首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A variety of proteins are capable of converting from their soluble forms into highly ordered fibrous cross‐β aggregates (amyloids). This conversion is associated with certain pathological conditions in mammals, such as Alzheimer disease, and provides a basis for the infectious or hereditary protein isoforms (prions), causing neurodegenerative disorders in mammals and controlling heritable phenotypes in yeast. The N‐proximal region of the yeast prion protein Sup35 (Sup35NM) is frequently used as a model system for amyloid conversion studies in vitro. Traditionally, amyloids are recognized by their ability to bind Congo Red dye specific to β‐sheet rich structures. However, methods for quantifying amyloid fibril formation thus far were based on measurements linking Congo Red absorbance to concentration of insulin fibrils and may not be directly applicable to other amyloid‐forming proteins. Here, we present a corrected formula for measuring amyloid formation of Sup35NM by Congo Red assay. By utilizing this corrected procedure, we explore the effect of different sodium salts on the lag time and maximum rate of amyloid formation by Sup35NM. We find that increased kosmotropicity promotes amyloid polymerization in accordance with the Hofmeister series. In contrast, chaotropes inhibit polymerization, with the strength of inhibition correlating with the B‐viscosity coefficient of the Jones‐Dole equation, an increasingly accepted measure for the quantification of the Hofmeister series.  相似文献   

2.
Prion proteins misfold and aggregate into multiple infectious strain variants that possess unique abilities to overcome prion species barriers, yet the structural basis for the species-specific infectivities of prion strains is poorly understood. Therefore, we have investigated the site-specific structural properties of a promiscuous chimeric form of the yeast prion Sup35 from Saccharomyces cerevisiae and Candida albicans. The Sup35 chimera forms two strain variants, each of which selectively infect one species but not the other. Importantly, the N-terminal and middle domains of the Sup35 chimera (collectively referred to as Sup35NM) contain two prion recognition elements (one from each species) that regulate the nucleation of each strain. Mutations in either prion recognition element significantly bias nucleation of one strain conformation relative to the other. Here we have investigated the folding of each prion recognition element for the serine-to-arginine mutant at residue 17 of the Sup35NM chimera known to promote nucleation of C. albicans strain conformation. Using cysteine-specific labeling analysis, we find that residues in the C. albicans prion recognition element are solvent-shielded, while those outside the recognition sequence (including most of those in the S. cerevisiae recognition element) are solvent-exposed. Moreover, we find that proline mutations in the C. albicans recognition sequence disrupt the prion templating activity of this strain conformation. Our structural findings reveal that differential folding of complementary and non-complementary prion recognition elements within the prion amyloid core of the Sup35NM chimera is the structural basis for its species-specific templating activity.Key words: Sup35, amyloid, fibril, PrP, transmission barrier, species barrier  相似文献   

3.
There is a large body of evidence that divalent metal ions, particularly copper, might play a role in several protein folding pathologies like Alzheimer’s disease, Parkinson’s disease or the prion diseases. However, contribution of metal ions on pathogenesis and their molecular influence on the formation of amyloid structures is not clear. Therefore, the general influence of metals on the formation of amyloids is still controversially discussed. We have utilized the well established system of yeast Sup35p-NM to investigate the role of three different metal ions, Cu2+, Mn2+ and Zn2+, on amyloidogenesis. Recently, it has been shown that the prion determining region NM of the Saccharomyces cerevisiae prion protein Sup35p, which is responsible for the yeast prion phenotype [PSI+], specifically binds Cu2+ ions. We further characterized the affinity of NM for Cu2+, which were found to be comparable to that of other amyloidogenic proteins like the mammalian prion protein PrP. The specific binding sites could be located in the aminoterminal N-region which is known to initiate formation of amyloidogenic nuclei. In the presence of Cu2+, fibril nucleation was significantly delayed, probably due to influences of copper on the oligomeric ensemble of soluble Sup35p-NM, since Cu2+ altered the tertiary structure of soluble Sup35p-NM, while no influences on fibril elongation could be detected. The secondary structure of soluble or fibrous protein and the morphology of the fibrils were apparently not altered when assembled in presence of Cu2+. In contrast, Mn2+ and Zn2+ did not bind to Sup35p-NM and did not exhibit significant effects on the formation of NM amyloid fibrils.  相似文献   

