首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some visual, vestibular and proprioceptive reflexes which contribute to gaze (head + eye) stabilization were quantified in the chameleon. All the reflexes were analysed in the horizontal plane, and the visual reflexes were also studied in the vertical plane. In restrained-head animals, both the optokinetic nystagmus (OKN) and the vestibulo-ocular reflex (VOR) had low gains. In free-head animals, the head (opto-collic or vestibulo-collic reflex) and eye (OKN or VOR) responses added their effects, thus improving gaze stabilization, especially during vestibular stimulation. Cervical stimulation provoked both a cervico-ocular reflex (COR) in the compensatory direction and a large number of saccades. The saccadic response was especially marked in the presence of patterned visual surroundings.  相似文献   

2.
Patients with bilateral vestibular dysfunction cannot fully compensate passive head rotations with eye movements, and experience disturbing oscillopsia. To compensate for the deficient vestibulo-ocular reflex (VOR), they have to rely on re-fixation saccades. Some can trigger “covert” saccades while the head still moves; others only initiate saccades afterwards. Due to their shorter latency, it has been hypothesized that covert saccades are particularly beneficial to improve dynamic visual acuity, reducing oscillopsia. Here, we investigate the combined effect of covert saccades and the VOR on clear vision, using the Head Impulse Testing Device – Functional Test (HITD-FT), which quantifies reading ability during passive high-acceleration head movements. To reversibly decrease VOR function, fourteen healthy men (median age 26 years, range 21–31) were continuously administrated the opioid remifentanil intravenously (0.15 µg/kg/min). VOR gain was assessed with the video head-impulse test, functional performance (i.e. reading) with the HITD-FT. Before opioid application, VOR and dynamic reading were intact (head-impulse gain: 0.87±0.08, mean±SD; HITD-FT rate of correct answers: 90±9%). Remifentanil induced impairment in dynamic reading (HITD-FT 26±15%) in 12/14 subjects, with transient bilateral vestibular dysfunction (head-impulse gain 0.63±0.19). HITD-FT score correlated with head-impulse gain (R = 0.63, p = 0.03) and with gain difference (before/with remifentanil, R = −0.64, p = 0.02). One subject had a non-pathological head-impulse gain (0.82±0.03) and a high HITD-FT score (92%). One subject triggered covert saccades in 60% of the head movements and could read during passive head movements (HITD-FT 93%) despite a pathological head-impulse gain (0.59±0.03) whereas none of the 12 subjects without covert saccades reached such high performance. In summary, early catch-up saccades may improve dynamic visual function. HITD-FT is an appropriate method to assess the combined gaze stabilization effect of both VOR and covert saccades (overall dynamic vision), e.g., to document performance and progress during vestibular rehabilitation.  相似文献   

3.
Eye movements serve vision, which has two different aims: changing images using saccades, i.e. rapid eye movements, and stabilizing new images on the retina using slow eye movements. Eye movements are performed by ocular motor nuclei in the brainstem, on which supranuclear pathways--originating in the cerebral cortex, cerebellum and vestibular structures--converge. It is useful for the neurologist to know the clinical abnormalities of eye movements visible at the bedside since such signs are helpful for localization. Eye movement paralysis may be nuclear or infranuclear (nerves), involving all types of eye movements, i.e. saccades as well as the vestibulo-ocular reflex (VOR), or supranuclear, in which case the VOR is usually preserved. Lateral eye movements are organized in the pons, with paralysis of adduction (and preservation of convergence) when the lesion affects the medial longitudinal fasciculus (internuclear ophthalmoplegia), paralysis of conjugate lateral eye movements when the lesion affects the abducens nucleus (VI) and the "one-and-a-half" syndrome when both these structures are involved. Vertical eye movements are organized in the midbrain, with ipsilateral oculomotor (III) paralysis and contralateral paralysis of the superior rectus muscle when the third nerve nucleus is unilaterally damaged, supranuclear upward gaze paralysis when the posterior commissure is unilaterally damaged and supranuclear downward gaze paralysis (often coupled with upward gaze paralysis) when the mesencephalic reticular formations are bilaterally damaged. Numerous types of abnormal eye movements exist, of which nystagmus is the most frequent and usually due to damage to peripheral or central vestibular pathways. Cerebral hemispheric or cerebellar damage results in subtle eye movement abnormalities at the bedside, in general only detected using eye movement recordings, because of the multiplicity of eye movement pathways at these levels and their reciprocal compensation in the case of a lesion. Lastly, eye movements can also help the neuroscientist to understand the organization of the brain. They are a good model of motricity allowing us, using eye movement recordings, to study the afferent pathways of the cortical areas that trigger them, and thus to analyze relatively complex neuropsychological processes such as visuo-spatial integration, spatial memory, motivation and the preparation of motor programs.  相似文献   

4.
5.

