首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Freshwater macroalgae represent a largely overlooked group of phototrophic organisms that could play an important role within an industrial ecology context in both utilising waste nutrients and water and supplying biomass for animal feeds and renewable chemicals and fuels. This study used water from the intensive aquaculture of freshwater fish (Barramundi) to examine how the biomass production rate and protein content of the freshwater macroalga Oedogonium responds to increasing the flux of nutrients and carbon, by either increasing water exchange rates or through the addition of supplementary nitrogen and CO2. Biomass production rates were highest at low flow rates (0.1–1 vol.day−1) using raw pond water. The addition of CO2 to cultures increased biomass production rates by between 2 and 25% with this effect strongest at low water exchange rates. Paradoxically, the addition of nitrogen to cultures decreased productivity, especially at low water exchange rates. The optimal culture of Oedogonium occurred at flow rates of between 0.5–1 vol.day−1, where uptake rates peaked at 1.09 g.m−2.day−1 for nitrogen and 0.13 g.m−2.day−1 for phosphorous. At these flow rates Oedogonium biomass had uptake efficiencies of 75.2% for nitrogen and 22.1% for phosphorous. In this study a nitrogen flux of 1.45 g.m−2.day−1 and a phosphorous flux of 0.6 g.m−2.day−1 was the minimum required to maintain the growth of Oedogonium at 16–17 g DW.m−2.day−1 and a crude protein content of 25%. A simple model of minimum inputs shows that for every gram of dry weight biomass production (g DW.m−2.day−1), Oedogonium requires 0.09 g.m−2.day−1 of nitrogen and 0.04 g.m−2.day−1 of phosphorous to maintain growth without nutrient limitation whilst simultaneously maintaining a high-nutrient uptake rate and efficiency. As such the integrated culture of freshwater macroalgae with aquaculture for the purposes of nutrient recovery is a feasible solution for the bioremediation of wastewater and the supply of a protein resource.  相似文献   

2.
Species of Ulva have a wide range of commercial applications and are increasingly being recognized as promising candidates for integrated aquaculture. In South Africa, Ulva has been commercially cultivated in integrated seaweed-abalone aquaculture farms since 2002, with more than 2000 tonnes of biomass cultivated per annum in land-based paddle raceways. However, the identity of the species of Ulva grown on these farms remains uncertain. We therefore characterized samples of Ulva cultivated in five integrated multi-trophic aquaculture farms (IMTA) across a wide geographical range and compared them with foliose Ulva specimens from neighboring seashores. The molecular markers employed for this study were the chloroplast-encoded Ribulose-1,5-bisphosphate carboxylase oxygenase (rbcL), the Internal Transcribed Spacer (ITS) of the nuclear, and the chloroplast elongation factor tufA. All currently cultivated specimens of Ulva were molecularly resolved as a single species, U. lacinulata. The same species has been cultivated for over a decade, although a few specimens of two other species were also present in early South African IMTA systems. The name Ulva uncialis is adopted for the Ulva “Species A” by Fort et al. (2021), Molecular Ecology Resources, 22, 86) significantly extending the distribution range for this species. A comparison with wild Ulva on seashores close to the farms resulted in five new distribution records for South Africa (U. lacinulata, U. ohnoi, U. australis, U. stenophylloides, and U. aragoënsis), the first report of a foliose form of U. compressa in the region, and one new distribution record for Namibia (U. australis). This study reiterates the need for DNA confirmation, especially when identifying morphologically simple macroalgae with potential commercial applications.  相似文献   

