surveys of habitat and 210 fish species from 10 reefs on the Great Barrier Reef (GBR). Over a period of 11 years, major disturbances, including localised outbreaks of crown-of-thorns sea star (Acanthaster planci), severe storms or coral bleaching, resulted in coral decline of 46–96% in all the 10 reefs. Despite declines in coral cover, structural complexity of the reef framework was retained on five and species richness of coral reef fishes maintained on nine of the disturbed reefs. Extensive loss of coral resulted in localised declines of highly specialised coral-dependent species, but this loss of diversity was more than compensated for by increases in the number of species that feed on the epilithic algal matrix (EAM). A unimodal relationship between areal coral cover and species richness indicated species richness was greatest at approximately 20% coral cover declining by 3–4 species (6–8% of average richness) at higher and lower coral cover. Results revealed that declines in coral cover on reefs may have limited short-term impact on the diversity of coral reef fishes, though there may be fundamental changes in the community structure of fishes.  相似文献   

4.
Live corals are the key habitat forming organisms on coral reefs, contributing to both biological and physical structure. Understanding the importance of corals for reef fishes is, however, restricted to a few key families of fishes, whereas it is likely that a vast number of fish species will be adversely affected by the loss of live corals. This study used data from published literature together with independent field based surveys to quantify the range of reef fish species that use live coral habitats. A total of 320 species from 39 families use live coral habitats, accounting for approximately 8 % of all reef fishes. Many of the fishes reported to use live corals are from the families Pomacentridae (68 spp.) and Gobiidae (44 spp.) and most (66 %) are either planktivores or omnivores. 126 species of fish associate with corals as juveniles, although many of these fishes have no apparent affiliation with coral as adults, suggesting an ontogenetic shift in coral reliance. Collectively, reef fishes have been reported to use at least 93 species of coral, mainly from the genus Acropora and Porities and associate predominantly with branching growth forms. Some fish associate with a single coral species, whilst others can be found on more than 20 different species of coral indicating there is considerable variation in habitat specialisation among coral associated fish species. The large number of fishes that rely on coral highlights that habitat degradation and coral loss will have significant consequences for biodiversity and productivity of reef fish assemblages.  相似文献   

5.
On Caribbean coral reefs, high rates of grazing by herbivorous fishes are thought to benefit corals because fishes consume competing seaweeds. We conducted field experiments in the Florida Keys, USA, to examine the effects of grazing fishes on coral/seaweed competition. Initially, fragments of Porites divaracata from an inshore habitat were transplanted into full-cage, half-cage, and no-cage treatments on a fore-reef. Within 48 h, 56% of the unprotected corals in half-cage and no-cage treatments (62 of 111) were completely consumed. Stoplight parrotfish (Sparisoma viride) were the major coral predators, with redband parrotfish (S. aurofrenatum) also commonly attacking this coral. Next, we transplanted fragments of P. porites collected from the fore-reef habitat where our caging experiments were being conducted into the three cage treatments, half in the presence of transplanted seaweeds, and half onto initially clean substrates. The corals were allowed to grow in these conditions, with concurrent development of competing seaweeds, for 14 weeks. Although seaweed cover and biomass were both significantly greater in the full-cage treatment, coral growth did not differ significantly between cage treatments even though corals placed with pre-planted seaweeds grew significantly less than corals placed on initially clean substrate. This surprising result occurred because parrotfishes not only grazed algae from accessible treatments, but also fed directly on our coral transplants. Parrotfish feeding scars were significantly more abundant on P. porites from the half and no-cage treatments than on corals in the full cages. On this Florida reef, direct fish predation on some coral species (P. divaracata) can exclude them from fore-reef areas, as has previously been shown for certain seaweeds and sponges. For other corals that live on the fore-reef (P. porites), the benefits of fishes removing seaweeds can be counterbalanced by the detrimental effects of fishes directly consuming corals. Received: 31 May 1997 / Accepted: 2 September 1997  相似文献   

