首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.

Purpose

Pharmacologic inhibition of aldose reductase (AR) previously has been studied with respect to diabetic retinopathy with mixed results. Since drugs can have off-target effects, we studied the effects of AR deletion on the development and molecular abnormalities that contribute to diabetic retinopathy. Since recent data suggests an important role for leukocytes in the development of the retinopathy, we determined also if AR in leukocytes contributes to leukocyte-mediated death of retinal endothelial cells in diabetes.

Methods

Wild-type (WT; C57BL/6J) and AR deficient (AR−/−) mice were made diabetic with streptozotocin. Mice were sacrificed at 2 and 10 months of diabetes to evaluate retinal vascular histopathology, to quantify retinal superoxide production and biochemical and physiological abnormalities in the retina, and to assess the number of retinal endothelial cells killed by blood leukocytes in a co-culture system.

Results

Diabetes in WT mice developed the expected degeneration of retinal capillaries, and increased generation of superoxide by the retina. Leukocytes from diabetic WT mice also killed more retinal endothelial cells than did leukocytes from nondiabetic animals (p<0.0001). Deletion of AR largely (P<0.05) inhibited the diabetes-induced degeneration of retinal capillaries, as well as the increase in superoxide production by retina. AR-deficiency significantly inhibited the diabetes-induced increase in expression of inducible nitric oxide synthase (iNOS) in retina, but had no significant effect on expression of intercellular adhesion molecule-1 (ICAM-1), phosphorylated p38 MAPK, or killing of retinal endothelial cells by leukocytes.

Conclusions

AR contributes to the degeneration of retinal capillaries in diabetic mice. Deletion of the enzyme inhibits the diabetes-induced increase in expression of iNOS and of superoxide production, but does not correct a variety of other pro-inflammatory abnormalities associated with the development of diabetic retinopathy.  相似文献   

2.
Recent evidence suggests an important role for outer retinal cells in the pathogenesis of diabetic retinopathy (DR). Here we investigated the effect of the visual cycle inhibitor retinylamine (Ret-NH2) on the development of early DR lesions. Wild-type (WT) C57BL/6J mice (male, 2 months old when diabetes was induced) were made diabetic with streptozotocin, and some were given Ret-NH2 once per week. Lecithin-retinol acyltransferase (LRAT)-deficient mice and P23H mutant mice were similarly studied. Mice were euthanized after 2 (WT and Lrat−/−) and 8 months (WT) of study to assess vascular histopathology, accumulation of albumin, visual function, and biochemical and physiological abnormalities in the retina. Non-retinal effects of Ret-NH2 were examined in leukocytes treated in vivo. Superoxide generation and expression of inflammatory proteins were significantly increased in retinas of mice diabetic for 2 or 8 months, and the number of degenerate retinal capillaries and accumulation of albumin in neural retina were significantly increased in mice diabetic for 8 months compared with nondiabetic controls. Administration of Ret-NH2 once per week inhibited capillary degeneration and accumulation of albumin in the neural retina, significantly reducing diabetes-induced retinal superoxide and expression of inflammatory proteins. Superoxide generation also was suppressed in Lrat−/− diabetic mice. Leukocytes isolated from diabetic mice treated with Ret-NH2 caused significantly less cytotoxicity to retinal endothelial cells ex vivo than did leukocytes from control diabetics. Administration of Ret-NH2 once per week significantly inhibited the pathogenesis of lesions characteristic of early DR in diabetic mice. The visual cycle constitutes a novel target for inhibition of DR.  相似文献   

