首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A strong negative correlation between the rate of amino-acid substitution and codon usage bias in Drosophila has been attributed to interference between positive selection at nonsynonymous sites and weak selection on codon usage. To further explore this possibility we have investigated polymorphism and divergence at three kinds of sites: synonymous, nonsynonymous and intronic in relation to codon bias in D. melanogaster and D. simulans. We confirmed that protein evolution is one of the main explicative parameters for interlocus codon bias variation (r(2) approximately 40%). However, intron or synonymous diversities, which could have been expected to be good indicators of local interference [here defined as the additional increase of drift due to selection on tightly linked sites, also called 'genetic draft' by Gillespie (2000)] did not covary significantly with codon bias or with protein evolution. Concurrently, levels of polymorphism were reduced in regions of low recombination rates whereas codon bias was not. Finally, while nonsynonymous diversities were very well correlated between species, neither synonymous nor intron diversities observed in D. melanogaster were correlated with those observed in D. simulans. All together, our results suggest that the selective constraint on the protein is a stable component of gene evolution while local interference is not. The pattern of variation in genetic draft along the genome therefore seems to be instable through evolutionary times and should therefore be considered as a minor determinant of codon bias variance. We argue that selective constraints for optimal codon usage are likely to be correlated with selective constraints on the protein, both between codons within a gene, as previously suggested, and also between genes within a genome.  相似文献   

2.
Bartolomé C  Maside X  Yi S  Grant AL  Charlesworth B 《Genetics》2005,169(3):1495-1507
We have investigated patterns of within-species polymorphism and between-species divergence for synonymous and nonsynonymous variants at a set of autosomal and X-linked loci of Drosophila miranda. D. pseudoobscura and D. affinis were used for the between-species comparisons. The results suggest the action of purifying selection on nonsynonymous, polymorphic variants. Among synonymous polymorphisms, there is a significant excess of synonymous mutations from preferred to unpreferred codons and of GC to AT mutations. There was no excess of GC to AT mutations among polymorphisms at noncoding sites. This suggests that selection is acting to maintain the use of preferred codons. Indirect evidence suggests that biased gene conversion in favor of GC base pairs may also be operating. The joint intensity of selection and biased gene conversion, in terms of the product of effective population size and the sum of the selection and conversion coefficients, was estimated to be approximately 0.65.  相似文献   

3.
J. M. Comeron  M. Aguade 《Genetics》1996,144(3):1053-1062
The Xdh (rosy) region of Drosophila subobscura has been sequenced and compared to the homologous region of D. pseudoobscura and D. melanogaster. Estimates of the numbers of synonymous substitutions per site (Ks) confirm that Xdh has a high synonymous substitution rate. The distributions of both nonsynonymous and synonymous substitutions along the coding region were found to be heterogeneous. Also, no relationship has been detected between Ks estimates and codon usage bias along the gene, in contrast with the generally observed relationship among genes. This heterogeneous distribution of synonymous substitutions along the Xdh gene, which is expression-level independent, could be explained by a differential selection pressure on synonymous sites along the coding region acting on mRNA secondary structure. The synonymous rate in the Xdh coding region is lower in the D. subobscura than in the D. pseudoobscura lineage, whereas the reverse is true for the Adh gene.  相似文献   

4.
The fixation of weakly selected mutations can be greatly influenced by strong directional selection at linked loci. Here, I investigate a two-locus model in which weakly selected, reversible mutations occur at one locus and recurrent strong directional selection occurs at the other locus. This model is analogous to selection on codon usage at synonymous sites linked to nonsynonymous sites under strong directional selection. Two approximations obtained here describe the expected frequency of the weakly selected preferred alleles at equilibrium. These approximations, as well as simulation results, show that the level of codon bias declines with an increasing rate of substitution at the strongly selected locus, as expected from the well-understood theory that selection at one locus reduces the efficacy of selection at linked loci. These solutions are used to examine whether the negative correlation between codon bias and nonsynonymous substitution rates recently observed in Drosophila can be explained by this hitchhiking effect. It is shown that this observation can be reasonably well accounted for if a large fraction of the nonsynonymous substitutions on genes in the data set are driven by strong directional selection.  相似文献   

