首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of zones of secondary contact provides insight into the maintenance of reproductive isolation. Tension zone theory supplies powerful tools for assessing how dispersal and selection shape hybrid zones. We present a multimodal analysis of phenotypic clines in conjunction with clines at molecular markers in a hybrid zone between Larus glaucescens and Larus occidentalis. We developed a new method to analyze simultaneously clines of quantitative traits and molecular data. Low linkage disequilibrium and the lack of coincidence between clines at six microsatellites, a mitochondrial DNA region, and two phenotypic traits indicated introgression. However, the hypothesis of neutral diffusion was rejected based on evidence that all of the clines were concordant and narrower than expected for neutral clines, indicating some indirect selection. The analysis of phenotypic variance gave evidence of restricted phenotypic introgression and together with the bimodal distribution of phenotypes suggested that disruptive selection is acting across the hybrid zone, especially on the coloration of bare parts. Multimodal analysis of phenotypic clines also highlighted a shift between the peak of intermediates and the cline center, left behind by hybrid zone motion. High-resolution analysis of phenotypes distribution thus proved useful for detecting hybrid zone movement even without temporal data.  相似文献   

2.
Fusco D  Uyenoyama MK 《Genetics》2011,189(1):267-288
Disruption of interactions among ensembles of epistatic loci has been shown to contribute to reproductive isolation among various animal and plant species. Under the Bateson-Dobzhansky-Muller model, such interspecific incompatibility arises as a by-product of genetic divergence in each species, and the Orr-Turelli model indicates that the number of loci involved in incompatible interactions may "snowball" over time. We address the combined effect of multiple incompatibility loci on the rate of introgression at neutral marker loci across the genome. Our analysis extends previous work by accommodating sex specificity: differences between the sexes in the expression of incompatibility, in rates of crossing over between neutral markers and incompatibility loci, and in transmission of markers or incompatibility factors. We show that the evolutionary process at neutral markers in a genome subject to incompatibility selection is well approximated by a purely neutral process with migration rates appropriately scaled to reflect the influence of selection targeted to incompatibility factors. We confirm that in the absence of sex specificity and functional epistasis among incompatibility factors, the barrier to introgression induced by multiple incompatibility factors corresponds to the product of the barriers induced by the factors individually. A new finding is that barriers to introgression due to sex-specific incompatibility depart in general from multiplicativity. Our partitioning of variation in relative reproductive rate suggests that such departures derive from associations between sex and incompatibility and between sex and neutral markers. Concordant sex-specific incompatibility (for example, greater impairment of male hybrids or longer map lengths in females) induces lower barriers (higher rates of introgression) than expected under multiplicativity, and discordant sex-specific incompatibility induces higher barriers.  相似文献   

3.
Speciation is the combination of evolutionary processes that leads to the reproductive isolation of different populations. We investigate the significance of sex-chromosome evolution on the development of post- and prezygotic isolation in two naturally hybridizing Ficedula flycatcher species. Applying a tag-array-based mini-sequencing assay to genotype single nucleotide polymorphisms (SNPs) and interspecific substitutions, we demonstrate rather extensive hybridization and backcrossing in sympatry. However, gene flow across the partial postzygotic barrier (introgression) is almost exclusively restricted to autosomal loci, suggesting strong selection against introgression of sex-linked genes. In addition to this partial postzygotic barrier, character displacement of male plumage characteristics has previously been shown to reinforce prezygotic isolation in these birds. We show that male plumage traits involved in reinforcing prezygotic isolation are sex linked. These results suggest a major role of sex-chromosome evolution in mediating post- and prezygotic barriers to gene flow and point to a causal link in the development of the two forms of reproductive isolation.  相似文献   

4.
We investigate multilocus patterns of differentiation between parental populations of two swallowtail butterfly species that differ at a number of ecologically important sex-linked traits. Using a new coalescent-based approach, we show that there is significant heterogeneity in estimated divergence times among five Z-linked markers, rejecting a purely allopatric speciation model. We infer that the Z chromosome is a mosaic of regions that differ in the extent of historical gene flow, potentially due to isolating barriers that prevent the introgression of species-specific traits that result in hybrid incompatibilities. Surprisingly, a candidate region for a strong barrier to introgression, Ldh, does not show a significantly deeper divergence time than other markers on the Z chromosome. Our approach can be used to test alternative models of speciation and can potentially assign chronological order to the appearance of factors contributing to reproductive isolation between species.  相似文献   