3.
Retinal Müller cells are major producers of inflammatory and angiogenic cytokines which contribute to diabetic retinopathy (DR). Over-activation of the Wnt/β-catenin pathway has been shown to play an important pathogenic role in DR. However, the roles of Müller cell-derived Wnt/β-catenin signaling in retinal neovascularization (NV) and DR remain undefined. In the present study, mice with conditional β-catenin knockout (KO) in Müller cells were generated and subjected to oxygen-induced retinopathy (OIR) and streptozotocin (STZ)-induced diabetes. Wnt signaling was evaluated by measuring levels of β-catenin and expression of its target genes using immunoblotting. Retinal vascular permeability was measured using Evans blue as a tracer. Retinal NV was visualized by angiography and quantified by counting pre-retinal nuclei. Retinal pericyte loss was evaluated using retinal trypsin digestion. Electroretinography was performed to examine visual function. No abnormalities were detected in the β-catenin KO mice under normal conditions. In OIR, retinal levels of β-catenin and VEGF were significantly lower in the β-catenin KO mice than in littermate controls. The KO mice also had decreased retinal NV and vascular leakage in the OIR model. In the STZ-induced diabetic model, disruption of β-catenin in Müller cells attenuated over-expression of inflammatory cytokines and ameliorated pericyte dropout in the retina. These findings suggest that Wnt signaling activation in Müller cells contributes to retinal NV, vascular leakage and inflammation and represents a potential therapeutic target for DR.  相似文献   

4.
ObjectiveDaily application of far-red light from the onset of diabetes mitigated diabetes-induced abnormalities in retinas of albino rats. Here, we test the hypothesis that photobiomodulation (PBM) is effective in diabetic, pigmented mice, even when delayed until weeks after onset of diabetes. Direct and indirect effects of PBM on the retina also were studied.MethodsDiabetes was induced in C57Bl/6J mice using streptozotocin. Some diabetics were exposed to PBM therapy (4 min/day; 670 nm) daily. In one study, mice were diabetic for 4 weeks before initiation of PBM for an additional 10 weeks. Retinal oxidative stress, inflammation, and retinal function were measured. In some mice, heads were covered with a lead shield during PBM to prevent direct illumination of the eye, or animals were treated with an inhibitor of heme oxygenase-1. In a second study, PBM was initiated immediately after onset of diabetes, and administered daily for 2 months. These mice were examined using manganese-enhanced MRI to assess effects of PBM on transretinal calcium channel function in vivo.ResultsPBM intervention improved diabetes-induced changes in superoxide generation, leukostasis, expression of ICAM-1, and visual performance. PBM acted in part remotely from the retina because the beneficial effects were achieved even with the head shielded from the light therapy, and because leukocyte-mediated cytotoxicity of retinal endothelial cells was less in diabetics treated with PBM. SnPP+PBM significantly reduced iNOS expression compared to PBM alone, but significantly exacerbated leukostasis. In study 2, PBM largely mitigated diabetes-induced retinal calcium channel dysfunction in all retinal layers.ConclusionsPBM induces retinal protection against abnormalities induced by diabetes in pigmented animals, and even as an intervention. Beneficial effects on the retina likely are mediated by both direct and indirect mechanisms. PBM is a novel non-pharmacologic treatment strategy to inhibit early changes of diabetic retinopathy.  相似文献   

5.
Integrins mediate cell-cell and cell-extracellular matrix attachments. Integrins are signaling receptors because their cytoplasmic tails are docking sites for cytoskeletal and signaling proteins. Kindlins are a family of band 4.1-ezrin-radixin-moesin-containing intracellular proteins. Apart from regulating integrin ligand-binding affinity, recent evidence suggests that kindlins are involved in integrin outside-in signaling. Kindlin-3 is expressed in platelets, hematopoietic cells and endothelial cells. In humans, loss of kindlin-3 expression accounts for the rare autosomal disease leukocyte adhesion deficiency (LAD) type III that is characterized by bleeding disorders and defective recruitment of leukocytes into sites of infection. Studies have shown that the loss of kindlin-3 expression leads to poor ligand-binding properties of β1, β2 and β3 integrin subfamilies. The leukocyte-restricted β2 integrin subfamily comprises four members, namely αLβ2, αMβ2, αXβ2 and αDβ2. Integrin αMβ2 mediates leukocyte adhesion, phagocytosis, degranulation and it is involved in the maintenance of immune tolerance. Here we provide further evidence that kindlin-3 is required for integrin αMβ2-mediated cell adhesion and spreading using transfected K562 cells that expressed endogenous kindlin-3 but not β2 integrins. K562 stable cell line expressing si-RNA targeting kindlin-3, but not control-si-RNA, and transfected with constitutively activated integrin αMβ2N329S adhered and spread poorly on iC3b. We also show that kindlin-3 is required for the integrin αMβ2-Syk-Vav1 signaling axis that regulates Rac1 and Cdc42 activities. These findings reinforce a role for kindlin-3 in integrin outside-in signaling.  相似文献   