3.
The relationship between growth rate and rRNA content in a marine Synechococcus strain was examined. A combination of flow cytometry and whole-cell hybridization with fluorescently labeled 16S rRNA-targeted oligonucleotide probes was used to measure the rRNA content of Synechococcus strain WH8101 cells grown at a range of light-limited growth rates. The sensitivity of this approach was sufficient for the analysis of rRNA even in very slowly growing Synechococcus cells (μ = 0.15 day−1). The relationship between growth rate and cellular rRNA content comprised three phases: (i) at low growth rates (<~0.7 day−1), rRNA cell−1 remained approximately constant; (ii) at intermediate rates (~0.7 − 1.6 day−1), rRNA cell−1 increased proportionally with growth rate; and (iii) at the highest, light-saturated rates (>~1.6 day−1), rRNA cell−1 dropped abruptly. Total cellular RNA (as measured with the nucleic acid stain SYBR Green II) was well correlated with the probe-based measure of rRNA and varied in a similar manner with growth rate. Mean cell volume and rRNA concentration (amount of rRNA per cubic micrometer) were related to growth rate in a manner similar to rRNA cell−1, although the overall magnitude of change in both cases was reduced. These patterns are hypothesized to reflect an approximately linear increase in ribosome efficiency with increasing growth rate, which is consistent with the prevailing prokaryotic model at low growth rates. Taken together, these results support the notion that measurements of cellular rRNA content might be useful for estimating in situ growth rates in natural Synechococcus populations.  相似文献   

4.
Ulva spp. are used in a wide range of commercial applications, including bioremediation, food, bioenergy, pharmaceuticals, and agriculture. The sulfated polysaccharide ulvan obtained from Ulva spp. is of interest for triggering plant defenses against disease. However, the cultivation of Ulva spp. is still in its infancy. This study verified the feasibility of cultivating Ulva lactuca and Ulva flexuosa at two sites on the tropical Brazilian coast. We investigated the following: (a) methods to induce sporulation, (b) comparison of seeding ropes inoculated in vitro versus seeding at sea over 40 days, (c) production and harvest cycles at 15 and 30 days, (d) growth productivity of U. flexuosa at sea and in outdoor tanks, and (e) comparison of ulvan yields from biomass cultivated in tanks and the sea. High nutrient treatment was the most efficient method to induce sporulation (7,540?±?3,133 spores m?1). Sea-based cultivation of U. flexuosa was only successful at one site. Seeding of ropes in vitro was more efficient than seeding at sea (0.31?±?0.20 g m?2 day?1), and 15-day harvest cycles were most efficient (20.1?±?1.8 % day?1; 0.46?±?0.11 g m?2 day?1). Despite differences in plant growth in tanks (27.9?±?4.4 % day?1) and at sea (20.1?±?1.8 % day?1), the dry biomass and ulvan yields (17.7?±?5.0 %) did not differ between these systems. Cultivation of U. flexuosa was feasible at sea using in vitro seeding with a production cycle of 15 days in Brazilian tropical waters and tanks with high irradiance and enriched seawater.  相似文献   

5.
In this paper, species compositions and seasonal variations of attached Ulva species on Porphyra aquaculture rafts and free floating Ulva species at Rudong coastal area, Jiangsu Province of China were investigated during 2010–2011. Based on the sequences analysis of nuclear-encoded ITS (including 5.8S rDNA regions) and 5S rDNA spacer regions, dominant species of both attached and free-floating Ulva samples were identified as Ulva compressa, Ulva linza, Ulva prolifera and Ulva flexuosa. Phylogenetic tree based on sequences of ITS and 5S rDNA spacer regions for attached and free-floating Ulva species was constructed, respectively. Species compositions of the Ulva population attached on aquaculture rafts varied with seasons, and U. prolifera was only found on aquaculture rafts in March 2011 during the 2010–2011 Porphyra yezoensis cultivation season, which had the same sequences of ITS and 5S rDNA spacer regions as that of the dominant species bloomed in the Yellow Sea of China in 2008. Dominant species of the free-floating Ulva population at the early stage of the green tide were U. compressa, U. flexuosa, and U. linza. Free-floating U. prolifera appeared in the middle of May, 2011. ITS sequence similarity rates of U. compressa and U. flexuosa between the attached and free-floating species were 100%. And ITS and 5S rDNA spacer sequences of the attached and the free-floating U. prolifera population also showed no differences. Further study showed that there were two types of free-floating U. prolifera population (Type 5S-A and Type 5S-B) based on 5S rDNA spacer sequences. The present study would provide some useful information for clarifying the outbreak mechanism of green tides occurred in the Yellow Sea, China.  相似文献   