6.
Tropical reefs are dynamic ecosystems that host diverse coral assemblages with different life-history strategies. Here, we quantified how juvenile (<50 mm) coral demographics influenced benthic coral structure in reef flat and reef slope habitats on the southern Great Barrier Reef, Australia. Permanent plots and settlement tiles were monitored every six months for three years in each habitat. These environments exhibited profound differences: the reef slope was characterised by 95% less macroalgal cover, and twice the amount of available settlement substrata and rates of coral settlement than the reef flat. Consequently, post-settlement coral survival in the reef slope was substantially higher than that of the reef flat, and resulted in a rapid increase in coral cover from 7 to 31% in 2.5 years. In contrast, coral cover on the reef flat remained low (~10%), whereas macroalgal cover increased from 23 to 45%. A positive stock-recruitment relationship was found in brooding corals in both habitats; however, brooding corals were not directly responsible for the observed changes in coral cover. Rather, the rapid increase on the reef slope resulted from high abundances of broadcast spawning Acropora recruits. Incorporating our results into transition matrix models demonstrated that most corals escape mortality once they exceed 50 mm, but for smaller corals mortality in brooders was double those of spawners (i.e. acroporids and massive corals). For corals on the reef flat, sensitivity analysis demonstrated that growth and mortality of larger juveniles (21–50 mm) highly influenced population dynamics; whereas the recruitment, growth and mortality of smaller corals (<20 mm) had the highest influence on reef slope population dynamics. Our results provide insight into the population dynamics and recovery trajectories in disparate reef habitats, and highlight the importance of acroporid recruitment in driving rapid increases in coral cover following large-scale perturbation in reef slope environments.  相似文献   

7.
Hawkfishes (family: Cirrhitidae) are small conspicuous reef predators that commonly perch on, or shelter within, the branches of coral colonies. This study examined habitat associations of hawkfishes, and explicitly tested whether hawkfishes associate with specific types of live coral. Live coral use and habitat selectivity of hawkfishes was explored at six locations from Chagos in the central Indian Ocean extending east to Fiji in the Pacific Ocean. A total of 529 hawkfishes from seven species were recorded across all locations with 63% of individuals observed perching on, or sheltering within, live coral colonies. Five species (all except Cirrhitus pinnulatus and Cirrhitichthys oxycephalus) associated with live coral habitats. Cirrhitichthys falco selected for species of Pocillopora while Paracirrhites arcatus and P. forsteri selected for both Pocillopora and Acropora, revealing that these habitats are used disproportionately more than expected based on the local cover of these coral genera. Habitat selection was consistent across geographic locations, and species of Pocillopora were the most frequently used and most consistently selected even though this coral genus never comprised more than 6% of the total coral cover at any of the locations. Across locations, Paracirrhites arcatus and P. forsteri were the most abundant species and variation in their abundance corresponded with local patterns of live coral cover and abundance of Pocilloporid corals, respectively. These findings demonstrate the link between small predatory fishes and live coral habitats adding to the growing body of literature highlighting that live corals (especially erect branching corals) are critically important for sustaining high abundance and diversity of fishes on coral reefs.  相似文献   

8.
Conservation, precaution, and Caribbean reefs   总被引:6,自引:0,他引:6  
Some authors argue that overfishing is an important reason that reef corals have declined in recent decades. Their reasoning is that overfishing removes herbivores, releasing macroalgae to overgrow and kill the corals. The evidence suggests, however, that global climate change and emergent marine diseases make a far greater contribution to coral mortality, and that macroalgae generally grow on the exposed skeletal surfaces of corals that are already dead. Macroalgal dominance, therefore, is an effect rather than a cause of coral mortality. Marine protected areas (MPAs), which are usually established to protect stocks of reef fish, foster populations of herbivorous fish under at least some circumstances. Increased herbivory can reduce algal cover, potentially accelerating the recovery of coral populations inside MPAs; however, establishing MPAs will have only a limited impact on coral recovery unless policymakers confront the accelerating negative effects of the global-scale sources of coral mortality.  相似文献   

9.
Habitat specificity plays a pivotal role in forming community patterns in coral reef fishes, yet considerable uncertainty remains as to the extent of this selectivity, particularly among newly settled recruits. Here we quantified habitat specificity of juvenile coral reef fish at three ecological levels; algal meadows vs. coral reefs, live vs. dead coral and among different coral morphologies. In total, 6979 individuals from 11 families and 56 species were censused along Ningaloo Reef, Western Australia. Juvenile fishes exhibited divergence in habitat use and specialization among species and at all study scales. Despite the close proximity of coral reef and algal meadows (10's of metres) 25 species were unique to coral reef habitats, and seven to algal meadows. Of the seven unique to algal meadows, several species are known to occupy coral reef habitat as adults, suggesting possible ontogenetic shifts in habitat use. Selectivity between live and dead coral was found to be species-specific. In particular, juvenile scarids were found predominantly on the skeletons of dead coral whereas many damsel and butterfly fishes were closely associated with live coral habitat. Among the coral dependent species, coral morphology played a key role in juvenile distribution. Corymbose corals supported a disproportionate number of coral species and individuals relative to their availability, whereas less complex shapes (i.e. massive & encrusting) were rarely used by juvenile fish. Habitat specialisation by juvenile species of ecological and fisheries importance, for a variety of habitat types, argues strongly for the careful conservation and management of multiple habitat types within marine parks, and indicates that the current emphasis on planning conservation using representative habitat areas is warranted. Furthermore, the close association of many juvenile fish with corals susceptible to climate change related disturbances suggests that identifying and protecting reefs resilient to this should be a conservation priority.  相似文献   

