首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blooms of toxic cyanobacteria may potentially affect food web productivity and even be a human health hazard. In the Baltic Sea, regularly occurring summer blooms of nitrogen-fixing cyanobacteria are often dominated by Nodularia spumigena, which produces the potent hepatotoxin nodularin. Evidence of sedimentation of these blooms indicates that benthic fauna can be exposed to nodularin. In a one month experiment, we simulated the settling of a summer bloom dominated by N. spumigena in sediment microcosms with three species of sediment-dwelling, deposit-feeding macrofauna, the amphipods Monoporeia affinis and Pontoporeia femorata and the bivalve Macoma balthica, and analyzed nodularin in the animals by HPLC–ESI–MS (high-performance liquid chromatography–electrospray ionization–mass spectrometry). We found nodularin in quantities of 50–120 ng g−1 DW. The results show that deposit-feeding macrofauna in the Baltic Sea may contribute to trophic transfer of nodularin.  相似文献   

2.
The cyanobacterium Nodularia spumigena dominates the annual, toxic summer blooms in the Baltic Sea. Although Nodularia has been receiving attention due to its production of the hepatotoxin nodularin, molecular data regarding the regulation of nitrogen fixation is lacking. We have previously reported that N. spumigena strain AV1, unlike model filamentous cyanobacteria, differentiates heterocysts in the absence of detectable nitrogen fixation activity. To further analyze the uncoupling between these two linked processes, we assessed the impact of ammonium ions on the N. spumigena metabolism using a proteomic approach. Proteomic profiling was performed at three different times during ammonium supplementation using quantitative 2-dimensional gel electrophoresis followed by MS/MS analysis. Using this approach, we identified 34 proteins, 28 of which were unique proteins that changed successively in abundance during growth on ammonium. Our results indicate that N. spumigena generally exhibits lower energy production and carbon fixation in the presence of ammonium and seems to be inefficient in utilizing ammonium as an external nitrogen source. The possibility of ammonium toxicity due to PSII damage was investigated and the results are discussed. Our findings have implications in regard to the strategies considered to manage the cyanobacterial blooms in the Baltic Sea.  相似文献   

3.
Nodularia spumigena is a toxic cyanobacteria that blooms in the Baltic Sea every year. In the brackish water of the Baltic Sea, its toxin, nodularin, mainly affects the biota in the surface water due to the natural buoyancy of this species. However, the fate of the toxin is unknown, once the cyanobacteria bloom enters the more saline waters of the Kattegat. In order to investigate this knowledge gap, a bloom of N. spumigena was followed during its passage, carried by surface currents, from the Baltic Sea into the Kattegat area, through the Öresund strait. N. spumigena cells showed an increased cell concentration through the water column during the passage of the bloom (up to 130 103 cells ml−1), and cells (4.2 103 cells ml−1) could be found down to 20 m depth, below a pycnocline. Sedimentation trap samples from below the pycnocline (10–12 m depth) also showed an increased sedimentation of N. spumigena filaments during the passage of the bloom. The toxin nodularin was detected both in water samples (0.3–6.0 μg l−1), samples of sedimenting material (a toxin accumulation rate of 20 μg m-2 day−1), zooplankton (up to 0.1 ng ind.−1 in copepods), blue mussels (70–230 μg kg−1 DW), pelagic and benthic fish (herring (1.0–3.4 μg kg−1 DW in herring muscle or liver) and flounder (1.3-6.2 μg kg−1 DW in muscle, and 11.7-26.3 μg kg−1 DW in liver). A laboratory experiment showed that N. spumigena filaments developed a decreased buoyancy at increased salinities and that they were even sinking with a rate of up to 1,7 m day−1 at the highest salinity (32 PSU). This has implications for the fate of brackish water cyanobacterial blooms, when these reach more saline waters. It can be speculated that a significant part of the blooms content of nodularin will reach benthic organisms in this situation, compared to blooms decaying in brackish water, where most of the bloom is considered to be decomposed in the surface waters.  相似文献   