5.
Selection Intensity for Codon Bias   总被引:26,自引:7,他引:19       下载免费PDF全文
D. L. Hartl  E. N. Moriyama    S. A. Sawyer 《Genetics》1994,138(1):227-234
The patterns of nonrandom usage of synonymous codons (codon bias) in enteric bacteria were analyzed. Poisson random field (PRF) theory was used to derive the expected distribution of frequencies of nucleotides differing from the ancestral state at aligned sites in a set of DNA sequences. This distribution was applied to synonymous nucleotide polymorphisms and amino acid polymorphisms in the gnd and putP genes of Escherichia coli. For the gnd gene, the average intensity of selection against disfavored synonymous codons was estimated as approximately 7.3 X 10(-9); this value is significantly smaller than the estimated selection intensity against selectively disfavored amino acids in observed polymorphisms (2.0 X 10(-8)), but it is approximately of the same order of magnitude. The selection coefficients for optimal synonymous codons estimated from PRF theory were consistent with independent estimates based on codon usage for threonine and glycine. Across 118 genes in E. coli and Salmonella typhimurium, the distribution of estimated selection coefficients, expressed as multiples of the effective population size, has a mean and standard deviation of 0.5 +/- 0.4. No significant differences were found in the degree of codon bias between conserved positions and replacement positions, suggesting that translational misincorporation is not an important selective constraint among synonymous polymorphic codons in enteric bacteria. However, across the first 100 codons of the genes, conserved amino acids with identical codons have significantly greater codon bias than of either synonymous or nonidentical codons, suggesting that there are unique selective constraints, perhaps including mRNA secondary structures, in this part of the coding region.  相似文献   

6.
7.
We have analyzed factors affecting the codon usage pattern of the chloroplasts genomes of representative species of pooid grass family. Correspondence analysis of relative synonymous codon usages (RSCU) showed that genes on secondary axis were correlated with their GC3S values (all r > 0.3, p < 0.05), indicating mutational bias as an important selective force that shaped the variation in the codon usage among chloroplast genes. The Nc-plot showed that although a majority of the points with low-Nc values were lying below the expected curve, a few genes lied on the expected curve. Nc plot clearly showed that mutational bias plays a major role in codon biology across the monocot plastomes. The hydrophobicity and aromaticity of encoded proteins of each species were found to be other factors of codon usage variation. In the view of above light, besides natural selection, several other factors also likely to be involved in determining the selective constraints on codon bias in plastomes of pooid grass genomes. In addition, five codons (B. distachyon), seven codons (H. vulgare), and four codons (T. aestivum) were identified as optimal codons of the three grass chloroplasts. To identify genes evolving under positive selection, rates of nonsynonymous substitutions (Ka) and synonymous substitutions (Ks) were computed for all groups of orthologous gene pairs.  相似文献   

8.
Dunn KA  Bielawski JP  Yang Z 《Genetics》2001,157(1):295-305
The relationships between synonymous and nonsynonymous substitution rates and between synonymous rate and codon usage bias are important to our understanding of the roles of mutation and selection in the evolution of Drosophila genes. Previous studies used approximate estimation methods that ignore codon bias. In this study we reexamine those relationships using maximum-likelihood methods to estimate substitution rates, which accommodate the transition/transversion rate bias and codon usage bias. We compiled a sample of homologous DNA sequences at 83 nuclear loci from Drosophila melanogaster and at least one other species of Drosophila. Our analysis was consistent with previous studies in finding that synonymous rates were positively correlated with nonsynonymous rates. Our analysis differed from previous studies, however, in that synonymous rates were unrelated to codon bias. We therefore conducted a simulation study to investigate the differences between approaches. The results suggested that failure to properly account for multiple substitutions at the same site and for biased codon usage by approximate methods can lead to an artifactual correlation between synonymous rate and codon bias. Implications of the results for translational selection are discussed.  相似文献   

9.
The Selective Advantage of Synonymous Codon Usage Bias in Salmonella   总被引:1,自引:0,他引:1  
The genetic code in mRNA is redundant, with 61 sense codons translated into 20 different amino acids. Individual amino acids are encoded by up to six different codons but within codon families some are used more frequently than others. This phenomenon is referred to as synonymous codon usage bias. The genomes of free-living unicellular organisms such as bacteria have an extreme codon usage bias and the degree of bias differs between genes within the same genome. The strong positive correlation between codon usage bias and gene expression levels in many microorganisms is attributed to selection for translational efficiency. However, this putative selective advantage has never been measured in bacteria and theoretical estimates vary widely. By systematically exchanging optimal codons for synonymous codons in the tuf genes we quantified the selective advantage of biased codon usage in highly expressed genes to be in the range 0.2–4.2 x 10−4 per codon per generation. These data quantify for the first time the potential for selection on synonymous codon choice to drive genome-wide sequence evolution in bacteria, and in particular to optimize the sequences of highly expressed genes. This quantification may have predictive applications in the design of synthetic genes and for heterologous gene expression in biotechnology.  相似文献   