4.
We have systematically characterized, by aqueous column chromatography on a size exclusion cross-linked dextran gel (Sephadex G-10), 12 solutes, 11 of which are known to affect protein stability. Six are chaotropes (water structure breakers) and destabilize proteins, while five are polar kosmotropes (polar water structure makers) and stabilize proteins. Analysis of the chromatographic behavior of these neutral (ethylene glycol, urea), positively charged (Tris, guanidine, as the hydrochloride salts) and negatively charged (SO2-4, HPO2-4, F-, Cl-, Br-, Cl3CCO-2, I-, SCN-, as the sodium salts, in order of elution) solutes at pH 7 as a function of sample concentration (up to 0.6 M), supporting electrolyte, and temperature yields four conclusions, based largely on the behavior of the anions. Chaotropes adsorb to the gel according to their position in the Hofmeister series, with the most chaotropic species adsorbing most strongly. ++Chaotropes adsorb to the gel less strongly in the presence of chaotropes (a salting in effect) and more strongly in the presence of polar kosmotropes (a salting out effect). Polar kosmotropes do not adsorb to the gel, and are sieved through the gel according to their position in the Hofmeister series, with the most kosmotropic species having the largest relative hydrodynamic radii. The hydrodynamic radii of polar kosmotropes is increased by chaotropes and decreased by polar kosmotropes. These results suggest that a chaotrope interacts with the first layer of immediately adjacent water molecules somewhat less strongly than would bulk water in its place; a polar kosmotrope, more strongly.  相似文献   

5.
Tanaka H  Oka Y 《Zoological science》2007,24(12):1259-1265
Guppy sperm are immotile in the fluid (seminal plasma) of the vas deferens. We previously reported that the initiation of sperm motility is regulated by "Hofmeister solutes" in the isotonic medium. This indicates that chaotropes in solution activate the guppy sperm, whereas counteracting kosmotropes negate this activational effect and keep the sperm immotile. Here we show that seminal plasma has a strong inhibitory effect on sperm activation in response to chaotropes and multivalent ions, and that this inhibitory effect is due to kosmotropicity of the seminal plasma. These findings suggest a novel system of regulation of sperm motility in the guppy, a viviparious fish, in which the sperm are kept immotile in the vas deferens by a physicochemical effect (the Hofmeister effect) of the seminal plasma.  相似文献   

6.
《朊病毒》2013,7(3):208-210
Prion proteins misfold and aggregate into multiple infectious strain variants that possess unique abilities to overcome prion species barriers, yet the structural basis for the species-specific infectivities of prion strains is poorly understood. Therefore, we have investigated the site-specific structural properties of a promiscuous chimeric form of the yeast prion Sup35 from Saccharomyces cerevisiae and Candida albicans. The Sup35 chimera forms two strain variants, each of which selectively infect one species but not the other. Importantly, the N-terminal and middle domains of the Sup35 chimera (collectively referred to as Sup35NM) contain two prion recognition elements (one from each species) that regulate the nucleation of each strain. Mutations in either prion recognition element significantly bias nucleation of one strain conformation relative to the other. Herein, we have investigated the folding of each prion recognition element for the serine-to-arginine mutant at residue 17 of Sup35NM chimera known to promote nucleation of C. albicans strain conformation. Using cysteine-specific labeling analysis, we find that residues in the C. albicans prion recognition element are solvent-shielded, while those outside the recognition sequence (including most of those in the S. cerevisiae recognition element) are solvent-exposed. Moreover, we find that proline mutations in the C. albicans recognition sequence disrupt the prion templating activity of this strain conformation. Our structural findings reveal that differential folding of complementary and non-complementary prion recognition elements within the prion amyloid core of the Sup35NM chimera is the structural basis for its species-specific templating activity.  相似文献   