6.
7.

Purpose

Kinin B1 receptor (B1R) is upregulated in retina of Streptozotocin (STZ)-diabetic rats and contributes to vasodilation of retinal microvessels and breakdown of the blood-retinal barrier. Systemic treatment with B1R antagonists reversed the increased retinal plasma extravasation in STZ rats. The present study aims at determining whether ocular application of a water soluble B1R antagonist could reverse diabetes-induced retinal inflammation and oxidative stress.

Methods

Wistar rats were made diabetic with STZ (65 mg/kg, i.p.) and 7 days later, they received one eye drop application of LF22-0542 (1% in saline) twice a day for a 7 day-period. The impact was determined on retinal vascular permeability (Evans blue exudation), leukostasis (leukocyte infiltration using Fluorescein-isothiocyanate (FITC)-coupled Concanavalin A lectin), retinal mRNA levels (by qRT-PCR) of inflammatory (B1R, iNOS, COX-2, ICAM-1, VEGF-A, VEGF receptor type 2, IL-1β and HIF-1α) and anti-inflammatory (B2R, eNOS) markers and retinal level of superoxide anion (dihydroethidium staining).

Results

Retinal plasma extravasation, leukostasis and mRNA levels of B1R, iNOS, COX-2, VEGF receptor type 2, IL-1β and HIF-1α were significantly increased in diabetic retinae compared to control rats. All these abnormalities were reversed to control values in diabetic rats treated with LF22-0542. B1R antagonist also significantly inhibited the increased production of superoxide anion in diabetic retinae.

Conclusion

B1R displays a pathological role in the early stage of diabetes by increasing oxidative stress and pro-inflammatory mediators involved in retinal vascular alterations. Hence, topical application of kinin B1R antagonist appears a highly promising novel approach for the treatment of diabetic retinopathy.  相似文献   

8.

Background

Previous studies by us and other have provided evidence that leukocytes play a critical role in the development of diabetic retinopathy, suggesting a possible role of the innate immune system in development of the retinopathy. Since MyD88 is a convergence point for signaling pathways of the innate immune system (including Toll-Like Receptors (TLRs) and interleukin-1ß (IL-1ß)), the purpose of this study was to assess the role of MyD88 and its dependent pathways on abnormalities that develop in retina and white blood cells related to diabetic retinopathy.

Methods

C57BL/6J mice were made diabetic with streptozotocin. Chimeric mice were generated in which MyD88-dependent pathways were deleted from bone marrow-derived only. Mice were sacrificed at 2 mos of diabetes for assessment of, leukostasis, albumin accumulation in neural retina, leukocyte-mediated killing of retinal endothelial cells, and cytokine/chemokine generation by retinas of diabetic mice in response to TLR agonists,

Results

IL-6 and CXCL1 were generated in retinas from diabetic (but not nondiabetic mice) following incubation with Pam3CysK/TLR2, but incubation with other TLR ligands or IL-1ß did not induce cytokine production in retinas from nondiabetic or diabetic mice. Diabetes-induced abnormalities (leukostasis, ICAM-1 expression on the luminal surface of the vascular endothelium, retinal superoxide generation) were significantly inhibited by removing either MyD88 or the signaling pathways regulated by it (TLRs 2 and 4, and IL-1ß) from bone marrow-derived cells only. Leukocyte-mediated killing of endothelial cells tended to be decreased in the marrow-derived cells lacking TLR2/4, but the killing was significantly exacerbated if the marrow cells lacked MyD88 or the receptor for IL-1ß (IL-1ßr).