5.
Hybrids between species provide information about the evolutionary processes involved in divergence. In addition to creating hybrids in the laboratory, biologists can take advantage of natural hybrid zones to understand the factors that shape gene flow between divergent lineages. In the early stages of speciation, most regions of the genome continue to flow freely between populations. Alternatively, the subset of the genome that confers reproductive barriers between nascent species is expected to reject introgression. Now enabled by advances in genomics, this perspective is motivating detailed comparisons of gene flow across genomic regions in hybrid zones. Here, I review methods for measuring and interpreting introgression at multiple loci in hybrid zones, focusing on the problem of identifying loci that contribute to reproductive isolation. Emerging patterns from multi-locus studies of hybrid zones are highlighted, including remarkable variance in introgression across the genome. Although existing methods have been useful, there is scope for development of new analytical approaches that better connect differential patterns of gene flow in hybrid zones with current knowledge of speciation mechanisms. I outline future prospects for differential introgression studies on a genomic scale.  相似文献   

6.
Closely related marine species with large overlapping ranges provide opportunities to study mechanisms of speciation, particularly when there is evidence of gene flow between such lineages. Here, we focus on a case of hybridization between the sympatric sister‐species Haemulon maculicauda and H. flaviguttatum, using Sanger sequencing of mitochondrial and nuclear loci, as well as 2422 single nucleotide polymorphisms (SNPs) obtained via restriction site‐associated DNA sequencing (RADSeq). Mitochondrial markers revealed a shared haplotype for COI and low divergence for CytB and CR between the sister‐species. On the other hand, complete lineage sorting was observed at the nuclear loci and most of the SNPs. Under neutral expectations, the smaller effective population size of mtDNA should lead to fixation of mutations faster than nDNA. Thus, these results suggest that hybridization in the recent past (0.174–0.263 Ma) led to introgression of the mtDNA, with little effect on the nuclear genome. Analyses of the SNP data revealed 28 loci potentially under divergent selection between the two species. The combination of mtDNA introgression and limited nuclear DNA introgression provides a mechanism for the evolution of independent lineages despite recurrent hybridization events. This study adds to the growing body of research that exemplifies how genetic divergence can be maintained in the presence of gene flow between closely related species.  相似文献   

7.
Phylogeographic breaks without geographic barriers to gene flow   总被引:16,自引:0,他引:16  
Abstract.— The spatial distribution of genetic markers can be useful both in estimating patterns of gene flow and in reconstructing biogeographic history, particularly when gene genealogies can be estimated. Genealogies based on nonrecombining genetic units such as mitochondrial and chloroplast DNA often consist of geographically separated clades that come into contact in narrow regions. Such phylogeographic breaks are usually assumed to be the result of long-term barriers to gene flow. Here I show that deep phylogeographic breaks can form within a continuously distributed species even when there are no barriers to gene flow. The likelihood of observing phylogeographic breaks increases as the average individual dispersal distance and population size decrease. Those molecular markers that are most likely to show evidence of real geographic barriers are also most likely to show phylogeographic breaks that formed without any barrier to gene flow. These results might provide an explanation as to why some species, such as the greenish warblers ( Phylloscopus trochiloides ), have phylogeographic breaks in mitochondrial or chloroplast DNA that do not coincide with sudden changes in other traits.  相似文献   

8.
Information obtained from laboratory studies regarding the efficacy of barriers to gene flow (reproductive isolation) between species is often incomplete or misleading, so detailed genetic analyses are needed to determine whether hybridization and introgression occur in nature. Previous laboratory studies of the cactophilic species Drosophila mojavensis and Drosophila arizonae suggest that reproductive isolation is incomplete and that gene flow may occur in sympatry. We sampled 18 nuclear and one mitochondrial loci from multiple populations of D. arizonae and D. mojavensis to test for the signature of recent or historic gene flow between these two species. We located chromosomal regions that were inverted between these species and analyzed those regions independently of others. Statistical tests for introgression using all loci or only collinear loci failed to reject expectations of an isolation model. Further tests using average nucleotide differences between species and phylogenetic analyses also failed to find support for introgression between D. mojavensis and D. arizonae. Additional ecological and behavioral studies of these species in their natural habitats are required to explain why the signature of gene flow was not detected at the DNA sequence level in populations when laboratory studies suggest such gene flow should be possible.  相似文献   