4.
Allelopathy, the release of extracellular compounds that inhibit the growth of other microorganisms, may be one factor contributing to the formation and/or maintenance of cyanobacterial blooms. We investigated the allelopathic effects of three cyanobacterial species (Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii) that frequently form mass-occurrences in the Baltic Sea. We exposed monocultures of three phytoplankton species (Thalassiosira weissflogii, Rhodomonas sp. and Prymnesium parvum) to cell-free filtrates of the three cyanobacteria, and quantified allelopathic effects with cell counts. We also investigated the role of the growth phase of cyanobacteria in their allelopathy, by comparing the effects of an exponential and a stationary phase culture of N. spumigena. All tested cyanobacteria inhibited the growth of Rhodomonas sp., but none of them affected P. parvum. The effects on T. weissflogii were more variable, and they were amplified by repeated filtrate additions compared to a single filtrate addition. N. spumigena was more allelopathic in exponential than in stationary growth phase, whereas the culture filtrate was more hepatotoxic in stationary phase. Hepatotoxins were thus probably not involved in the allelopathic effects, which is also indicated by the allelopathic properties of the non-toxic A. flos-aquae and A. lemmermannii. The results demonstrate that the common Baltic cyanobacteria affect some coexisting phytoplankton species negatively. Allelopathy may therefore play a role in interspecific competition and contribute to cyanobacterial bloom maintenance.  相似文献   

5.
Extracts of Aphanizomenon flos-aquae and Nodularia spumigena,the two most common cyanobacteria forming recurrent blooms inthe Baltic Sea, decrease the abundance of some phytoplanktonspecies via the release of allelopathic substances. We investigatedhow cell-free filtrates of the two cyanobacteria, as well aspurified hepatotoxin nodularin, produced by N. spumigena affectedcell numbers, chlorophyll a content and 14CO2 uptake of thecryptophyte Rhodomonas sp. Both cyanobacterial filtrates significantlyretarded the growth of Rhodomonas sp., A. flos-aquae filtrateup to 46%, whereas purified nodularin showed no significanteffect on any of the growth parameters of the cryptophyte. Theseresults suggest that the allelopathic effect of N. spumigenais most probably due to metabolite(s) other than nodularin,possibly acting via the damage of the target cells.  相似文献   

6.
7.
The carotenoids of 19 different strains of Nodularia spumigena and one Nodularia sphaerocarpa from different global locations were investigated. The molecular structure of the diagnostic pigment in N. spumigena of the Baltic Sea, tentatively named ‘4-keto-myxoxanthophyll-like pigment’ in Schlüter, L., Garde, K., Kaas, H., [2004. A 4-keto-myxoxanthophyll-like pigment is a diagnostic pigment for the toxic cyanobacteria Nodularia spumigena in the Baltic Sea. Mar. Ecol. Prog. Ser. 275, 69–78.] was determined to be a 4-ketomyxol-2′-fucoside. In most of the strains an additional carotenoid was found, identified as the novel 1′-O-methyl-4-ketomyxol-2′-fucoside by 2D NMR. This glycosidic carotenoid methyl ether was found to be a more important diagnostic pigment than the 4-ketomyxol-2′-fucoside for the toxic N. spumigena in the Baltic Sea. Out of the 20 strains 15 were found to produce the hepatotoxin nodularin. The content of carotenoids and nodularin was found to increase relative to chlorophyll a at increasing light intensity and at stationary growth, and nodularin was significantly correlated to both 4-ketomyxol-2′-fucoside and 1′-O-methyl-4-ketomyxol-2′-fucoside, and particular to the sum of these two pigments.  相似文献   