10.
Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32'S, 159°04'E), the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m(-2)), however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha(-1)), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances.  相似文献   

11.
The impacts of the unusually strong Cyclone Erica (March 2003) on coral reef habitats at a site located on the northwest coast of New Caledonia (South Pacific) were assessed using a 6-year data set (2002–2007). We examined the interannual variations of key variables describing reef habitats (live hard and soft corals, dead corals in place, coral debris, algae and relative proportion of mechanically vulnerable and resistant live hard corals). The cyclone-induced disturbances of habitats differed according to three reef types: patch reefs, barrier reefs far from passes (more than 3 km from the nearest pass) and barrier reefs near passes (less than 3 km from the nearest pass). Short-term mechanical damage was detected on the three-dimensional structure of reef habitats with a notable shift from a community dominated by mechanically vulnerable corals to one dominated by resistant corals on barrier reefs far from passes. The history of habitats and their pre-disturbance characteristics, in link with local hydrodynamics, was found to influence their short-term susceptibility to extreme events such as cyclones. However, the most significant effects appeared in the midterm (within 2 years after the cyclone) as the cover of live hard corals significantly decreased by approximately 45% between 2002 and 2004 on all reef types. The short- and midterm disturbances of coral reef habitats are discussed with regard to published temporal variations in reef fish assemblages, underlining the delayed effects of this cyclonic event on fish as well as benthic habitats. Coral reef habitats and live corals had shown significant patterns of recovery 4 years after the cyclone, followed by similar recovery in fish community, suggesting good resilience in a face of this major natural disturbance in an area under moderate anthropogenic pressure.  相似文献   

12.
Coral reefs are undergoing rapid changes as living corals give way to dead coral on which other benthic organisms grow. This decline in live coral could influence habitat availability for fish parasites with benthic life stages. Gnathiid isopod larvae live in the substratum and are common blood-feeding parasites of reef fishes. We examined substrate associations and preferences of a common Caribbean gnathiid, Gnathia marleyi. Emergence traps set over predominantly live coral substrata captured significantly fewer gnathiids than traps set over dead coral substrata. In laboratory experiments, gnathiids preferred dead coral and sponge and tended to avoid contact with live coral. When live gnathiids were added to containers with dead or live coral, significantly fewer were recovered from the latter after 24 h. Our data therefore suggest that live coral is not suitable microhabitat for parasitic gnathiid isopods and that a decrease in live coral cover increases available habitat for gnathiids.  相似文献   

13.
The native green macroalga Dictyosphaeria cavernosa dominated most of the reef slope habitat in Kāne‘ohe Bay, Hawai‘i for 40 years prior to 2006 and had displaced corals from the habitats they created. This has been one of the most oft-cited examples of a phase shift occurring on a coral reef. After decades of relatively constant, high abundance of the alga, percent cover declined dramatically throughout the bay between February and June 2006. The sudden decrease in cover of this alga appears to be the result of an unusually protracted cloudy, rainy period in March 2006, which may have reduced irradiance and caused the alga to lose weight. Corals and red macroalgae living at the same depths and in some of the same habitats were apparently not affected by this 42-day period of rain and overcast skies. Competition between corals and D. cavernosa for space on reef slopes has been virtually eliminated by the death of this alga, but the unstable rubble formations, which remain in much of the area formerly covered by D. cavernosa may not be conducive to rapid increase in cover by the remaining corals or to establishment by coral recruits. Two years later, there was still no recovery of D. cavernosa. This represents a rare example of decline in macroalgal dominance on a reef and a partial reversal, possibly only temporary, of a phase shift.  相似文献   