7.
Yeast prion determinants are related to polymerization of some proteins into amyloid-like fibers. The [PSI+] determinant reflects polymerization of the Sup35 protein. Fragmentation of prion polymers by the Hsp104 chaperone represents a key step of the prion replication cycle. The frequency of fragmentation varies depending on the structure of the prion polymers and defines variation in the prion phenotypes, e.g., the suppressor strength of [PSI+] and stability of its inheritance. Besides [PSI+], overproduction of Sup35 can produce nonheritable phenotypically silent Sup35 amyloid-like polymers. These polymers are fragmented poorly and are present due to efficient seeding with the Rnq1 prion polymers, which occurs by several orders of magnitude more frequently than seeding of [PSI+] appearance. Such Sup35 polymers resemble human nonprion amyloids by their nonheritability, mode of appearance and increased size. Thus, a single protein, Sup35, can model both prion and nonprion amyloids. In yeast, these phenomena are distinguished by the frequency of polymer fragmentation. We argue that in mammals the fragmentation frequency also represents a key factor defining differing properties of prion and nonprion amyloids, including infectivity. By analogy with the Rnq1 seeding of nonheritable Sup35 polymers, the “species barrier” in prion transmission may be due to seeding by heterologous prion of nontransmissible type of amyloid, rather than due to the lack of seeding.Key Words: amyloid, prion, Rnq1, Sup35, Ure2, translation termination, yeast  相似文献   

8.
Small ions of high charge density (kosmotropes) bind water molecules strongly, whereas large monovalent ions of low charge density (chaotropes) bind water molecules weakly relative to the strength of water-water interactions in bulk solution. The standard heat of solution of a crystalline alkali halide is shown here to be negative (exothermic) only when one ion is a kosmotrope and the ion of opposite charge is a chaotrope; this standard heat of solution is known to become proportionally more positive as the difference between the absolute heats of hydration of the corresponding gaseous anion and cation decreases. This suggests that inner sphere ion pairs are preferentially formed between oppositely charged ions with matching absolute enthalpies of hydration, and that biological organization arises from the noncovalent association of moieties with matching absolute free energies of solution, except where free energy is expended to keep them apart. The major intracellular anions (phosphates and carboxylates) are kosmotropes, whereas the major intracellular monovalent cations (K+; arg, his, and lys side chains) are chaotropes; together they form highly soluble, solvent-separated ion pairs that keep the contents of the cell in solution.  相似文献   

9.
Saccharomyces cerevisiae is an occasional host to an array of prions, most based on self-propagating, self-templating amyloid filaments of a normally soluble protein. [URE3] is a prion of Ure2p, a regulator of nitrogen catabolism, while [PSI +] is a prion of Sup35p, a subunit of the translation termination factor Sup35p. In contrast to the functional prions, [Het-s] of Podospora anserina and [BETA] of yeast, the amyloid-based yeast prions are rare in wild strains, arise sporadically, have an array of prion variants for a single prion protein sequence, have a folded in-register parallel β-sheet amyloid architecture, are detrimental to their hosts, arouse a stress response in the host, and are subject to curing by various host anti-prion systems. These characteristics allow a logical basis for distinction between functional amyloids/prions and prion diseases. These infectious yeast amyloidoses are outstanding models for the many common human amyloid-based diseases that are increasingly found to have some infectious characteristics.  相似文献   

10.
11.
Ions in the Hofmeister series exhibit varied effects on biopolymers. Those classed as kosmotropes generally stabilize secondary structure, and those classed as chaotropes generally destabilize secondary structure. Here, we report that several anionic chaotropes exhibit unique effects on one DNA secondary structure - a G quadruplex. These chaotropes exhibit the expected behaviour (destabilization of secondary structure) in two other structural contexts: a DNA duplex and i-Motifs. Uniquely among secondary structures, we observe that G quadruplexes are comparatively insensitive to the presence of anionic chaotropes, but not other denaturants. Further, the presence of equimolar NaCl provided greater mitigation of the destabilization caused by other non-anionic denaturants. These results are consistent with the presence of monovalent cations providing an especially pronounced stabilizing effect to G quadruplexes when studied in denaturing solution conditions.  相似文献   