6.
I examined the activity of fungi associated with yellow poplar (Liriodendron tulipifera) and white oak (Quercus alba) leaves in two streams that differed in pH and alkalinity (a hardwater stream [pH 8.0] and a softwater stream [pH 6.7]) and contained low concentrations of dissolved nitrogen (<35 μg liter−1) and phosphorus (<3 μg liter−1). The leaves of each species decomposed faster in the hardwater stream (decomposition rates, 0.010 and 0.007 day−1 for yellow poplar and oak, respectively) than in the softwater stream (decomposition rates, 0.005 and 0.004 day−1 for yellow poplar and oak, respectively). However, within each stream, the rates of decomposition of the leaves of the two species were not significantly different. During the decomposition of leaves, the fungal biomasses determined from ergosterol concentrations, the production rates determined from rates of incorporation of [14C]acetate into ergosterol, and the sporulation rates associated with leaves were dynamic, typically increasing to maxima and then declining. The maximum rates of fungal production and sporulation associated with yellow poplar leaves were greater than the corresponding rates associated with white oak leaves in the hardwater stream but not in the softwater stream. The maximum rates of fungal production associated with the leaves of the two species were higher in the hardwater stream (5.8 mg g−1 day−1 on yellow poplar leaves and 3.1 mg g−1 day−1 on oak leaves) than in the softwater stream (1.6 mg g−1 day−1 on yellow poplar leaves and 0.9 mg g−1 day−1 on oak leaves), suggesting that effects of water chemistry other than the N and P concentrations, such as pH or alkalinity, may be important in regulating fungal activity in streams. In contrast, the amount of fungal biomass (as determined from ergosterol concentrations) on yellow poplar leaves was greater in the softwater stream (12.8% of detrital mass) than in the hardwater stream (9.6% of detrital mass). This appeared to be due to the decreased amount of fungal biomass that was converted to conidia and released from the leaf detritus in the softwater stream.  相似文献   

7.
The macroalga Ulva ohnoi constitutes a considerable fraction of green tides in coastal areas of Japan, but little is known about the physiological characteristics of this species. To investigate the environmental factors that promote the formation of green tides, we tested the responses of U. ohnoi and another common Japanese species, Ulva pertusa, to various levels of irradiance at different water temperatures. Because the two species are morphologically similar, we identified them using the PCR‐restriction fragment length polymorphism method. Under laboratory conditions, we evaluated the photosynthetic, dark respiration, and relative growth rate at a range of water temperatures (5 to 35°C) and photosynthetically active radiation (0 to 1000 μmol photons m?2 s?1). The maximum gross photosynthetic rate of U. ohnoi was larger than that of U. pertusa. The dark respiration rates revealed no significant differences among the species and temperature conditions. At 500 μmol photons m?2 s?1, the relative growth rate of U. ohnoi was larger than that of U. pertusa in higher temperature and the difference was the largest at 20°C. The estimated compensation irradiance and estimated saturation irradiance of U. ohnoi and U. pertusa ranged from 0.709 to 5.510 and 40.530 to 58.674 μmol photons m?2 s?1, which were lower than those in other intertidal green macroalgae, from 6 to 11 and 50 to 82 μmol photons m?2 s?1, respectively. Thus, U. ohnoi which exists as free‐floating near the water surface and accumulating inside the green tide can survive extensively in the water column of the intertidal zone, furthermore, the species can maintain rapid growth in this situation. Therefore, as a result of this study, it is suggested that the ecological success of U. ohnoi in shallow waters such as the tidal flats, estuarine, and coasts of the inner bay in comparison with U. pertusa.  相似文献   