Background

Catch-up saccades during passive head movements, which compensate for a deficient vestibulo-ocular reflex (VOR), are a well-known phenomenon. These quick eye movements are directed toward the target in the opposite direction of the head movement. Recently, quick eye movements in the direction of the head movement (covert anti-compensatory quick eye movements, CAQEM) were observed in older individuals. Here, we characterize these quick eye movements, their pathophysiology, and clinical relevance during head impulse testing (HIT).

Methods

Video head impulse test data from 266 patients of a tertiary vertigo center were retrospectively analyzed. Forty-three of these patients had been diagnosed with vestibular migraine, and 35 with Menière’s disease.

Results

CAQEM occurred in 38% of the patients. The mean CAQEM occurrence rate (per HIT trial) was 11±10% (mean±SD). Latency was 83±30 ms. CAQEM followed the saccade main sequence characteristics and were compensated by catch-up saccades in the opposite direction. Compensatory saccades did not lead to more false pathological clinical head impulse test assessments (specificity with CAQEM: 87%, and without: 85%). CAQEM on one side were associated with a lower VOR gain on the contralateral side (p<0.004) and helped distinguish Menière’s disease from vestibular migraine (p = 0.01).

Conclusion

CAQEM are a common phenomenon, most likely caused by a saccadic/quick phase mechanism due to gain asymmetries. They could help differentiate two of the most common causes of recurrent vertigo: vestibular migraine and Menière’s disease.  相似文献   

6.
Summary The vestibulo-ocular reflex undergoes adaptive changes that require inputs from the cerebellar flocculus onto brainstem vestibular neurons. As a step toward developing an in vitro preparation in chicks for studying the synaptic basis of those changes, we have elucidated the organization of the pathways through which the flocculus influences vestibulo-ocular movements. Electrical stimulation of the vestibular ampulla evoked brief, contralaterally directed movements in both eyes. Although single current pulses to the flocculus elicited no response, conjunctive stimulation of the flocculus and the vestibular apparatus significantly reduced the vestibularly-evoked movement. Trains of current pulses applied to the flocculus and ampulla evoked eye movements directed toward and away from the side of stimulation, respectively. Recordings from the brainstem revealed neurons that were activated by ipsilateral vestibular stimulation and inhibited by ipsilateral floccular stimulation. Our sample included neurons in the lateral vestibular nucleus, the ventrolateral portion of the medial vestibular nucleus, and the superior vestibular nucleus. Similarities between these findings and those of similar studies in mammals indicate that the chick will provide a good model system for cellular studies of adaptive changes in the vestibulo-ocular reflex.Abbreviations FTN flocculus target neuron - VOR vestibuloocular reflex  相似文献   

7.
We investigated coordinated movements between the eyes and head (“eye-head coordination”) in relation to vision for action. Several studies have measured eye and head movements during a single gaze shift, focusing on the mechanisms of motor control during eye-head coordination. However, in everyday life, gaze shifts occur sequentially and are accompanied by movements of the head and body. Under such conditions, visual cognitive processing influences eye movements and might also influence eye-head coordination because sequential gaze shifts include cycles of visual processing (fixation) and data acquisition (gaze shifts). In the present study, we examined how the eyes and head move in coordination during visual search in a large visual field. Subjects moved their eyes, head, and body without restriction inside a 360° visual display system. We found patterns of eye-head coordination that differed those observed in single gaze-shift studies. First, we frequently observed multiple saccades during one continuous head movement, and the contribution of head movement to gaze shifts increased as the number of saccades increased. This relationship between head movements and sequential gaze shifts suggests eye-head coordination over several saccade-fixation sequences; this could be related to cognitive processing because saccade-fixation cycles are the result of visual cognitive processing. Second, distribution bias of eye position during gaze fixation was highly correlated with head orientation. The distribution peak of eye position was biased in the same direction as head orientation. This influence of head orientation suggests that eye-head coordination is involved in gaze fixation, when the visual system processes retinal information. This further supports the role of eye-head coordination in visual cognitive processing.  相似文献   