10.
Summary Synonymous and nonsynonymous substitution rates at the loci encoding glyceraldehyde-3-phosphate dehydrogenase (gap) and outer membrane protein 3A (ompA) were examined in 12 species of enteric bacteria. By examining homologous sequences in species of varying degrees of relatedness and of known phylogenetic relationships, we analyzed the patterns of synonymous and nonsynonymous substitutions within and among these genes. Although both loci accumulate synonymous substitutions at reduced rates due to codon usage bias, portions of thegap andompA reading frames show significant deviation in synonymous substitution rates not attributable to local codon bias. A paucity of synonymous substitutions in portions of theompA gene may reflect selection for a novel mRNA secondary structure. In addition, these studies allow comparisons of homologous protein-coding sequences (gap) in plants, animals, and bacteria, revealing differences in evolutionary constraints on this glycolytic enzyme in these lineages.  相似文献   

11.
A O Urrutia  L D Hurst 《Genetics》2001,159(3):1191-1199
In numerous species, from bacteria to Drosophila, evidence suggests that selection acts even on synonymous codon usage: codon bias is greater in more abundantly expressed genes, the rate of synonymous evolution is lower in genes with greater codon bias, and there is consistency between genes in the same species in which codons are preferred. In contrast, in mammals, while nonequal use of alternative codons is observed, the bias is attributed to the background variance in nucleotide concentrations, reflected in the similar nucleotide composition of flanking noncoding and exonic third sites. However, a systematic examination of the covariants of codon usage controlling for background nucleotide content has yet to be performed. Here we present a new method to measure codon bias that corrects for background nucleotide content and apply this to 2396 human genes. Nearly all (99%) exhibit a higher amount of codon bias than expected by chance. The patterns associated with selectively driven codon bias are weakly recovered: Broadly expressed genes have a higher level of bias than do tissue-specific genes, the bias is higher for genes with lower rates of synonymous substitutions, and certain codons are repeatedly preferred. However, while these patterns are suggestive, the first two patterns appear to be methodological artifacts. The last pattern reflects in part biases in usage of nucleotide pairs. We conclude that we find no evidence for selection on codon usage in humans.  相似文献   

12.
Sauvage C  Bierne N  Lapègue S  Boudry P 《Gene》2007,406(1-2):13-22
DNA sequence polymorphism and codon usage bias were investigated in a set of 41 nuclear loci in the Pacific oyster Crassostrea gigas. Our results revealed a very high level of DNA polymorphism in oysters, in the order of magnitude of the highest levels reported in animals to date. A total of 290 single nucleotide polymorphisms (SNPs) were detected, 76 of which being localised in exons and 214 in non-coding regions. Average density of SNPs was estimated to be one SNP every 60 bp in coding regions and one every 40 bp in non-coding regions. Non-synonymous substitutions contributed substantially to the polymorphism observed in coding regions. The non-synonymous to silent diversity ratio was 0.16 on average, which is fairly higher to the ratio reported in other invertebrate species recognised to display large population sizes. Therefore, purifying selection does not appear to be as strong as it could have been expected for a species with a large effective population size. The level of non-synonymous diversity varied greatly from one gene to another, in accordance with varying selective constraints. We examined codon usage bias and its relationship with DNA polymorphism. The table of optimal codons was deduced from the analysis of an EST dataset, using EST counts as a rough assessment of gene expression. As recently observed in some other taxa, we found a strong and significant negative relationship between codon bias and non-synonymous diversity suggesting correlated selective constraints on synonymous and non-synonymous substitutions. Codon bias as measured by the frequency of optimal codons for expression might therefore provide a useful indicator of the level of constraint upon proteins in the oyster genome.  相似文献   