8.
Seed growth rate and carbohydrate pool sizes of the soybean fruit   总被引:6,自引:2,他引:4       下载免费PDF全文
The relationships between various carbohydrate pools of the soybean (Glycine max [L.] Merrill) fruit and growth rate of seeds were evaluated. Plants during midpod-fill were subjected to various CO2 concentrations or light intensities for 7 days to generate different rates of seed growth. Dry matter accumulation rates of seeds and pod wall, along with glucose, sucrose, and starch concentrations in the pod wall, seed coat, and embryo were measured in three-seeded fruits located from nodes six through ten. Seed growth rates ranged from 4 to 37 milligrams·day−1·fruit−1. When seed growth rates were greater than 12 milligrams·day−1·fruit−1, sucrose concentration remained relatively constant in the pod wall (1.5 milligrams·100 milligrams dry weight−1), seed coat (8.5 milligrams·100 milligrams dry weight−1), and embryo (5.0 milligrams·100 milligrams dry weight−1). However, sucrose concentrations decreased in all three parts of the fruit as growth rate of the seeds fell below 12 milligrams·day−1·fruit−1. This relationship suggests that at high seed growth rates, flux of sucrose through the sucrose pools of the fruit was more important than pool size for growth. Starch concentration in the pod wall remained relatively constant (2 milligrams·100 milligrams dry weight−1) at higher rates of seed growth but decreased as seed growth rates fell below 12 milligrams·day−1·fruit−1. This suggests that pod wall starch may buffer seed growth under conditions of limiting assimilate availability. There was no indication that carbohydrate pools of the fruit were a limitation to transport or growth processes of the soybean fruit.  相似文献   

9.
Sequences of the nuclear internal transcribed spacer 1 (ITS1) region and the chloroplast rbcL gene were obtained from 86 specimens of Ulva (including “Enteromorpha”) from five of the main Hawaiian Islands. These 86 specimens were divided into 11 operational taxonomic units (OTUs) based on analyses of primary sequence data and comparisons of ITS1 secondary structure. Of the 11 OTUs, six have not previously been reported from anywhere in the world. Only three represented exact sequence matches to named species (Ulva lactuca L., syn. U. fasciata Delile; U. ohnoi Hiraoka et Shimada); two others represented exact sequence matches to unnamed species from Japan and New Zealand. Of the 12 species names currently in use for Hawaiian Ulva, only one, U. lactuca (as U. fasciata), was substantiated. General morphology of the specimens did not always correspond with molecular OTUs; for example, reticulate thallus morphology, previously considered diagnostic for the species U. reticulata Forssk., was expressed in thalli assigned to U. ohnoi and to one of the novel OTUs. This finding confirms a number of recent studies and provides further support for a molecular species concept for Ulva. These results suggest that Ulva populations in tropical and subtropical regions consist of species that are largely unique to these areas, for which the application of names based on types from temperate and boreal European and North American waters is inappropriate. Ulva ohnoi, a “green tide” species, is reported from Hawaii for the first time.  相似文献   

10.
This research measured mycelial extension rates of selected strains of Phanerochaete chrysorhiza, Phanerochaete laevis, Phanerochaete sanguinea, Phanerochaete filamentosa, Phanerochaete sordida, Inonotus circinatus, and Phanerochaete chrysosporium and the ability of these organisms to tolerate and degrade the wood preservative pentachlorophenol (PCP) in an aqueous medium and in soil. Most of the tested species had mycelial extension rates in the range of ≤0.5 to 1.5 cm day−1, but there were large interspecific differences. A notable exception, P. sordida, grew very rapidly, with an average mycelial extension rate of 2.68 cm day−1 at 28°C. Rank of species by growth rate was as follows: P. chrysosporium > P. sordida > P. laevis > P. chrysorhiza = P. sanguinea > I. circinatus = P. filamentosa. There were also significant intraspecific differences in mycelial extension rates. For example, mycelial extension rates among strains of P. sordida ranged from 1.78 to 4.81 cm day−1. Phanerochaete spp. were very sensitive to PCP. Growth of several species was prevented by the presence of 5 ppm (5 μg/g) PCP. However, P. chrysosporium and P. sordida grew at 25 ppm PCP, albeit at greatly decreased mycelial extension rates. In an aqueous medium, mineralization of PCP by P. sordida 13 (ca. 12% after 30 days) was significantly greater than that by all other tested P. sordida strains and P. chrysosporium. After 64 days, the level of PCP had decreased by 96 and 82% in soil inoculated with P. chrysosporium and P. sordida, respectively. Depletion of PCP by these fungi occurred in a two-stage process. The first stage was characterized by a rapid depletion of PCP that coincided with an accumulation of pentachloroanisole (PCA). At the end of the first stage, ca. 64 and 71% of the PCP was converted to PCA in P. chrysosporium and P. sordida cultures, respectively. In the second stage, levels of PCP and PCA were reduced by 9.6 and 18%, respectively, in soil inoculated with P. chrysosporium and by 3 and 23%, respectively, in soil inoculated with P. sordida. PCA was mineralized by both P. chrysosporium and P. sordida in an aqueous medium.  相似文献   