8.
It is commonly accepted that summer cyanobacterial blooms cannot be efficiently utilized by grazers due to low nutritional quality and production of toxins; however the evidence for such effects in situ is often contradictory. Using field and experimental observations on Baltic copepods and bloom-forming diazotrophic filamentous cyanobacteria, we show that cyanobacteria may in fact support zooplankton production during summer. To highlight this side of zooplankton-cyanobacteria interactions, we conducted: (1) a field survey investigating linkages between cyanobacteria, reproduction and growth indices in the copepod Acartia tonsa; (2) an experiment testing relationships between ingestion of the cyanobacterium Nodularia spumigena (measured by molecular diet analysis) and organismal responses (oxidative balance, reproduction and development) in the copepod A. bifilosa; and (3) an analysis of long term (1999–2009) data testing relationships between cyanobacteria and growth indices in nauplii of the copepods, Acartia spp. and Eurytemora affinis, in a coastal area of the northern Baltic proper. In the field survey, N. spumigena had positive effects on copepod egg production and egg viability, effectively increasing their viable egg production. By contrast, Aphanizomenon sp. showed a negative relationship with egg viability yet no significant effect on the viable egg production. In the experiment, ingestion of N. spumigena mixed with green algae Brachiomonas submarina had significant positive effects on copepod oxidative balance, egg viability and development of early nauplial stages, whereas egg production was negatively affected. Finally, the long term data analysis identified cyanobacteria as a significant positive predictor for the nauplial growth in Acartia spp. and E. affinis. Taken together, these results suggest that bloom forming diazotrophic cyanobacteria contribute to feeding and reproduction of zooplankton during summer and create a favorable growth environment for the copepod nauplii.  相似文献   

9.
A PCR-based method was used to detect toxic cyanobacteria Nodularia spumigena in the diet of Baltic mysids, Mysis mixta and Mysis relicta. The decay in detectability of Nodularia DNA in mysid stomachs and feces following the cyanobacterium consumption was examined in laboratory with special references to (1) marker size (780 bp vs. 200 bp), (2) mysid developmental stage (juveniles vs. subadults), and (3) feeding regime after consuming the cyanobacteria (continuous vs. interrupted feeding). The Nodularia DNA could be reliably detected in mysid stomachs and feces by PCR technique. In the mysid with interrupted feeding, the calculated half-lives of N. spumigena DNA in the mysid stomachs were 1.2 and 6.1 h for 780 and 200 bp fragments, respectively. Continuous feeding, however, facilitated decay in the detectability, most likely due to increased gut evacuation rate. In stomachs of the field-collected mysids, the Nodularia DNA was detected with high frequencies, 60% in M. mixta and 51% in M. relicta. Moreover, it was higher in immature mysids than in adults and correlated with stomach fullness in age-specific manner: in juveniles and subadults, stomachs containing Nodularia were significantly fuller, while in adults, the presence of the cyanobacteria was associated with empty stomachs. This suggests greater habitat overlap for juvenile mysids and N. spumigena and thus higher encounter and consumption rates. These findings contribute to a growing body of evidence that cyanobacteria in the Baltic Sea are important food for grazers.  相似文献   

10.
Physical disturbance and feeding by macrofauna in the sediment can potentially affect bloom initiation of phytoplankton species that have benthic stages in their life cycle. In this experimental study, we investigated how different species of macrozoobenthos can affect the recruitment of Nodularia spumigena from the sediment to the water column. N. spumigena is a toxic, nitrogen-fixing filamentous cyanobacterium, which forms large summer blooms in the Baltic Sea. Benthic recruitment from resting stages (akinetes) and vegetative cells deposited on the seafloor have long been suspected to initiate the blooms. We found that, depending on species-specific traits, deposit-feeding macrofauna (an amphipod, Monoporeia affinis, a bivalve, Macoma balthica and an invasive polychaete, Marenzelleria cf. arctia) has the potential to either reduce or facilitate recruitment of this cyanobacterium. Shorter filament length in treatments with fauna than in the treatment without indicates feeding on or mechanical destruction of N. spumigena by the animals. Our results show the importance of an often overlooked aspect of phytoplankton bloom initiation, the role of macrozoobenthos.  相似文献   