14.
Many coral reef fishes exhibit distinct ontogenetic shifts in habitat use while some species settle directly in adult habitats, but there is not any general explanation to account for these differences in settlement strategies among coral reef fishes. This study compared distribution patterns and habitat associations of juvenile (young of the year) butterflyfishes to those of adult conspecifics. Three species, Chaetodon auriga, Chaetodon melannotus, and Chaetodon vagabundus, all of which have limited reliance on coral for food, exhibited marked differences in habitat association of juvenile versus adult individuals. Juveniles of these species were consistently found in shallow-water habitats, whereas adult conspecifics were widely distributed throughout a range of habitats. Juveniles of seven other species (Chaetodon aureofasciatus, Chaetodon baronessa, Chaetodon citrinellus, Chaetodon lunulatus, Chaetodon plebeius, Chaetodon rainfordi, and Chaetodon trifascialis), all of which feed predominantly on live corals, settled directly into habitat occupied by adult conspecifics. Butterflyfishes with strong reliance on corals appear to be constrained to settle in habitats that provide access to essential prey resources, precluding their use of distinct juvenile habitats. More generalist butterflyfishes, however, appear to utilize distinct juvenile habitats and exhibit marked differences in the distribution of juveniles versus adults.  相似文献   

15.
Large storm-relocated Porites coral blocks are widespread on the reef flats of Nansha area, southern South China Sea. Detailed investigations of coral reef ecology, geomorphology and sedimentation on Yongshu Reef indicate that such storm-relocated blocks originated from large Porites lutea corals growing on the spurs within the reef-front living coral zone. Because the coral reef has experienced sustained subsidence and reef development during the Holocene, dead corals were continuously covered by newly growing coral colonies. For this reason, the coral blocks must have been relocated by storms from the living sites and therefore the ages of these storm-relocated corals should approximate the times when the storms occurred. Rapid emplacement of these blocks is also evidenced by the lack of coral overgrowth, encrustation or subtidal alteration.U-series dating of the storm-relocated blocks as well as of in situ reef flat corals suggests that, during the last 1000 years, at least six strong storms occurred in 1064±30, 1210±5-1201±4, 1336±9, 1443±9, 1685±8-1680±6, 1872±15 AD, respectively, with an average 160-year cycle (110-240 years). The last storm, which occurred in 1872±15 AD, also led to mortality of the reef flat corals dated at ∼130 years ago. Thus, the storm had significant impacts on coral reef ecology and morphology.  相似文献   

16.
Elevated water temperatures, a decrease in ocean pH, and an increasing prevalence of severe storms have lead to bleaching and death of the hard corals that underpin coral reef ecosystems. As coral cover declines, fish diversity and abundance declines. How degradation of coral reefs affects behavior of reef inhabitants is unknown. Here, we demonstrate that risk assessment behaviors of prey are severely affected by coral degradation. Juvenile damselfish were exposed to visual and olfactory indicators of predation risk in healthy live, thermally bleached, and dead coral in a series of laboratory and field experiments. While fish still responded to visual cues in all habitats, they did not respond to olfactory indicators of risk in dead coral habitats, likely as a result of alteration or degradation of chemical cues. These cues are critical for learning and avoiding predators, and a failure to respond can have dramatic repercussions for survival and recruitment.  相似文献   

17.
Nonreef habitats such as mangroves, seagrass, and macroalgal beds are important for foraging, spawning, and as nursery habitat for some coral reef fishes. The spatial configuration of nonreef habitats adjacent to coral reefs can therefore have a substantial influence on the distribution and composition of reef fish. We investigate how different habitats in a tropical seascape in the Philippines influence the presence, density, and biomass of coral reef fishes to understand the relative importance of different habitats across various spatial scales. A detailed seascape map generated from satellite imagery was combined with field surveys of fish and benthic habitat on coral reefs. We then compared the relative importance of local reef (within coral reef) and adjacent habitat (habitats in the surrounding seascape) variables for coral reef fishes. Overall, adjacent habitat variables were as important as local reef variables in explaining reef fish density and biomass, despite being fewer in number in final models. For adult and juvenile wrasses (Labridae), and juveniles of some parrotfish taxa (Chlorurus), adjacent habitat was more important in explaining fish density and biomass. Notably, wrasses were positively influenced by the amount of sand and macroalgae in the adjacent seascape. Adjacent habitat metrics with the highest relative importance were sand (positive), macroalgae (positive), and mangrove habitats (negative), and fish responses to these metrics were consistent across fish groups evaluated. The 500‐m spatial scale was selected most often in models for seascape variables. Local coral reef variables with the greatest importance were percent cover of live coral (positive), sand (negative), and macroalgae (mixed). Incorporating spatial metrics that describe the surrounding seascape will capture more holistic patterns of fish–habitat relationships on reefs. This is important in regions where protection of reef fish habitat is an integral part of fisheries management but where protection of nonreef habitats is often overlooked.  相似文献   