11.
The tetrasporophyte of Asparagopsis armata has been previously established as a novel seaweed biofilter for integrated land-based mariculture. The species growth and biofiltration rates were much higher than the values described in the literature for Ulva spp., the most common seaweed biofilter. However, a validation of the advantage of one species over the other requires a study of the performances of these two species in the same system at the same time. In this work, we compared the biofiltration performance and biomass yield of A. armata and Ulva rigida cultivated in the effluents of a fish farm in southern Portugal. Comparisons were performed at different water renewal rates and in two seasons of the year. The maximum total ammonia nitrogen (TAN) removal rates were similar for both species in December (2.7 and 2.8 g TAN m–2 day–1 for U. rigida and A. armata, respectively) and higher for A. armata (6.5 g TAN m–2 day–1) than for U. rigida (5.1 g TAN m–2 day–1) in May. Higher differences were observed when estimating the nitrogen biofiltration through the organic nitrogen yield (N yield) of the biomass produced, particularly in May. This estimate is directly related with the biomass yield and the N content in the tissue which were always higher for A. armata than for U. rigida. In December, the maximum biomass yields were 71 g dry weight (DW) m–2 day–1 for A. armata and 44 g DW m–2 day–1 for U. rigida, while in May, the yield of A. armata was 125 g DW m–2 day–1 and of U. rigida was 73 g DW m–2 day–1. This study confirmed that A. armata is indeed a more efficient biofilter than U. rigida. To the best of our knowledge, the production rates reported here are the highest ever reported for macroalgae cultivated in tanks.  相似文献   

12.
Phylogenetic clades based on DNA sequences such as the chloroplast rbcL gene and the nuclear ITS region are frequently used to delimit algal species. However, these molecular markers cannot accurately delimit boundaries among some Ulva species. Although Ulva reticulata and Ulva ohnoi occasionally bloom in tropical to warm‐temperate regions and are clearly distinguishable by their reticulate or plain blade morphology, they have few or no sequence divergences in these molecular markers and form a monophyletic clade. In this study, to clarify the speciation and species delimitation in the U. reticulata‐ohnoi complex clade, reproductive relationships among several sexual strains from the Philippines and Japan including offspring that originated from the type specimen of U. ohnoi were examined by culturing and hybridization in addition to the ITS‐based analysis. As a result, both prezygotic and postzygotic reproductive isolation were revealed to occur between genetically perforated U. reticulata and imperforate U. ohnoi. They were also separated on the basis of sequence analysis of the ITS region. That strongly supports that the two taxa are independent biological species. Although no prezygotic barrier among the Philippine and Japanese strains of U. reticulata was observed, unexpectedly zoospores produced by hybrid sporophytes in some of their combinations mostly failed to develop, indicating partial formation of a postzygotic barrier despite a 0.2% divergence in the ITS sequence. These findings suggest speciation is still ongoing in U. reticulata.  相似文献   

13.
Methanotrophs and Methanogens in Masonry   总被引:1,自引:0,他引:1       下载免费PDF全文
Methanotrophs were present in 48 of 225 stone samples which were removed from 19 historical buildings in Germany and Italy. The average cell number of methanotrophs was 20 CFU per g of stone, and their activities ranged between 11 and 42 pmol of CH4 g of stone−1 day−1. Twelve strains of methane-oxidizing bacteria were isolated. They belonged to the type II methanotrophs of the genera Methylocystis, Methylosinus, and Methylobacterium. In masonry, growth substrates like methane or methanol are available in very low concentrations. To determine if methane could be produced by the stone at rates sufficient to support growth of methanotrophs, methane production by stone samples under nonoxic conditions was examined. Methane production of 0.07 to 215 nmol of CH4 g of stone−1 day−1 was detected in 23 of 47 stone samples examined. This indicated the presence of the so-called “mini-methane”-producing bacteria and/or methanogenic archaea. Methanotrophs occurred in nearly all samples which showed methane production. This finding indicated that methanotrophs depend on biogenic methane production in or on stone surfaces of historical buildings.  相似文献   