Conclusions

MyD88-dependent pathways play an important role in the development of diabetes-induced inflammation in the retina, and inhibition of MyD88 might be a novel target to inhibit early abnormalities of diabetic retinopathy and other complications of diabetes.  相似文献   

9.
Vascular endothelial cells (ECs) form a critical interface between blood and tissues that maintains whole-body homeostasis. In COVID-19, disruption of the EC barrier results in edema, vascular inflammation, and coagulation, hallmarks of this severe disease. However, the mechanisms by which ECs are dysregulated in COVID-19 are unclear. Here, we show that the spike protein of SARS-CoV-2 alone activates the EC inflammatory phenotype in a manner dependent on integrin ⍺5β1 signaling. Incubation of human umbilical vein ECs with whole spike protein, its receptor-binding domain, or the integrin-binding tripeptide RGD induced the nuclear translocation of NF-κB and subsequent expression of leukocyte adhesion molecules (VCAM1 and ICAM1), coagulation factors (TF and FVIII), proinflammatory cytokines (TNFα, IL-1β, and IL-6), and ACE2, as well as the adhesion of peripheral blood leukocytes and hyperpermeability of the EC monolayer. In addition, inhibitors of integrin ⍺5β1 activation prevented these effects. Furthermore, these vascular effects occur in vivo, as revealed by the intravenous administration of spike, which increased expression of ICAM1, VCAM1, CD45, TNFα, IL-1β, and IL-6 in the lung, liver, kidney, and eye, and the intravitreal injection of spike, which disrupted the barrier function of retinal capillaries. We suggest that the spike protein, through its RGD motif in the receptor-binding domain, binds to integrin ⍺5β1 in ECs to activate the NF-κB target gene expression programs responsible for vascular leakage and leukocyte adhesion. These findings uncover a new direct action of SARS-CoV-2 on EC dysfunction and introduce integrin ⍺5β1 as a promising target for treating vascular inflammation in COVID-19.  相似文献   

10.
The largest subgroup of integrins is that containing the β1 subunit. β1 integrins have been implicated in a wide array of biological processes ranging from adhesion to cell growth, organogenesis, and mechanotransduction. Global deletion of β1 integrin expression results in embryonic death at ca. embryonic day 5 (E5), a developmental time point too early to determine the effects of this integrin on vascular development. To elucidate the specific role of β1 integrin in the vasculature, we conditionally deleted the β1 gene in the endothelium. Homozygous deletion of β1 integrins in the endothelium resulted in failure of normal vascular patterning, severe fetal growth retardation, and embryonic death at E9.5 to 10, although there were no overt effects on vasculogenesis. Heterozygous endothelial β1 gene deletion did not diminish fetal or postnatal survival, but it reduced β1 subunit expression in endothelial cells from adult mice by approximately 40%. These mice demonstrated abnormal vascular remodeling in response to experimentally altered in vivo blood flow and diminished vascularization in healing wounds. These data demonstrate that endothelial expression of β1 integrin is required for developmental vascular patterning and that endothelial β1 gene dosing has significant functional effects on vascular remodeling in the adult. Understanding how β1 integrin expression is modulated may have significant clinical importance.  相似文献   