9.
Phenotypic differentiation plays an important role in the formation and maintenance of reproductive barriers. In some cases, variation in a few key aspects of phenotype can promote and maintain divergence; hence, the identification of these traits and their associations with patterns of genomic divergence is crucial for understanding the patterns and processes of population differentiation. We studied hybridization between the alba and personata subspecies of the white wagtail (Motacilla alba), and quantified divergence and introgression of multiple morphological traits and 19,437 SNP loci on a 3,000 km transect. Our goal was to identify traits that may contribute to reproductive barriers and to assess how variation in these traits corresponds to patterns of genome‐wide divergence. Variation in only one trait—head plumage patterning—was consistent with reproductive isolation. Transitions in head plumage were steep and occurred over otherwise morphologically and genetically homogeneous populations, whereas cline centres for other traits and genomic ancestry were displaced over 100 km from the head cline. Field observational data show that social pairs mated assortatively by head plumage, suggesting that these phenotypes are maintained by divergent mating preferences. In contrast, variation in all other traits and genetic markers could be explained by neutral diffusion, although weak ecological selection cannot be ruled out. Our results emphasize that assortative mating may maintain phenotypic differences independent of other processes shaping genome‐wide variation, consistent with other recent findings that raise questions about the relative importance of mate choice, ecological selection and selectively neutral processes for divergent evolution.  相似文献   

10.
Yellow-legged gulls Larus michahellis from the Atlantic Iberian coast exhibit some phenotypic similarities with the herring gull L. argentatus from Western Europe. To assess this phenomenon and its possible origin, we compared Mediterranean yellow-legged gulls, Atlantic Iberian yellow-legged gulls and herring gulls for several phenotypic traits (morphology, plumage), and used genetic data to determine the evolutionary history of the Atlantic Iberian yellow-legged gulls. Data from mitochondrial cytochrome b gene and microsatellite loci clearly indicate that Atlantic Iberian gulls are closely related to Mediterranean yellow-legged gulls, and do not show stronger signs of introgression with herring gulls relative to other populations of yellow-legged gulls. Atlantic Iberian yellow-legged gulls are more similar to herring gulls in body size and shape than to other yellow-legged gulls populations, but not in mantle colour and wing-tip pattern. Body size and other phenotypic and life history similarities with the herring gull ( L. argentatus argenteus ) such as voice, winter plumage and breeding phenology, previously described in several studies, might thus be interpreted as convergent characters. Within the yellow-legged gull, the high F st-values obtained from four nuclear microsatellite loci indicate substantial population structure and reduced levels of gene flow between gull populations in Mediterranean France and Atlantic Iberia. Differences among these populations in breeding phenology and migration patterns, likely resulting from different local selection pressures, might contribute to this low level of gene flow.  相似文献   

11.
Contact zones between divergent forms of the same species are often characterised by high levels of phenotypic diversity over small geographic distances. What processes are involved in generating such high phenotypic diversity? One possibility is that introgression and recombination between divergent forms in contact zones results in greater phenotypic and genetic polymorphism. Alternatively, strong reproductive isolation between forms may maintain distinct phenotypes, preventing homogenisation by gene flow. Contact zones between divergent freshwater-resident and anadromous stickleback (Gasterosteus aculeatus L.) forms are numerous and common throughout the species distribution, offering an opportunity to examine these contrasting hypotheses in greater detail. This study reports on an interesting new contact zone located in a tidally influenced lake catchment in western Ireland, characterised by high polymorphism for lateral plate phenotypes. Using neutral and QTL-linked microsatellite markers, we tested whether the high diversity observed in this contact zone arose as a result of introgression or reproductive isolation between divergent forms: we found strong support for the latter hypothesis. Three phenotypic and genetic clusters were identified, consistent with two divergent resident forms and a distinct anadromous completely plated population that migrates in and out of the system. Given the strong neutral differentiation detected between all three morphotypes (mean FST = 0.12), we hypothesised that divergent selection between forms maintains reproductive isolation. We found a correlation between neutral genetic and adaptive genetic differentiation that support this. While strong associations between QTL linked markers and phenotypes were also observed in this wild population, our results support the suggestion that such associations may be more complex in some Atlantic populations compared to those in the Pacific. These findings provide an important foundation for future work investigating the dynamics of gene flow and adaptive divergence in this newly discovered stickleback contact zone.  相似文献   