14.
Growth of Vibrio cholerae O1 in Red Tide Waters off California   总被引:1,自引:0,他引:1       下载免费PDF全文
Vibrio cholerae serotype O1 is autochthonous to estuarine and coastal waters. However, its population dynamics in such environments are not well understood. We tested the proliferation of V. cholerae N16961 during a Lingulodinium polyedrum bloom, as well as other seawater conditions. Microcosms containing 100-kDa-filtered seawater were inoculated with V. cholerae or the 0.6-μm-pore-size filterable fraction of seawater assemblages. These cultures were diluted 10-fold with fresh 100-kDa-filtered seawater every 48 h for four cycles. Growth rates ranged from 0.3 to 14.3 day−1 (4.2 day−1 ± 3.9) for V. cholerae and 0.1 to 9.7 day−1 (2.2 ± 2.8 day−1) for bacterial assemblage. Our results suggest that dissolved organic matter during intense phytoplankton blooms has the potential to support explosive growth of V. cholerae in seawater. Under the conditions tested, free-living V. cholerae was able to reach concentrations per milliliter that were up to 3 orders of magnitude higher than the known minimum infectious dose (104 cell ml−1) and remained viable under many conditions. If applicable to the complex conditions in marine ecosystems, our results suggest an important role of the growth of free-living V. cholerae in disease propagation and prevention during phytoplankton blooms.  相似文献   

15.
Activated sludge was fed phenol as the sole carbon source, and the phenol-loading rate was increased stepwise from 0.5 to 1.0 g liter−1 day−1 and then to 1.5 g liter−1 day−1. After the loading rate was increased to 1.5 g liter−1 day−1, nonflocculating bacteria outgrew the sludge, and the activated-sludge process broke down within 1 week. The bacterial population structure of the activated sludge was analyzed by temperature gradient gel electrophoresis (TGGE) of PCR-amplified 16S ribosomal DNA (rDNA) fragments. We found that the population diversity decreased as the phenol-loading rate increased and that two populations (designated populations R6 and R10) predominated in the sludge during the last several days before breakdown. The R6 population was present under the low-phenol-loading-rate conditions, while the R10 population was present only after the loading rate was increased to 1.5 g liter−1 day−1. A total of 41 bacterial strains with different repetitive extragenic palindromic sequence PCR patterns were isolated from the activated sludge under different phenol-loading conditions, and the 16S rDNA and gyrB fragments of these strains were PCR amplified and sequenced. Some bacterial isolates could be associated with major TGGE bands by comparing the 16S rDNA sequences. All of the bacterial strains affiliated with the R6 population had almost identical 16S rDNA sequences, while the gyrB phylogenetic analysis divided these strains into two physiologically divergent groups; both of these groups of strains could grow on phenol, while one group (designated the R6F group) flocculated in laboratory media and the other group (the R6T group) did not. A competitive PCR analysis in which specific gyrB sequences were used as the primers showed that a population shift from R6F to R6T occurred following the increase in the phenol-loading rate to 1.5 g liter−1 day−1. The R10 population corresponded to nonflocculating phenol-degrading bacteria. Our results suggest that an outbreak of nonflocculating catabolic populations caused the breakdown of the activated-sludge process. This study also demonstrated the usefulness of gyrB-targeted fine population analyses in microbial ecology.  相似文献   