12.
The toxicity of the antifungal polyene antibiotic amphotericin B (AMB) has been related to its low solubility, more specifically to a self-associated form termed toxic aggregate. In addition, AMB in aqueous medium gives rise to concentration, ionic strength, and time-dependent polydisperse systems. For this reason different approaches, including the use of several lipid aggregates, have been used in attempts to improve the drug's solubility and increase its therapeutic index. In this context, understanding AMB's self-association properties should help in the preparation of less toxic formulations. Ions from the Hofmeister series alter water properties: while kosmotropes (water structure makers-sulfate, citrate, phosphate) decrease solute solubility, chaotropes (water structure breakers-perchlorate, thiocyanate, trichloroacetate, and the neutral molecule urea) have opposite effects. This work reports a study of the effect of Hofmeister ions and urea on the self-aggregation of AMB and some of its derivatives. Optical absorption and circular dichroism spectra were used to monitor monomeric and aggregated antibiotic. While kosmotropes increased aggregation in a concentration-dependent manner, the opposite was observed for chaotropes. It is shown, for the first time, that thiocyanate and trichloroacetate can induce complete AMB monomerization. The understanding of these processes at the physicochemical and molecular levels and the possibility of modulating the aggregation state of AMB and its derivatives should contribute to elucidate the mechanisms of action and toxicity of this widely used antibiotic and to develop more efficient and less toxic preparations.  相似文献   

13.
The polymerization of many amyloids is a two-stage process initiated by the formation of a seeding nucleus or protofibril. Soluble protein then assembles with these nuclei to form amyloid fibers. Whether fiber growth is bidirectional or unidirectional has been determined for two amyloids. In these cases, bidirectional growth was established by time lapse atomic-force microscopy. Here, we investigated the growth of amyloid fibers formed by NM, the prion-determining region of the yeast protein Sup35p. The conformational changes in NM that lead to amyloid formation in vitro serve as a model for the self-perpetuating conformational changes in Sup35p that allow this protein to serve as an epigenetic element of inheritance in vivo. To assess the directionality of fiber growth, we genetically engineered a mutant of NM so that it contained an accessible cysteine residue that was easily labeled after fiber formation. The mutant protein assembled in vitro with kinetics indistinguishable from those of the wild-type protein and propagated the heritable genetic trait [PSI(+)] with the same fidelity. In reactions nucleated with prelabeled fibers, unlabeled protein assembled at both ends. Thus, NM fiber growth is bidirectional.  相似文献   

14.
Mammalian prion strains are believed to arise from the propagation of distinct conformations of the misfolded prion protein PrPSc. One key operational parameter used to define differences between strains has been conformational stability of PrPSc as defined by resistance to thermal and/or chemical denaturation. However, the structural basis of these stability differences is unknown. To bridge this gap, we have generated two strains of recombinant human prion protein amyloid fibrils that show dramatic differences in conformational stability and have characterized them by a number of biophysical methods. Backbone amide hydrogen/deuterium exchange experiments revealed that, in sharp contrast to previously studied strains of infectious amyloid formed from the yeast prion protein Sup35, differences in β-sheet core size do not underlie differences in conformational stability between strains of mammalian prion protein amyloid. Instead, these stability differences appear to be dictated by distinct packing arrangements (i.e. steric zipper interfaces) within the amyloid core, as indicated by distinct x-ray fiber diffraction patterns and large strain-dependent differences in hydrogen/deuterium exchange kinetics for histidine side chains within the core region. Although this study was limited to synthetic prion protein amyloid fibrils, a similar structural basis for strain-dependent conformational stability may apply to brain-derived PrPSc, especially because large strain-specific differences in PrPSc stability are often observed despite a similar size of the PrPSc core region.  相似文献   