11.
Toxic cyanobacteria can have harmful or fatal impacts on aquatic organisms. In the archipelagos of the northern Baltic Sea, the open sea blooms often drift into littoral areas, where they decompose and release toxins and other chemical compounds in the water. However, the effects of cyanobacteria on the littoral organisms have not previously been investigated. We studied the effects of three cyanobacteria species (toxic Nodularia spumigena, non-toxic N. sphaerocarpa and non-toxic Aphanizomenon flos-aquae) and purified dissolved nodularin (produced by N. spumigena) on a common littoral amphipod Gammarus zaddachi. Nodularin was transferred to eggs, juveniles and adults of G. zaddachi, but no significant negative effects of dissolved nodularin were detected on adults, eggs or juveniles. However, survival of adults decreased by the exposure to toxic N. spumigena cells. The egg hatching rate and juvenile survival were not affected when exposed to the three cyanobacteria species. In contrast, a weak decrease in the egg production and an increased abortion of embryos from the brood pouch of females was observed, the later indicating a failure in parental care. Further, a decrease in grazing rate on the filamentous green alga Enteromorpha intestinalis was observed. The results suggest that toxic cyanobacteria blooms are not extremely fatal, but may have, in high concentrations, negative effects on the adult survival, fecundity, and feeding behaviour of gammarids inhabiting the littoral zone.  相似文献   

12.
Three water bloom samples were collected in August 1986 from the southern Baltic Sea. Acute toxicity of the samples was determined by mouse bioassay and the toxins were further studied by HPLC. The bloom samples contained equal amounts of cyanobacteria Nodularia spumigena and Aphanizomenon flos-aquae and were hepatotoxic. Two hepatotoxic Nodularia spumigena strains were isolated from the samples. The isolates produce a toxic peak indistinguishable from the bloom material in the HPLC analysis. The toxicity of the fractions was verified by mouse bioassay. Thus the toxicity of the bloom samples was in all likelihood caused by Nodularia spumigena.  相似文献   

13.
While rare globally, blooms of the toxic cyanobacteria Nodularia spumigena are a recurring problem in a few estuaries, such as the Baltic Sea and several southern Australian estuaries. Here, we document recurring Nodularia spumigena Mertens blooms in the Gippsland Lakes, S.E. Australia; a temperate lagoon system with episodic, winter-spring dominated catchment inflows. Physico-chemical conditions exerted a strong influence over bloom development, with blooms consistently occurring at surface water salinities between 9 and 20 (average?=?15), inorganic nitrogen concentrations <0.4?μM, and inorganic nitrogen to reactive phosphorus ratios <5. There was a positive correlation between average annual chlorophyll a and total phosphorus (TP) load in years when there was no Nodularia bloom, but this relationship broke down in Nodularia bloom years, even though there was a strong correlation between in-lake TP and chlorophyll a during these years; this highlights the importance of internal sources of phosphorus to bloom development. Large catchment derived nitrate and nitrite (NOx) inputs following wildfires and floods in 2007, led to high concentrations of NOx within the surface waters of the Gippsland Lakes through the second half of 2007 and the start of 2008. We hypothesise that these high NOx concentrations were a key factor leading to an unprecedented Synechococcus sp. bloom that developed in the austral summer of 2007–2008, despite conditions that would otherwise favour a Nodularia bloom.  相似文献   

14.
In the Baltic Sea, cyanobacterial community is mainly composed of filamentous nitrogen-fixing forms, including the toxic Nodularia spumigena, and single-celled picocyanobacteria (Pcy), represented by Synechococcus spp. The main aim of the work was to test the hypothesis that the picocyanobacteria dependend on the presence of the nitrogen-fixing cyanobacteria. In addition, the contamination of blue mussels and fish with nodularin (NOD), the N.?spumigena toxin, was examined. In years 2008?C2011, the samples for the study were collected in the Southern Baltic Proper using FerryBox system and, occasionally, during research cruises. The analyses showed no correlation between the growth of the nitrogen-fixing cyanobacteria and Synechococcus. Compared with the previously published data, a shift in the composition of Pcy phenotypes was observed. This shift might be an indication of the proceeding changes induced by the reduced nutrient loading and/or climate change. Analyses of NOD revealed differences in the cyanotoxin concentrations between mussels of different shell size. The highest concentration of NOD was detected in the liver of round goby. However, temporarily, also the fish muscles were significantly contaminated with the toxin.  相似文献   