11.
Alzheimer''s disease (AD) is an age-related condition characterized by accumulation of neurotoxic amyloid β peptides (Aβ) in brain and retina. Because bone marrow transplantation (BMT) results in decreased cerebral Aβ in experimental AD, we hypothesized that BMT would mitigate retinal neurotoxicity through decreased retinal Aβ. To test this, we performed BMT in APPswe/PS1ΔE9 double transgenic mice using green fluorescent protein expressing wild type (wt) mice as marrow donors. We first examined retinas from control, non-transplanted, aged AD mice and found a two-fold increase in microglia compared with wt mice, prominent inner retinal Aβ and paired helical filament-tau, and decreased retinal ganglion cell layer neurons. BMT resulted in near complete replacement of host retinal microglia with BMT-derived cells and normalized total AD retinal microglia to non-transplanted wt levels. Aβ and paired helical filament-tau were reduced (61.0% and 44.1% respectively) in BMT-recipient AD mice, which had 20.8% more retinal ganglion cell layer neurons than non-transplanted AD controls. Interestingly, aged wt BMT recipients also had significantly more neurons (25.4%) compared with non-transplanted aged wt controls. Quantitation of retinal ganglion cell layer neurons in young mice confirmed age-related retinal degeneration was mitigated by BMT. We found increased MHC class II expression in BMT-derived microglia and decreased oxidative damage in retinal ganglion cell layer neurons. Thus, BMT is neuroprotective in age-related as well as AD-related retinal degeneration, and may be a result of alterations in innate immune function and oxidative stress in BMT recipient mice.  相似文献   

12.

Objective

Diabetic retinopathy, a major cause of blindness, is characterized by increased expression of vascular endothelial growth factor (VEGF), leukocyte attachment to the vessel walls and increased vascular permeability. Previous work has shown that reactive oxygen species (ROS) produced by the superoxide generating enzyme NOX2/NADPH oxidase play a crucial role in the vascular pathology. The aim of this work was to identify the cellular sources of the damaging NOX2 activity by studies using bone marrow chimera mice.

Methods

Bone marrow cells were collected from the femurs and tibias of wild type and NOX2 deficient (NOX2-/-) donor mice and injected intravenously into lethally irradiated NOX2-/- and wild type recipients. Following recovery from radiation, mice were rendered diabetic by streptozotocin injections. The following groups of bone marrow chimeras were studied: non-diabetic WT→WT, diabetic WT→WT, diabetic WT→NOX2-/-, diabetic NOX2-/-→WT. After 4 weeks of diabetes, early signs of retinopathy were examined by measuring ROS, expression of VEGF and ICAM-1, leukocyte attachment to the vessel wall and vascular permeability.

Results

The retinas of the diabetic WT→WT chimeras showed significant increases in ROS as compared with the non-diabetic chimeras. These diabetes-induced alterations were correlated with increases in expression of VEGF and ICAM-1, leukocyte adhesion and vascular permeability. Each of these diabetes-induced alterations were significantly attenuated in the diabetic WT→NOX2-/- and NOX2-/-→WT chimera groups (p<0.05).

Conclusion

NOX2-generated ROS produced by both bone marrow-derived cells and resident retinal cells contribute importantly to retinal vascular injury in the diabetic retina. Targeting NOX2 in bone marrow and/or retinal cells may represent a novel therapeutic strategy for the treatment/prevention of vascular injury in the diabetic retina.  相似文献   

13.

Aims

Oxidative stress and apoptosis are among the earliest lesions of diabetic retinopathy. This study sought to examine the anti-oxidative and anti-apoptotic effects of α-melanocyte-stimulating hormone (α-MSH) in early diabetic retinas and to explore the underlying mechanisms in retinal vascular endothelial cells.

Methods

Sprague-Dawley rats were injected intravenously with streptozocin to induce diabetes. The diabetic rats were injected intravitreally with α-MSH or saline. At week 5 after diabetes, the retinas were analyzed for reactive oxygen species (ROS) and gene expression. One week later, the retinas were processed for terminal deoxynucleotidyl transferase dUTP nick-end labeling staining and transmission electron microscopy. Retinal vascular endothelial cells were stimulated by high glucose (HG) with or without α-MSH. The expression of Forkhead box O genes (Foxos) was examined through real-time PCR. The Foxo4 gene was overexpressed in endothelial cells by transient transfection prior to α-MSH or HG treatment, and oxidative stress and apoptosis were analyzed through CM-H2DCFDA and annexin-V assays, respectively.