15.
Multiple yeast prions have been identified that result from the structural conversion of proteins into a self-propagating amyloid form. Amyloid-based prion activity in yeast requires a series of discrete steps. First, the prion protein must form an amyloid nucleus that can recruit and structurally convert additional soluble proteins. Subsequently, maintenance of the prion during cell division requires fragmentation of these aggregates to create new heritable propagons. For the Saccharomyces cerevisiae prion protein Sup35, these different activities are encoded by different regions of the Sup35 prion domain. An N-terminal glutamine/asparagine-rich nucleation domain is required for nucleation and fiber growth, while an adjacent oligopeptide repeat domain is largely dispensable for prion nucleation and fiber growth but is required for chaperone-dependent prion maintenance. Although prion activity of glutamine/asparagine-rich proteins is predominantly determined by amino acid composition, the nucleation and oligopeptide repeat domains of Sup35 have distinct compositional requirements. Here, we quantitatively define these compositional requirements in vivo. We show that aromatic residues strongly promote both prion formation and chaperone-dependent prion maintenance. In contrast, nonaromatic hydrophobic residues strongly promote prion formation but inhibit prion propagation. These results provide insight into why some aggregation-prone proteins are unable to propagate as prions.  相似文献   

16.
The laminin receptor (LamR) is a cell surface receptor for extracellular matrix laminin, whereas the same protein within the cell interacts with ribosomes, nuclear proteins and cytoskeletal fibers. LamR has been shown to be a receptor for several bacteria and viruses. Furthermore, LamR interacts with both cellular and infectious forms of the prion protein, PrPC and PrPSc. Indeed, LamR is a receptor for PrPC. Whether LamR interacts with PrPSc exclusively in a capacity of the PrP receptor, or LamR specifically recognizes prion determinants of PrPSc, is unclear. In order to explore whether LamR has a propensity to interact with prions and amyloids, we examined LamR interaction with the yeast prion-forming protein, Sup35. Sup35 is a translation termination factor with no homology or functional relationship to PrP. Plasmids expressing LamR or LamR fused with the green fluorescent protein (GFP) were transformed into yeast strain variants differing by the presence or absence of the prion conformation of Sup35, respectively [PSI +] and [psi ]. Analyses by immunoprecipitation, centrifugal fractionation and fluorescent microscopy reveal interaction between LamR and Sup35 in [PSI +] strains. The presence of [PSI +] promotes LamR co-precipitation with Sup35 as well as LamR aggregation. In [PSI +] cells, LamR tagged with GFP or mCherry forms bright fluorescent aggregates that co-localize with visible [PSI +] foci. The yeast prion model will facilitate studying the interaction of LamR with amyloidogenic prions in a safe and easily manipulated system that may lead to a better understanding and treatment of amyloid diseases.  相似文献   

17.
《朊病毒》2013,7(3):179-184
Yeast prion determinants are related to polymerization of some proteins into amyloid-like fibers. The [PSI+] determinant reflects polymerization of the Sup35 protein. Fragmentation of prion polymers by the Hsp104 chaperone represents a key step of the prion replication cycle. The frequency of fragmentation varies depending on the structure of the prion polymers and defines variation in the prion phenotypes, e.g., the suppressor strength of [PSI+] and stability of its inheritance. Besides [PSI+], overproduction of Sup35 can produce nonheritable phenotypically silent Sup35 amyloid-like polymers. These polymers are fragmented poorly and are present due to efficient seeding with the Rnq1 prion polymers, which occurs by several orders of magnitude more frequently than seeding of [PSI+] appearance. Such Sup35 polymers resemble human nonprion amyloids by their nonheritability, mode of appearance and increased size. Thus, a single protein, Sup35, can model both prion and nonprion amyloids. In yeast, these phenomena are distinguished by the frequency of polymer fragmentation. We argue that in mammals the fragmentation frequency also represents a key factor defining differing properties of prion and nonprion amyloids, including infectivity. By analogy with the Rnq1 seeding of nonheritable Sup35 polymers, the “species barrier” in prion transmission may be due to seeding by heterologous prion of nontransmissible type of amyloid, rather than due to the lack of seeding.  相似文献   