15.
The fate of diazotrophic nitrogen (ND) fixed by planktonic cyanobacteria in pelagic food webs remains unresolved, particularly for toxic cyanophytes that are selectively avoided by most herbivorous zooplankton. Current theory suggests that ND fixed during cyanobacterial blooms can enter planktonic food webs contemporaneously with peak bloom biomass via direct grazing of zooplankton on cyanobacteria or via the uptake of bioavailable ND (exuded from viable cyanobacterial cells) by palatable phytoplankton or microbial consortia. Alternatively, ND can enter planktonic food webs post-bloom following the remineralization of bloom detritus. Although the relative contribution of these processes to planktonic nutrient cycles is unknown, we hypothesized that assimilation of bioavailable ND (e.g., nitrate, ammonium) by palatable phytoplankton and subsequent grazing by zooplankton (either during or after the cyanobacterial bloom) would be the primary pathway by which ND was incorporated into the planktonic food web. Instead, in situ stable isotope measurements and grazing experiments clearly documented that the assimilation of ND by zooplankton outpaced assimilation by palatable phytoplankton during a bloom of toxic Nodularia spumigena Mertens. We identified two distinct temporal phases in the trophic transfer of ND from N. spumigena to the plankton community. The first phase was a highly dynamic transfer of ND to zooplankton with rates that covaried with bloom biomass while bypassing other phytoplankton taxa; a trophic transfer that we infer was routed through bloom-associated bacteria. The second phase was a slowly accelerating assimilation of the dissolved-ND pool by phytoplankton that was decoupled from contemporaneous variability in N. spumigena concentrations. These findings provide empirical evidence that ND can be assimilated and transferred rapidly throughout natural plankton communities and yield insights into the specific processes underlying the propagation of ND through pelagic food webs.  相似文献   

16.
The optical properties, i.e., absorption and scattering spectra of ten strains of cyanobacteria from the Baltic Sea and Pomeranian lakes (Aphanizomenon flos-aquae KAC 15, Microcystis aeruginosa CCNP 1101, Anabaena sp. CCNP 1406, Synechocystis salina CCNP 1104, Phormidium sp. CCNP 1317, Nodularia spumigena CCNP 1401, Synechococcus sp. CCNP 1108, Nostoc sp. CCNP 1411, Cyanobacterium sp. CCNP 1105, Pseudanabaena cf. galeata CCNP 1312) grown under low light conditions were investigated. Moreover, the chlorophylls, carotenoids, and phycobilin composition as well as the size structure of chosen cyanobacteria were measured. Studied species revealed high diversity both in optical properties with the absorption spectra similarity index ranging from 0.67 to 0.94 and the pigment composition. The chlorophyll-specific absorption coefficient at 440 nm a ph *(440) varied between 0.017 and 0.065 m2 mg?1. The influence of the package effect was only observed in the case of large filamentous cyanobacteria like N. spumigena or Nostoc sp. Interestingly, the package effect factor Q a *(675) for large-celled Anabaena sp. was 0.92. Besides chlorophyll a, only echinenone, β-carotene, and phycocyanin were present in all analyzed cyanobacteria strains. Zeaxanthin, which is widely used as a marker pigment for cyanobacteria, was absent in the toxic N. spumigena and Anabaena sp., which are the species that occur in the Baltic Sea most frequently causing summer cyanobacterial blooms. The investigation also showed that the sample preservation technique can introduce some major errors within the absorption band affected by the phycocyanin absorption.  相似文献   