12.
To examine the processes that maintain genetic diversity among closely related taxa, we investigated the dynamics of introgression across a contact zone between two lineages of California voles (Microtus californicus). We tested the prediction that introgression of nuclear loci would be greater than that for mitochondrial loci, assuming ongoing gene flow across the contact zone. We also predicted that genomic markers would show a mosaic pattern of differentiation across this zone, consistent with genomes that are semi‐permeable. Using mitochondrial cytochrome b sequences and genome‐wide loci developed via ddRAD‐seq, we analyzed genetic variation for 10 vole populations distributed along the central California coast; this transect included populations from within the distributions of both parental lineages as well as the putative contact zone. Our analyses revealed that (1) the two lineages examined are relatively young, having diverged ca. 8.5–54 kya, (2) voles from the contact zone in Santa Barbara County did not include F1 or early generation backcrossed individuals, and (3) there appeared to be little to no recurrent gene flow across the contact zone. Introgression patterns for mitochondrial and nuclear markers were not concordant; only mitochondrial markers revealed evidence of introgression, putatively due to historical hybridization. These differences in genetic signatures are intriguing given that the contact zone occurs in a region of continuous vole habitat, with no evidence of past or present physical barriers. Future studies that examine specific isolating mechanisms, such as microhabitat use and mate choice, will facilitate our understanding of how genetic boundaries are maintained in this system.  相似文献   

13.
Reproductive isolation is of fundamental importance for maintaining species boundaries in sympatry. In orchids, the wide variety of pollination systems and highly diverse floral traits have traditionally suggested a prominent role for pollinator isolation, and thus for prezygotic isolation, as an effective barrier to gene flow among species. Here, we examined the nature of reproductive isolation between Anacamptis morio and Anacamptis papilionacea, two sister species of Mediterranean food-deceptive orchids, in two natural hybrid zones. Comparative analyses of the two hybrid zones that are located on soils with volcanic origin and have different and well-dated ages consistently revealed that all hybrid individuals were morphologically and genetically intermediate between the parental species, but had strongly reduced fitness. Molecular analyses based on nuclear ITS1 and (amplified fragment length polymorphism) AFLP markers clearly showed that all examined hybrids were F1 hybrids, and that no introgression occurred between parental species. The maternally inherited plastid DNA markers indicated that hybridization between A. morio and A. papilionacea was bidirectional, as confirmed by the molecular analysis of seed families. The genetic architecture of the two hybrid zones suggests that the two parental species easily and frequently hybridize in sympatry as a consequence of partial pollinator overlap but that strong postzygotic barriers reduce hybrid fitness and prevent gene introgression. These results corroborate that chromosomal divergence is instrumental for reproductive isolation between these food-deceptive orchids and suggest that hybridization is of limited importance for their diversification.  相似文献   

14.
Behavioural isolation may lead to complete speciation when partial postzygotic isolation acts in the presence of divergent‐specific mate‐recognition systems. These conditions exist where Mus musculus musculus and M. m. domesticus come into contact and hybridize. We studied two mate‐recognition signal systems, based on urinary and salivary proteins, across a Central European portion of the mouse hybrid zone. Introgression of the genomic regions responsible for these signals: the major urinary proteins (MUPs) and androgen binding proteins (ABPs), respectively, was compared to introgression at loci assumed to be nearly neutral and those under selection against hybridization. The preference of individuals taken from across the zone regarding these signals was measured in Y mazes, and we develop a model for the analysis of the transition of such traits under reinforcement selection. The strongest assortative preferences were found in males for urine and females for ABP. Clinal analyses confirm nearly neutral introgression of an Abp locus and two loci closely linked to the Abp gene cluster, whereas two markers flanking the Mup gene region reveal unexpected introgression. Geographic change in the preference traits matches our reinforcement selection model significantly better than standard cline models. Our study confirms that behavioural barriers are important components of reproductive isolation between the house mouse subspecies.  相似文献   