16.
We investigated the growth and vertical flux of attached bacteria with floating sediment traps in the Hudson River Plume of the New York Bight during the spring diatom blooms. Traps were floated at the base of the mixed layer (ca. 10 m) for 1-day periods. After recovery, we measured bacterial abundance and rates of [methyl-3H]thymidine incorporation in the trap samples. The vertical flux of attached bacteria was estimated with a model formulated to distinguish between bacterial accumulation in traps due to in situ growth and that due to vertical flux. Attached bacterial flux ranged from 0.6 × 1011 to 2.0 × 1011 cells m−2 day−1, and attached bacterial settling rates of 0.1 to 1.0 m day−1 were observed during periods of vertical particulate organic carbon flux ranging from 254 to 1,267 mg of C m−2 day−1. In situ growth of bacteria in sediment traps was unimportant as a source of bacterial increase when compared with vertical flux during our study. The vertical flux of attached bacteria removed 3 to 67% of the total daily bacterial production from the water column. Particulate organic carbon is not significantly mineralized by attached bacteria during its descent to the sea floor in the plume area during this period, when water temperature and grazing rates are at their annual minima.  相似文献   

17.
The denitrification rates in a marine sediment, estimated by using 15N-nitrate, Vmax, Km, and sediment nitrate concentrations, were 12.5 and 2.0 nmol of N2-N cm−3 day−1 at 0 to 1 and 1 to 3 cm, respectively, at 12°C. The total rate was 165 nmol of N2-N m−2 day−1.  相似文献   

18.
A competitive PCR (cPCR) assay targeting 16S ribosomal DNA was developed to enumerate growth of a Dehalococcoides-like microorganism, bacterium VS, from a mixed culture catalyzing the reductive dehalogenation of cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC), with hydrogen being used as an electron donor. The growth of bacterium VS was found to be coupled to the dehalogenation of VC and cDCE, suggesting unique metabolic capabilities. The average growth yield was (5.2 ± 1.5) × 108 copies of the 16S rRNA gene/μmol of Cl (number of samples, 10), with VC being used as the electron acceptor and hydrogen as the electron donor. The maximum VC utilization rate () was determined to be 7.8 × 10−10 μmol of Cl (copy−1 day−1), indicating a maximum growth rate of 0.4 day−1. These average growth yield and values agree well with values found previously for dechlorinating cultures. Decay coefficients were determined with growth (0.05 day−1) and no-growth (0.09 day−1) conditions. An important limitation of this cPCR assay was its inability to discriminate between active and inactive cells. This is an essential consideration for kinetic studies.  相似文献   

19.
Webb WL 《Plant physiology》1977,60(2):320-322
The uptake of CO2 by Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) seedlings and the allocation of photoassimilated carbon among five vegetative tissues were closely related to seedling phenology. In May, newly flushing needles required 5.2% day−1 of photoassimilated carbon relative to needle tissue carbon. As these needles matured, this carbon requirement declined to 1.95% day−1 in August, to 0.94% day−1 in November, and to 0.76% day−1 in January. Other tissues of Douglas fir seedlings required different amounts of photoassimilated carbon for growth and metabolism. These data provide a strong link between daily CO2 uptake and the regulation of carbon allocation by seasonal phenology.  相似文献   

20.
Processes leading to biomass variation of Ulva were investigated at two contrasting sites in the eutrophic Veerse Meer (The Netherlands). Ulva species dominated at the Middelplaten site, while at the Kwistenburg site a mixture of Ulva spp. and Chaetomorpha linum dominated. Total summer macroalgal biomass was higher at Middelplaten than at Kwistenburg (282 and 79 g DW m–2, respectively). Growth rates of Ulva spp. were high at both sites in May 1992 (cage mean 0.28–0.30 day–1), but quickly dropped to lower values (0.05–0.10 day–1). In May, growth rates were significantly highest at Kwistenburg, while during the rest of the season growth rates were similar for both sites. Temperature, pH, dissolved oxygen, salinity, light attenuation, phytoplankton and nutrient concentrations did not differ between sites. The relation between variation in Ulva spp. growth rates and environmental parameters was analysed using stepwise multiple regression, showing that light and temperature were the main variables regulating Ulva spp. growth rates. As Ulva growth rates were similar for both sites but biomass was much lower at Kwistenburg it was concluded that a large amount of produced biomass was lost at Kwistenburg. Although the exact reason for this remains unclear, it seems most likely that transport of macroalgae by wind and waves is a very important factor. This study shows the importance of simultaneously measuring growth rates and biomass at a high temporal resolution to reveal the mechanisms responsible for spatial variation in macroalgal biomass in shallow coastal areas. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号