8.
The vestibular system is responsible for transforming head motion into precise eye, head, and body movements that rapidly stabilize gaze and posture. How do central excitatory synapses mediate behavioral outputs accurately matched to sensory inputs over a wide dynamic range? Here we demonstrate that vestibular afferent synapses in vitro express frequency-independent transmission that spans their in vivo dynamic range (5-150 spikes/s). As a result, the synaptic charge transfer per unit time is linearly related to vestibular afferent activity in both projection and intrinsic neurons of the vestibular nuclei. Neither postsynaptic glutamate receptor desensitization nor saturation affect the relative amplitude or frequency-independence of steady-state transmission. Finally, we show that vestibular nucleus neurons can transduce synaptic inputs into linear changes in firing rate output without relying on one-to-one calyceal transmission. These data provide a physiological basis for the remarkable linearity of vestibular reflexes.  相似文献   

9.
The middle latency vestibular evoked potential (ML-VsEP) recorded with scalp electrodes in man in response to impulses of angular acceleration is dominated by a forehead positive peak at about 15 ms and a negative peak at about 20 ms; the peak amplitude of this component is about 30 μV. This is followed by slower, smaller amplitude activity. The latency of this initial peak is similar to the latency of the vestibulo-ocular reflex (VOR) in monkeys. The present study was undertaken to elucidate the possible relation between the ML-VsEPs and VOR. This included recordings from forehead-mastoid electrodes (sites used to record VsEP) and other scalp electrodes and the recording of potentials due to eye movement: the electro-oculogram. Direct recording of eye movements was also conducted using an infra-red reflection device in those experiments in which the head was not moved. The recordings were conducted in man during vestibular stimulation eliciting VsEPs, during voluntary eye movements and during caloric and optokinetic stimulation. These experiments indicated that the 15–20 ms component of the ML-VsEP was not due to movements of the eye (corneoretinal dipole). The large amplitude 15–20 ms component of the ML-VsEP was similar in general magnitude, waveform, polarity, duration and rise time to the highly synchronous pre-saccadic spike (neural and/or myogenic) which precedes nystagnys and voluntary saccades. It therefore probably represents vestibular-initiated electrical activity in motor units of the extra-ocular muscles which then produce anti-compensatory saccades.  相似文献   

10.
We have shown recently in alert monkeys that repeated interaction between the pursuit and vestibular systems in the orthogonal plane induces adaptive changes in the VOR. To examine further properties of adaptive cross axis VOR induced by pursuit training, sinusoidal whole body rotation was applied either in the pitch or yaw plane while presenting a target spot that moved orthogonally to the rotation plane with either 90 degrees phase-lead or 90 degrees phase-lag to the chair signal. After one hour of training at 0.5 Hz (+/- 10 degrees), considerable phase-shift was observed in orthogonal eye movement responses consistent with the training paradigms by identical chair rotation in complete darkness, with further lead at lower frequencies and lag at higher frequencies. However, gains (eye/chair) induced by phase- shift pursuit training was different during pitch and yaw rotation. Although frequency tuning was maintained during pitch in the phase-shift paradigms, it was not maintained during yaw, resulting in higher gains at lower stimulus frequencies compared to the gains during yaw. This difference may reflect otolith contribution during pitch rotation. To understand further the nature of signals that induce adaptive cross axis VOR, we examined interaction of pursuit, whole field-visual pattern and vestibular stimuli. Magnitudes of the cross axis VOR with a spot alone on one hand and with a spot and pattern moving together in the same plane on the other during chair rotation were similar, and when one of the two visual stimuli was stationary during chair rotation, our well trained monkeys did not induce the cross axis VOR. These results suggest that the cross axis VOR induced by pursuit training shares common mechanisms with the cross axis VOR induced by whole field-slip stimuli and that if conflicting information is given between the two visual stimuli, adaptive changes are inhibited. Horizontal GVPs were recorded in the cerebellar floccular lobe during pitch rotation coupled with horizontal pursuit stimuli. These GVPs did not respond to pitch in the dark before training, but responded after 60 min of pursuit training with eye velocity sensitivities similar to those before training. Adaptive change in the VOR was specific to smooth eye movements but not to saccades in our paradigms.  相似文献   