Results

In diabetic retinas, the levels of H2O2 and ROS and the total anti-oxidant capacity were normalized, the apoptotic cell number was reduced, and the ultrastructural injuries were ameliorated by α-MSH. Treatment with α-MSH also corrected the aberrant changes in eNOS, iNOS, ICAM-1, and TNF-α expression levels in diabetic retinas. Furthermore, α-MSH inhibited Foxo4 up-regulation in diabetic retinas and in endothelial cells exposed to HG, whereas Foxo4 overexpression abrogated the anti-oxidative and anti-apoptotic effects of α-MSH in HG-stimulated retinal vascular endothelial cells.

Conclusions

α-MSH normalized oxidative stress, reduced apoptosis and ultrastructural injuries, and corrected gene expression levels in early diabetic retinas. The protective effects of α-MSH in retinal vascular endothelial cells may be mediated through the inhibition of Foxo4 up-regulation induced by HG. This study suggests an α-MSH-mediated potential intervention approach to early diabetic retinopathy and a novel regulatory mechanism involving Foxo4.  相似文献   

14.
We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1) is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12) did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/-) mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05) overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05) the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells.  相似文献   

15.

Background

There is a major discrepancy between the in vitro and in vivo results regarding the role of β1 integrins in the maintenance of epidermal stem/progenitor cells. Studies of mice with skin-specific ablation of β1 integrins suggested that epidermis can form and be maintained in their absence, while in vitro data have shown a fundamental role for these adhesion receptors in stem/progenitor cell expansion and differentiation.

Methodology/Principal Findings

To elucidate this discrepancy we generated hypomorphic mice expressing reduced β1 integrin levels on keratinocytes that developed similar, but less severe defects than mice with β1-deficient keratinocytes. Surprisingly we found that upon aging these abnormalities attenuated due to a rapid expansion of cells, which escaped or compensated for the down-regulation of β1 integrin expression. A similar phenomenon was observed in aged mice with a complete, skin-specific ablation of the β1 integrin gene, where cells that escaped Cre-mediated recombination repopulated the mutant skin in a very short time period. The expansion of β1 integrin expressing keratinocytes was even further accelerated in situations of increased keratinocyte proliferation such as wound healing.

Conclusions/Significance

These data demonstrate that expression of β1 integrins is critically important for the expansion of epidermal progenitor cells to maintain epidermal homeostasis.  相似文献   

16.
There is considerable evidence from our lab and others for a functional link between β-adrenergic receptor and insulin receptor signaling pathways in retina. Furthermore, we hypothesize that this link may contribute to lesions similar to diabetic retinopathy in that the loss of adrenergic input observed in diabetic retinopathy may disrupt normal anti-apoptotic insulin signaling, leading to retinal cell death. Our studies included assessment of neural retina function (ERG), vascular degeneration, and Müller glial cells (which express only β1 and β2-adrenergic receptor subtypes). In the current study, we produced β2-adrenergic receptor knockout mice to examine this deletion on retinal neurons and vasculature, and to identify specific pathways through which β2-adrenergic receptor modulates insulin signaling. As predicted from our hypothesis, β2-adrenergic receptor knockout mice display certain features similar to diabetic retinopathy. In addition, loss of β2-adrenergic input resulted in an increase in TNFα, a key inhibitor of insulin receptor signaling. Increased TNFα may be associated with insulin-dependent production of the anti-apoptotic factor, Akt. Since the effects occurred in vivo under normal glucose conditions, we postulate that aspects of the diabetic retinopathy phenotype might be triggered by loss of β2-adrenergic receptor signaling.  相似文献   