18.
The severely degraded condition of many coral reefs worldwide calls for active interventions to rehabilitate their physical and biological structure and function, in addition to effective management of fisheries and no‐take reserves. Rehabilitation efforts to stabilize reef substratum sufficiently to support coral growth have been limited in size. We documented a large coral reef rehabilitation in Indonesia aiming to restore ecosystem functions by increasing live coral cover on a reef severely damaged by blast fishing and coral mining. The project deployed small, modular, open structures to stabilize rubble and to support transplanted coral fragments. Between 2013 to 2015, approximately 11,000 structures covering 7,000 m2 were deployed over 2 ha of a reef at a cost of US$174,000. Live coral cover on the structures increased from less than 10% initially to greater than 60% depending on depth, deployment date and location, and disturbances. The mean live coral cover in the rehabilitation area in October 2017 was higher than reported for reefs in many other areas in the Coral Triangle, including marine protected areas, but lower than in the no‐take reference reef. At least 42 coral species were observed growing on the structures. Surprisingly, during the massive coral bleaching in other regions during the 2014–2016 El Niño–Southern Oscillation event, bleaching in the rehabilitation area was less than 5% cover despite warm water (≥30°C). This project demonstrates that coral rehabilitation is achievable over large scales where coral reefs have been severely damaged and are under continuous anthropogenic disturbances in warming waters.  相似文献   

19.
This study examined recruitment patterns and microhabitat associations for three carnivorous fishes, Plectropomus maculatus, Lutjanus carponotatus and Epinephelus quoyanus, at the Keppel Islands, southern Great Barrier Reef, Australia. Habitat selectivity was highest for recruits that were found mostly with corymbose Acropora, predominantly on patches of live coral located over loose substrates (sand). Adults were more commonly associated with tabular Acropora. The proportion of P. maculatus (72 %) found with live corals was higher than for L. carponotatus (68 %) and E. quoyanus (44 %). Densities of recruits were highly variable among locations, but this was only partly related to availability of preferred microhabitats. Our findings demonstrate that at least some carnivorous reef fishes, especially during early life-history stages, strongly associate with live corals. Such species will be highly sensitive to increasing degradation of coral reef habitats.  相似文献   

20.
With coral cover in decline on many Caribbean reefs, any process of coral mortality is of potential concern. While sparisomid parrotfishes are major grazers of Caribbean reefs and help control algal blooms, the fact that they also undertake corallivory has prompted some to question the rationale for their conservation. Here the weight of evidence for beneficial effects of parrotfishes, in terms of reducing algal cover and facilitating demographic processes in corals, and the deleterious effects of parrotfishes in terms of causing coral mortality and chronic stress, are reviewed. While elevated parrotfish density will likely increase the predation rate upon juvenile corals, the net effect appears to be positive in enhancing coral recruitment through removal of macroalgal competitors. Parrotfish corallivory can cause modest partial colony mortality in the most intensively grazed species of Montastraea but the generation and healing of bite scars appear to be in near equilibrium, even when coral cover is low. Whole colony mortality in adult corals can lead to complete exclusion of some delicate, lagoonal species of Porites from forereef environments but is only reported for one reef species (Porites astreoides), for one habitat (backreef), and with uncertain incidence (though likely <<10%). No deleterious effects of predation on coral growth or fecundity have been reported, though recovery of zooxanthellae after bleaching events may be retarded. The balance of evidence to date finds strong support for the herbivory role of parrotfishes in facilitating coral recruitment, growth, and fecundity. In contrast, no net deleterious effects of corallivory have been reported for reef corals. Corallivory is unlikely to constrain overall coral cover but contraints upon dwindling populations of the Montastraea annularis species complex are feasible and the role of parrotfishes as a vector of coral disease requires evaluation. However, any assertion that conservation practices should guard against protecting corallivorous parrotfishes appears to be unwarranted at this stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号