11.
The vestibulo-ocular reflex (VOR) is capable of producing compensatory eye movements in three dimensions. It utilizes the head rotational velocity signals from the semicircular canals to control the contractions of the extraocular muscles. Since canal and muscle coordinate frames are not orthogonal and differ from one another, a sensorimotor transformation must be produced by the VOR neural network. Tensor theory has been used to construct a linear transformation that can model the three-dimensional behavior of the VOR. But tensor theory does not take the distributed, redundant nature of the VOR neural network into account. It suggests that the neurons subserving the VOR, such as vestibular nucleus neurons, should have specific sensitivity-vectors. Actual data, however, are not in accord. Data from the cat show that the sensitivity-vectors of vestibular nucleus neurons, rather than aligning with any specific vectors, are dispersed widely. As an alternative to tensor theory, we modeled the vertical VOR as a three-layered neural network programmed using the back-propagation learning algorithm. Units in mature networks had divergent sensitivity-vectors which resembled those of actual vestibular nucleus neurons in the cat. This similarity suggests that the VOR sensorimotor transformation may be represented redundantly rather than uniquely. The results demonstrate how vestibular nucleus neurons can encode the VOR sensorimotor transformation in a distributed manner.  相似文献   

12.
Rabbits were raised in complete darkness from birth to the age of 3 months. At this age, the animals were submitted to dynamic vestibular stimulation consisting of lateral sinusoidal oscillations of different frequencies and fixed amplitude. The vertical VOR, elicited in complete darkness, was then recorded. While the phase of the response was perfectly adequate to ensure head movements compensation, the gain values recorded were clearly reduced with respect to the values obtained in a normally raised control group of the same age. After exposure to light, the visually deprived animals showed a complete recovery of normal VOR gain values in a relatively short period of time. Another group of animals was submitted to monocular prolongation of light deprivation during the fourth month of life. After 2 weeks these rabbits displayed a clear unbalance of the VOR between the two eyes: the eye in which vision was allowed showed a complete recovery of VOR gain values, while the gain of the occluded eye remained unchanged. The present results confirm that visual experience in early life is necessary for a correct development of the VOR. If visual deprivation is limited to the first few months of life, the impairment of the reflex characteristics is completely reversible. Finally, data on monocular deprivation suggest that, in the rabbit, the neural structures which preside to the development of the vertical VOR compensatory properties are lateralized.  相似文献   

13.
The goal of this study was to test whether a superposition model of smooth-pursuit and vestibulo-ocular reflex (VOR) eye movements could account for the stability of gaze that subjects show as they view a stationary target, during head rotations at frequencies that correspond to natural movements. Horizontal smooth-pursuit and the VOR were tested using sinusoidal stimuli with frequencies in the range 1.0–3.5 Hz. During head rotation, subjects viewed a stationary target either directly or through an optical device that required eye movements to be approximately twice the amplitude of head movements in order to maintain foveal vision of the target. The gain of compensatory eye movements during viewing through the optical device was generally greater than during direct viewing or during attempted fixation of the remembered target location in darkness. This suggests that visual factors influence the response, even at high frequencies of head rotation. During viewing through the optical device, the gain of compensatory eye movements declined as a function of the frequency of head rotation (P < 0.001) but, at any particular frequency, there was no correlation with peak head velocity (P > 0.23), peak head acceleration (P > 0.22) or retinal slip speed (P > 0.22). The optimal values of parameters of smooth-pursuit and VOR components of a simple superposition model were estimated in the frequency domain, using the measured responses during head rotation, as each subject viewed the stationary target through the optical device. We then compared the model's prediction of smooth-pursuit gain and phase, at each frequency, with values obtained experimentally. Each subject's pursuit showed lower gain and greater phase lag than the model predicted. Smooth-pursuit performance did not improve significantly if the moving target was a 10 deg × 10 deg Amsler grid, or if sinusoidal oscillation of the target was superimposed on ramp motion. Further, subjects were still able to modulate the gain of compensatory eye movements during pseudo-random head perturbations, making improved predictor performance during visual-vestibular interactions unlikely. We conclude that the increase in gain of eye movements that compensate for head rotations when subjects view, rather than imagine, a stationary target cannot be adequately explained by superposition of VOR and smooth-pursuit signals. Instead, vision may affect VOR performance by determining the context of the behavior. Received: 16 June 1997 / Accepted: 5 December 1997  相似文献   