17.
All but the smallest-diameter axons in the central nervous system are myelinated, but the signals that initiate myelination are unknown. Our prior work has shown that integrin signaling forms part of the cell–cell interactions that ensure only those oligodendrocytes contacting axons survive. Here, therefore, we have asked whether integrins regulate the interactions that lead to myelination. Using homologous recombination to insert a single-copy transgene into the hypoxanthine phosphoribosyl transferase (hprt) locus, we find that mice expressing a dominant-negative β1 integrin in myelinating oligodendrocytes require a larger axon diameter to initiate timely myelination. Mice with a conditional deletion of focal adhesion kinase (a signaling molecule activated by integrins) exhibit a similar phenotype. Conversely, transgenic mice expressing dominant-negative β3 integrin in oligodendrocytes display no myelination abnormalities. We conclude that β1 integrin plays a key role in the axoglial interactions that sense axon size and initiate myelination, such that loss of integrin signaling leads to a delay in myelination of small-diameter axons.  相似文献   

18.
19.
Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Available treatments are not completely effective. We analyzed the effect of environmental enrichment on retinal damage induced by experimental diabetes in adult Wistar rats. Diabetes was induced by an intraperitoneal injection of streptozotocin. Three days after vehicle or streptozotocin injection, animals were housed in enriched environment or remained in a standard environment. Retinal function (electroretinogram, and oscillatory potentials), retinal morphology, blood-retinal barrier integrity, synaptophysin, astrocyte and Müller cell glial fibrillary acidic protein, vascular endothelial growth factor, tumor necrosis factor-α, and brain-derived neurotrophic factor levels, as well as lipid peroxidation were assessed in retina from diabetic animals housed in standard or enriched environment. Environmental enrichment preserved scotopic electroretinogram a-wave, b-wave and oscillatory potential amplitude, avoided albumin-Evan''s blue leakage, prevented the decrease in retinal synaptophysin and astrocyte glial fibrillary acidic protein levels, the increase in Müller cell glial fibrillary acidic protein, vascular endothelial growth factor and tumor necrosis factor-α levels, as well as oxidative stress induced by diabetes. In addition, enriched environment prevented the decrease in retinal brain-derived neurotrophic factor levels induced by experimental diabetes. When environmental enrichment started 7 weeks after diabetes onset, retinal function was significantly preserved. These results indicate that enriched environment could attenuate the early diabetic damage in the retina from adult rats.  相似文献   

20.
We recently reported a reciprocal relationship between tumor necrosis factor alpha (TNFα) and insulin-like receptor growth factor binding protein 3 (IGFBP-3) in whole retina of normal and IGFBP-3 knockout mice. A similar relationship was also observed in cultured retinal endothelial cells (REC). We found that TNFα significantly reduced IGFBP-3 levels and vice-versa, IGFBP-3 can lower TNFα and TNFα receptor expression. Since IGFBP-3 is protective to the diabetic retina and TNFα is causative in the development of diabetic retinopathy, we wanted to better understand the cellular mechanisms by which TNFα can reduce IGFBP-3 levels. For these studies, primary human retinal endothelial cells (REC) were used since these cells undergo TNFα-mediated apoptosis under conditions of high glucose conditions and contribute to diabetic retinopathy. We first cultured REC in normal or high glucose, treated with exogenous TNFα, then measured changes in potential signaling pathways, with a focus on P38 mitogen-activated protein kinase alpha (P38α) and casein kinase 2 (CK2) as these pathways have been linked to both TNFα and IGFBP-3. We found that TNFα significantly increased phosphorylation of P38α and CK2. Furthermore, specific inhibitors of P38α or CK2 blocked TNFα inhibition of IGFBP-3 expression, demonstrating that TNFα reduces IGFBP-3 through activation of P38α and CK2. Since TNFα and IGFBP-3 are key mediators of retinal damage and protection respectively in diabetic retinopathy, increased understanding of the relationship between these two proteins will offer new therapeutic options for treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号