13.
Codon bias is generally thought to be determined by a balance between mutation, genetic drift, and natural selection on translational efficiency. However, natural selection on codon usage is considered to be a weak evolutionary force and selection on codon usage is expected to be strongest in species with large effective population sizes. In this paper, I study associations between codon usage, gene expression, and molecular evolution at synonymous and nonsynonymous sites in the long-lived, woody perennial plant Populus tremula (Salicaceae). Using expression data for 558 genes derived from expressed sequence tags (EST) libraries from 19 different tissues and developmental stages, I study how gene expression levels within single tissues as well as across tissues affect codon usage and rates sequence evolution at synonymous and nonsynonymous sites. I show that gene expression have direct effects on both codon usage and the level of selective constraint of proteins in P. tremula, although in different ways. Codon usage genes is primarily determined by how highly expressed a genes is, whereas rates of sequence evolution are primarily determined by how widely expressed genes are. In addition to the effects of gene expression, protein length appear to be an important factor influencing virtually all aspects of molecular evolution in P. tremula.  相似文献   

14.
The nature of selection on capsid genes of foot-and-mouth disease virus (FMDV) was characterized by examining the ratio of nonsynonymous to synonymous substitutions in 11 data sets of sequences obtained from six different serotypes of FMDV. Using a method of analysis that assigns each codon position to one of a number of estimated values of nonsynonymous to synonymous ratio, significant evidence of positive selection was identified in 5 data sets, operating at 1-7% of codon positions. Evidence of positive selection was identified in complete capsid sequences of serotypes A and C and in VP1 sequences of serotypes SAT 1 and 2. Sequences of serotype SAT-2 recovered from a persistently infected African buffalo also revealed evidence for positive selection. Locations of codons under positive selection coincide closely with those of antigenic sites previously identified with the use of monoclonal antibody escape mutants. The vast majority of codons are under mild to strong purifying selection. However, these results suggest that arising antigenic variants benefit from a selective advantage in their interaction with the immune system, either during the course of an infection or in transmission to individuals with previous exposure to antigen. Analysis of amino acid usage at sites under positive selection indicates that this selective advantage can be conferred by amino acid substitutions that share physicochemically similar properties.  相似文献   

15.
Buchnera, the bacterial endosymbionts of aphids, undergo severe population bottlenecks during maternal transmission through their hosts. Previous studies suggest an increased effect of drift within these strictly asexual, small populations, resulting in an increased fixation of slightly deleterious mutations. This study further explores sequence evolution in Buchnera using three approaches. First, patterns of codon usage were compared across several homologous Escherichia coli and Buchnera loci, in order to test the prediction that selection for the use of optimal codons is less effective in small populations. A chi 2-based measure of codon bias was developed to adjust for the overall A + T richness of silent positions in the endosymbionts. In contrast to E. coli homologues, adaptive codon bias across Buchnera loci is markedly low, and patterns of codon usage lack a strong relationship with gene expression level. These data suggest that codon usage in Buchnera has been shaped largely by mutational pressure and drift rather than by selection for translational efficiency. One exception to the overall lack of bias is groEL, which is known to be constitutively overexpressed in Buchnera and other endosymbionts. Second, relative-rate tests show elevated rates of sequence evolution of numerous protein-coding loci across Buchnera, compared to E. coli. Finally, consistently higher ratios of nonsynonymous to synonymous substitutions in Buchnera loci relative to the enteric bacteria strongly suggest the accumulation of nonsynonymous substitutions in endosymbiont lineages. Combined, these results suggest a decreased effectiveness of purifying selection in purging endosymbiont populations of slightly deleterious mutations, particularly those affecting codon usage and amino acid identity.  相似文献   

16.
Hambuch TM  Parsch J 《Genetics》2005,170(4):1691-1700
The nonrandom use of synonymous codons (codon bias) is a well-established phenomenon in Drosophila. Recent reports suggest that levels of codon bias differ among genes that are differentially expressed between the sexes, with male-expressed genes showing less codon bias than female-expressed genes. To examine the relationship between sex-biased gene expression and level of codon bias on a genomic scale, we surveyed synonymous codon usage in 7276 D. melanogaster genes that were classified as male-, female-, or non-sex-biased in their expression in microarray experiments. We found that male-biased genes have significantly less codon bias than both female- and non-sex-biased genes. This pattern holds for both germline and somatically expressed genes. Furthermore, we find a significantly negative correlation between level of codon bias and degree of sex-biased expression for male-biased genes. In contrast, female-biased genes do not differ from non-sex-biased genes in their level of codon bias and show a significantly positive correlation between codon bias and degree of sex-biased expression. These observations cannot be explained by differences in chromosomal distribution, mutational processes, recombinational environment, gene length, or absolute expression level among genes of the different expression classes. We propose that the observed codon bias differences result from differences in selection at synonymous and/or linked nonsynonymous sites between genes with male- and female-biased expression.  相似文献   