14.
As animals travel through the environment, powerful reflexes help stabilize their gaze by actively maintaining head and eyes in a level orientation. Gaze stabilization reduces motion blur and prevents image rotations. It also assists in depth perception based on translational optic flow. Here we describe side-to-side flight manoeuvres in honeybees and investigate how the bees’ gaze is stabilized against rotations during these movements. We used high-speed video equipment to record flight paths and head movements in honeybees visiting a feeder. We show that during their approach, bees generate lateral movements with a median amplitude of about 20 mm. These movements occur with a frequency of up to 7 Hz and are generated by periodic roll movements of the thorax with amplitudes of up to ±60°. During such thorax roll oscillations, the head is held close to horizontal, thereby minimizing rotational optic flow. By having bees fly through an oscillating, patterned drum, we show that head stabilization is based mainly on visual motion cues. Bees exposed to a continuously rotating drum, however, hold their head fixed at an oblique angle. This result shows that although gaze stabilization is driven by visual motion cues, it is limited by other mechanisms, such as the dorsal light response or gravity reception.  相似文献   

15.
Reading performance during standing and walking was assessed for information presented on earth-fixed and head-fixed displays by determining the minimal duration during which a numerical time stimulus needed to be presented for 50% correct naming answers. Reading from the earth-fixed display was comparable during standing and walking, with optimal performance being attained for visual character sizes in the range of 0.2° to 1°. Reading from the head-fixed display was impaired for small (0.2-0.3°) and large (5°) visual character sizes, especially during walking. Analysis of head and eye movements demonstrated that retinal slip was larger during walking than during standing, but remained within the functional acuity range when reading from the earth-fixed display. The detrimental effects on performance of reading from the head-fixed display during walking could be attributed to loss of acuity resulting from large retinal slip. Because walking activated the angular vestibulo-ocular reflex, the resulting compensatory eye movements acted to stabilize gaze on the information presented on the earth-fixed display but destabilized gaze from the information presented on the head-fixed display. We conclude that the gaze stabilization mechanisms that normally allow visual performance to be maintained during physical activity adversely affect reading performance when the information is presented on a display attached to the head.  相似文献   

16.
The activity of medial vestibular nucleus neurons projecting to the contralateral abducens nucleus (premotor vestibular neurons) has been recorded during spontaneous and vestibular induced eye movements in the alert cat. Recorded neurons were identified by their antidromic activation from the abducens nucleus and by the post-synaptic field potential induced in this nucleus. The activity of identified medial vestibular neurons increased significantly with horizontal eye position and velocity toward the contralateral side, and decreased abruptly during ipsilateral saccades. The activity of these neurons was also related to head velocity toward the ipsilateral side. The functional role and origin of eye position and velocity signals present in these vestibular neurons are discussed.  相似文献   

17.
The vestibulo-ocular reflex (VOR) produces compensatory eye movements by utilizing head rotational velocity signals from the semicircular canals to control contractions of the extraocular muscles. In mammals, the time course of horizontal VOR is longer than that of the canal signals driving it, revealing the presence of a central integrator known as velocity storage. Although the neurons mediating VOR have been described neurophysiologically, their properties, and the mechanism of velocity storage itself, remain unexplained. Recent models of integration in VOR are based on systems of linear elements, interconnected in arbitrary ways. The present study extends this work by modeling horizontal VOR as a learning network composed of nonlinear model neurons. Network architectures are based on the VOR arc (canal afferents, vestibular nucleus (VN) neurons and extraocular motoneurons) and have both forward and lateral connections. The networks learn to produce velocity storage integration by forming lateral (commissural) inhibitory feedback loops between VN neurons. These loops overlap and interact in a complex way, forming both fast and slow VN pathways. The networks exhibit some of the nonlinear properties of the actual VOR, such as dependency of decay rate and phase lag upon input magnitude, and skewing of the response to higher magnitude sinusoidal inputs. Model VN neurons resemble their real counterparts. Both have increased time constant and gain, and decreased spontaneous rate as compared to canal afferents. Also, both model and real VN neurons exhibit rectification and skew. The results suggest that lateral inhibitory interactions produce velocity storage and also determine the properties of neurons mediating VOR. The neural network models demonstrate how commissural inhibition may be organized along the VOR pathway.  相似文献   