18.
In prion-infected hosts, PrPSc usually accumulates as non-fibrillar, membrane-bound aggregates. Glycosylphosphatidylinositol (GPI) anchor-directed membrane association appears to be an important factor controlling the biophysical properties of PrPSc aggregates. To determine whether GPI anchoring can similarly modulate the assembly of other amyloid-forming proteins, neuronal cell lines were generated that expressed a GPI-anchored form of a model amyloidogenic protein, the NM domain of the yeast prion protein Sup35 (Sup35GPI). We recently reported that GPI anchoring facilitated the induction of Sup35GPI prions in this system. Here, we report the ultrastructural characterization of self-propagating Sup35GPI aggregates of either spontaneous or induced origin. Like membrane-bound PrPSc, Sup35GPI aggregates resisted release from cells treated with phosphatidylinositol-specific phospholipase C. Sup35GPI aggregates of spontaneous origin were detergent-insoluble, protease-resistant, and self-propagating, in a manner similar to that reported for recombinant Sup35NM amyloid fibrils and induced Sup35GPI aggregates. However, GPI-anchored Sup35 aggregates were not stained with amyloid-binding dyes, such as Thioflavin T. This was consistent with ultrastructural analyses, which showed that the aggregates corresponded to dense cell surface accumulations of membrane vesicle-like structures and were not fibrillar. Together, these results showed that GPI anchoring directs the assembly of Sup35NM into non-fibrillar, membrane-bound aggregates that resemble PrPSc, raising the possibility that GPI anchor-dependent modulation of protein aggregation might occur with other amyloidogenic proteins. This may contribute to differences in pathogenesis and pathology between prion diseases, which uniquely involve aggregation of a GPI-anchored protein, versus other protein misfolding diseases.  相似文献   

19.
Protein-only (prion) epigenetic elements confer unique phenotypes by adopting alternate conformations that specify new traits. Given the conformational flexibility of prion proteins, protein-only inheritance requires efficient self-replication of the underlying conformation. To explore the cellular regulation of conformational self-replication and its phenotypic effects, we analyzed genetic interactions between [PSI+], a prion form of the S. cerevisiae Sup35 protein (Sup35[PSI+]), and the three Nα-acetyltransferases, NatA, NatB, and NatC, which collectively modify ~50% of yeast proteins. Although prion propagation proceeds normally in the absence of NatB or NatC, the [PSI+] phenotype is reversed in strains lacking NatA. Despite this change in phenotype, [PSI+] NatA mutants continue to propagate heritable Sup35[PSI+]. This uncoupling of protein state and phenotype does not arise through a decrease in the number or activity of prion templates (propagons) or through an increase in soluble Sup35. Rather, NatA null strains are specifically impaired in establishing the translation termination defect that normally accompanies Sup35 incorporation into prion complexes. The NatA effect cannot be explained by the modification of known components of the [PSI+] prion cycle including Sup35; thus, novel acetylated cellular factors must act to establish and maintain the tight link between Sup35[PSI+] complexes and their phenotypic effects.  相似文献   

20.
ABSTRACT: BACKGROUND: Prions were first identified as infectious proteins associated with fatal brain diseases in mammals. However, fungal prions behave as epigenetic regulators that can alter a range of cellular processes. These proteins propagate as self-perpetuating amyloid aggregates being an example of structural inheritance. The best-characterized examples are the Sup35 and Ure2 yeast proteins, corresponding to [PSI+] and [URE3] phenotypes, respectively. RESULTS: Here we show that both the prion domain of Sup35 (Sup35-NM) and the Ure2 protein (Ure2p) form inclusion bodies (IBs) displaying amyloid-like properties when expressed in bacteria. These intracellular aggregates template the conformational change and promote the aggregation of homologous, but not heterologous, soluble prionogenic molecules. Moreover, in the case of Sup35-NM, purified IBs are able to induce different [PSI+] phenotypes in yeast, indicating that at least a fraction of the protein embedded in these deposits adopts an infectious prion fold. CONCLUSIONS: An important feature of prion inheritance is the existence of strains, which are phenotypic variants encoded by different conformations of the same polypeptide. We show here that the proportion of infected yeast cells displaying strong and weak [PSI+] phenotypes depends on the conditions under which the prionogenic aggregates are formed in E. coli, suggesting that bacterial systems might become useful tools to generate prion strain diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号