15.
Interspecific crossing experiments have shown that sex chromosomes play a major role in reproductive isolation between many pairs of species. However, their ability to act as reproductive barriers, which hamper interspecific genetic exchange, has rarely been evaluated quantitatively compared to Autosomes. This genome-wide limitation of gene flow is essential for understanding the complete separation of species, and thus speciation. Here, we develop a mainland-island model of secondary contact between hybridizing species of an XY (or ZW) sexual system. We obtain theoretical predictions for the frequency of introgressed alleles, and the strength of the barrier to neutral gene flow for the two types of chromosomes carrying multiple interspecific barrier loci. Theoretical predictions are obtained for scenarios where introgressed alleles are rare. We show that the same analytical expressions apply for sex chromosomes and autosomes, but with different sex-averaged effective parameters. The specific features of sex chromosomes (hemizygosity and absence of recombination in the heterogametic sex) lead to reduced levels of introgression on the X (or Z) compared to autosomes. This effect can be enhanced by certain types of sex-biased forces, but it remains overall small (except when alleles causing incompatibilities are recessive). We discuss these predictions in the light of empirical data comprising model-based tests of introgression and cline surveys in various biological systems.  相似文献   

16.
Despite the presence of reproductive barriers between species, interspecific gene introgression has been documented in a range of natural systems. Comparing patterns of genetic introgression in biparental versus matrilineal markers can potentially reveal sex‐specific barriers to interspecific gene flow. Hybridization has been documented in the freshwater turtles Graptemys geographica and G. pseudogeographica, whose ranges are largely sympatric. Morphological differentiation between the species is restricted to females, with female G. geographica possessing large heads and jaws compared to the narrow heads of G. pseudogeographica females. If hybrid females are morphologically intermediate, they may be less successful at exploiting parental feeding niches, thereby limiting the introgression of maternally inherited, but not biparental, molecular markers. We paired sequence data with stable isotope analysis and examined sex‐specific genetic introgression and trophic differentiation in sympatric populations of G. geographica and G. pseudogeographica. We observed introgression from G. pseudogeographica into G. geographica at three nuclear loci, but not at the mitochondrial locus. Analysis of ?15N and ?13C was consistent with species differences in trophic positioning in females, but not males. These results suggest that ecological divergence in females may reduce the opportunity for gene flow in this system.  相似文献   

17.
18.
19.
When reproductive barriers break down, interspecific hybridization can lead to gene flow between evolutionarily distinct species. Studying the fate of these introgressing elements can offer valuable insights into the factors contributing to reproductive isolation. We have identified a population of false map turtles (Graptemys pseudogeographica) that hybridized historically with the common map turtle (Graptemys geographica), but were subsequently isolated from interbreeding for several generations by unique geological events. Although many studies conclude that genic interactions involving sex chromosomes impact the introgression of mitochondrial or nuclear genomes, Graptemys turtles have environmental sex determination, and thus introgression can be explored while controlling for the effects of sex‐specific heterogameity. We identified and sequenced a species‐specific mitochondrial control region marker, as well as two nuclear markers (ODC and HNFAL), in turtles from across the ranges of these species. We found both nuclear and mitochondrial introgression in our study population, and present evidence consistent with the proposed time range of reproductive contact and isolation. We also report an absence of cytonuclear or linkage disequilibrium among markers, indicating that some important pre‐ and postzygotic barriers to gene flow that characterize other systems are absent in Graptemys. Finally, we show that Graptemys turtles have a complex molecular evolutionary history, and that leaks in reproductive barriers probably occur frequently. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 405–417.  相似文献   

20.
Understanding the origin of biodiversity requires knowledge on the evolutionary processes that drive divergence and speciation, as well as on the processes constraining it. Intraspecific polymorphisms can provide insight into the mechanisms that generate and maintain phenotypic, behavioural and life history diversification, and can help us understand not only the processes that lead to speciation but also the processes that prevent local fixation of morphs. The ‘desert cichlid’ Herichtys minckleyi is a highly polymorphic species endemic to a biodiversity hotspot in northern Mexico, the Cuatro Ciénegas valley. This species is polymorphic in body shape and trophic apparatus, and eco‐morphotypes coexist in small spring‐fed lagoons across the valley. We investigated the genetic structure of these polymorphisms and their phylogeographic history by analysing the entire control region of the mitochondrial DNA and 10 nuclear microsatellite markers in several populations from different sites and morphs. We found two very divergent mitochondrial lineages that most likely predate the closing of the valley and are not associated with morphotypes or sites. One of these lineages is also found in the sister species Herichthys cyanoguttatus. Data from neutral microsatellite markers suggest that most lagoons or drainages constitute their own genetic cluster with sympatric eco‐morphotypes forming panmictic populations. Alternative mechanisms such as phenotypic plasticity and a few loci controlled traits provide possible explanations for the sympatric coexistence of discrete nonoverlapping eco‐morphotypes with apparent lack of barriers to gene flow within multiple lagoons and drainages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号