18.
Modification of the vestibulo-ocular reflex (VOR) by vestibular habituation is an important paradigm in the study of neural plasticity. The VOR is responsible for rotating the eyes to maintain the direction of gaze during head rotation. The response of the VOR to sinusoidal rotation is quantified by its gain (eye rotational velocity/head rotational velocity) and phase difference (eye velocity phase—inverted head velocity phase). The frequency response of the VOR in naïve animals has been previously modeled as a high-pass filter (HPF). A HPF passes signals above its corner frequency with gain 1 and phase 0 but decreases gain and increases phase lead (positive phase difference) as signal frequency decreases below its corner frequency. Modification of the VOR by habituation occurs after prolonged low-frequency rotation in the dark. Habituation causes a reduction in low-frequency VOR gain and has been simulated by increasing the corner frequency of the HPF model. This decreases gain not only at the habituating frequency but further decreases gain at all frequencies below the new corner frequency. It also causes phase lead to increase at all frequencies below the new corner frequency (up to some asymptotic value). We show that habituation of the goldfish VOR is not a broad frequency phenomena but is frequency specific. A decrease in VOR gain is produced primarily at the habituating frequency, and there is an increase in phase lead at nearby higher frequencies and a decrease in phase lead at nearby lower frequencies (phase crossover). Both the phase crossover and the frequency specific gain decrease make it impossible to simulate habituation of the VOR simply by increasing the corner frequency of the HPF model. The simplest way to simulate our data is to subtract the output of a band-pass filter (BPF) from the output of the HPF model of the naïve VOR. A BPF passes signals over a limited frequency range only. A BPF decreases gain and imparts a phase lag and lead, respectively, as frequency increases and decreases outside this range. Our model produces both the specific decrease in gain at the habituating frequency, and the phase crossover centered on the frequency of habituation. Our results suggest that VOR habituation may be similar to VOR adaptation (in which VOR modification is produced by visual-vestibular mismatch) in that both are frequency-specific phenomena.  相似文献   

19.

Background and Aims

Opioids are indispensable for pain treatment but may cause serious nausea and vomiting. The mechanism leading to these complications is not clear. We investigated whether an opioid effect on the vestibular system resulting in corrupt head motion sensation is causative and, consequently, whether head-rest prevents nausea.

Methods

Thirty-six healthy men (26.6±4.3 years) received an opioid remifentanil infusion (45 min, 0.15 μg/kg/min). Outcome measures were the vestibulo-ocular reflex (VOR) gain determined by video-head-impulse-testing, and nausea. The first experiment (n = 10) assessed outcome measures at rest and after a series of five 1-Hz forward and backward head-trunk movements during one-time remifentanil administration. The second experiment (n = 10) determined outcome measures on two days in a controlled crossover design: (1) without movement and (2) with a series of five 1-Hz forward and backward head-trunk bends 30 min after remifentanil start. Nausea was psychophysically quantified (scale from 0 to 10). The third controlled crossover experiment (n = 16) assessed nausea (1) without movement and (2) with head movement; isolated head movements consisting of the three axes of rotation (pitch, roll, yaw) were imposed 20 times at a frequency of 1 Hz in a random, unpredictable order of each of the three axes. All movements were applied manually, passively with amplitudes of about ± 45 degrees.

Results

The VOR gain decreased during remifentanil administration (p<0.001), averaging 0.92±0.05 (mean±standard deviation) before, 0.60±0.12 with, and 0.91±0.05 after infusion. The average half-life of VOR recovery was 5.3±2.4 min. 32/36 subjects had no nausea at rest (nausea scale 0.00/0.00 median/interquartile range). Head-trunk and isolated head movement triggered nausea in 64% (p<0.01) with no difference between head-trunk and isolated head movements (nausea scale 4.00/7.25 and 1.00/4.5, respectively).

Conclusions

Remifentanil reversibly decreases VOR gain at a half-life reflecting the drug’s pharmacokinetics. We suggest that the decrease in VOR gain leads to a perceptual mismatch of multisensory input with the applied head movement, which results in nausea, and that, consequently, vigorous head movements should be avoided to prevent opioid-induced nausea.  相似文献   

20.
For humans, social cues often guide the focus of attention. Although many nonhuman primates, like humans, live in large, complex social groups, the extent to which human and nonhuman primates share fundamental mechanisms of social attention remains unexplored. Here, we show that, when viewing a rhesus macaque looking in a particular direction, both rhesus macaques and humans reflexively and covertly orient their attention in the same direction. Specifically, when performing a peripheral visual target detection task, viewing a monkey with either its eyes alone or with both its head and eyes averted to one side facilitated the detection of peripheral targets when they randomly appeared on the same side. Moreover, viewing images of a monkey with averted gaze evoked small but systematic shifts in eye position in the direction of gaze in the image. The similar magnitude and temporal dynamics of response facilitation and eye deviation in monkeys and humans suggest shared neural circuitry mediating social attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号