17.
Selection on Codon Usage for Error Minimization at the Protein Level   总被引:1,自引:0,他引:1  
Given the structure of the genetic code, synonymous codons differ in their capacity to minimize the effects of errors due to mutation or mistranslation. I suggest that this may lead, in protein-coding genes, to a preference for codons that minimize the impact of errors at the protein level. I develop a theoretical measure of error minimization for each codon, based on amino acid similarity. This measure is used to calculate the degree of error minimization for 82 genes of Drosophila melanogaster and 432 rodent genes and to study its relationship with CG content, the degree of codon usage bias, and the rate of nucleotide substitution. I show that (i) Drosophila and rodent genes tend to prefer codons that minimize errors; (ii) this cannot be merely the effect of mutation bias; (iii) the degree of error minimization is correlated with the degree of codon usage bias; (iv) the amino acids that contribute more to codon usage bias are the ones for which synonymous codons differ more in the capacity to minimize errors; and (v) the degree of error minimization is correlated with the rate of nonsynonymous substitution. These results suggest that natural selection for error minimization at the protein level plays a role in the evolution of coding sequences in Drosophila and rodents.Reviewing Editor: Dr. Massimo Di Giulio  相似文献   

18.
Maside X  Charlesworth B 《Genetics》2007,176(4):2293-2305
We present the results of a survey of DNA sequence variability at X-linked and autosomal loci in Drosophila americana and of patterns of DNA sequence evolution among D. americana and four other related species in the virilis group of Drosophila. D. americana shows a typical level of silent polymorphism for a Drosophila species, but has an unusually low ratio of nonsynonymous to silent variation. Both D. virilis and D. americana also show a low ratio of nonsynonymous to synonymous substitutions along their respective lineages since the split from their common ancestor. The proportion of amino acid substitutions between D. americana and its relatives that are caused by positive selection, as estimated by extensions of the McDonald-Kreitman test, appears to be unusually high. We cannot, however, exclude the possibility that this reflects a recent increase in the intensity of selection on nonsynonymous mutations in D. americana and D. virilis. We also find that base composition at neutral sites appears to be in overall equilibrium among these species, but there is evidence for departure from equilibrium for codon usage in some lineages.  相似文献   

19.
Adaptive codon usage provides evidence of natural selection in one of its most subtle forms: a fitness benefit of one synonymous codon relative to another. Codon usage bias is evident in the coding sequences of a broad array of taxa, reflecting selection for translational efficiency and/or accuracy as well as mutational biases. Here, we quantify the magnitude of selection acting on alternative codons in genes of the nematode Caenorhabditis remanei, an outcrossing relative of the model organism C. elegans, by fitting the expected mutation-selection-drift equilibrium frequency distribution of preferred and unpreferred codon variants to the empirical distribution. This method estimates the intensity of selection on synonymous codons in genes with high codon bias as N(e)s = 0.17, a value significantly greater than zero. In addition, we demonstrate for the first time that estimates of ongoing selection on codon usage among genes, inferred from nucleotide polymorphism data, correlate strongly with long-term patterns of codon usage bias, as measured by the frequency of optimal codons in a gene. From the pattern of polymorphisms in introns, we also infer that these findings do not result from the operation of biased gene conversion toward G or C nucleotides. We therefore conclude that coincident patterns of current and ancient selection are responsible for shaping biased codon usage in the C. remanei genome.  相似文献   

20.
We examined the codon usages in well-conserved and less-well-conserved regions of vertebrate protein genes and found them to be similar. Despite this similarity, there is a statistically significant decrease in codon bias in the less-well-conserved regions. Our analysis suggests that although those codon changes initially fixed under amino acid replacements tend to follow the overall codon usage pattern, they also reduce the bias in codon usage. This decrease in codon bias leads one to predict that the rate of change of synonymous codons should be greater in those regions that are less well conserved at the amino acid level than in the better-conserved regions. Our analysis supports this prediction. Furthermore, we demonstrate a significantly elevated rate of change of synonymous codons among the adjacent codons 5' to amino acid replacement positions. This provides further support for the idea that there are contextual constraints on the choice of synonymous codons in eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号