17.
Blooms of cyanobacteria are a recurrent phenomenon in the Baltic Sea, including the Gulf of Finland. The spatial extension, duration, intensity and species composition of these blooms varies widely between years. Alg@line data collected regularly from ferries as well as weather service and marine monitoring data from 1997 to 2005 are analysed to determine the main abiotic factors influencing the intensity and species composition of cyanobacterial blooms in the Gulf of Finland. It is demonstrated that the development of the Nodularia spumigena Mertens bloom is highly dependent on weather conditions such as photosynthetically active radiation and water temperature. Nutrient conditions, especially the surplus of phosphorus (according to Redfield ratio) related to the pre-bloom upwelling events in the Gulf, affect the intensity of Aphanizomenon sp. (L.) Ralfs blooms. Differences in bloom timing and duration indicate that, if the preconditions (like nutrient ratio/concentration and weather conditions) for bloom formation are favourable, then the Aphanizomenon bloom starts earlier, the overall bloom period is longer and the Nodularia peak might appear in a wider time window. Handling editor: K. Martens  相似文献   

18.
Blooms of the toxic cyanobacterium Nodularia spumigena occur in various locations worldwide, but have not been observed in Brazil until recently. Three Nodularia strains were isolated from summer blooms in experimental shrimp production ponds of Penaeus vannamei in Rio Grande, in southern Brazil; these strains were characterized by morphology, phylogeny, growth rate and toxicity. The strains were identified as N. spumigena based on the size of vegetative cells, heterocytes and akinetes under a light microscope and based on the number of gas vesicles per μm2 under a transmission electron microscope. The 16S rRNA gene sequences of the three strains showed high identity (> 99%) with N. spumigena sequences available on the NCBI database but were grouped closer in the phylogenetic tree with N. spumigena strains from Australia and USA than those from the Baltic Sea. The growth rate in batch culture varied between 0.2 and 0.6 μ?d?1 based on cell density, optical density and chlorophyll-a content. The three strains produced the hepatotoxin nodularin (ELISA plate kit) with similar toxicity values (4.8–4.9?µg?l?1). We conclude that the three isolated strains are N. spumigena with similar rates of growth and nodularin production. The presence of N. spumigena now represents a potential problem in aquaculture and estuarine environments in Brazil.  相似文献   

19.
Variabilities in chlorophyll a fluorescence, temperature andsalinity in the surface were recorded unattended on board twomerchant ships in the Baltic Sea. When these recordings werecomplemented by automated water sampling, it was possible toanalyze the phytoplankton species composition in 426 samples.In total, 22 potentially toxic phytoplankton species or generawere detected. Nodularia spumigena was the only species thatformed extensive blooms The system has proved to be an effectiveearly warning method for exceptional and eventually harmfulalgal blooms. The possibilities for using this method as analternative, or a complement, to conventional methods in marinephytoplankton monitoring are discussed.  相似文献   

20.
Prey may select suboptimal habitat to alleviate predation risk. Algal blooms and turbidity are potentially harmful to prey in aquatic environments, but can provide refugia against predation, given that predators avoid such conditions. Using a flow-through aquarium, we experimentally studied the habitat choice of the three-spined stickleback (Gasterosteus aculeatus L.) provided with toxic and non-toxic bloom-forming cyanobacteria and green flagellate-induced turbidity in the presence and absence of a chemical predator signal from a perch (Perca fluviatilis L.). We investigated whether sticklebacks separate between different algal strains and between turbid and clear water, and whether they are able to use algal toxicity and turbidity as shelter against predators. Sticklebacks preferred the toxic over the non-toxic Nodularia spumigena (Mertens) habitat in the presence of a predator signal, whereas no differences in times spent in the two habitats were detected when the predator signal was absent. There was a tendency for sticklebacks to prefer clear over turbid water in the absence of a predator signal, but no differences were found when the predator signal was present. Our results suggest that the three-spined stickleback is not fully adapted to the cyanobacterial blooms and turbidity caused by the recent eutrophication of the Baltic Sea. However, the predator-induced shifts in habitat choice are also consistent with the hypothesis that sticklebacks use algal toxicity and turbidity as shelters against predation, since these factors are likely to have only minor fitness consequences for sticklebacks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号