首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The mTOR (mammalian target of rapamycin) signalling pathway is a key regulator of cell growth and is controlled by growth factors and nutrients such as amino acids. Although signalling pathways from growth factor receptors to mTOR have been elucidated, the pathways mediating signalling by nutrients are poorly characterized. Through a screen for protein kinases active in the mTOR signalling pathway in Drosophila we have identified a Ste20 family member (MAP4K3) that is required for maximal S6K (S6 kinase)/4E-BP1 [eIF4E (eukaryotic initiation factor 4E)-binding protein 1] phosphorylation and regulates cell growth. Importantly, MAP4K3 activity is regulated by amino acids, but not the growth factor insulin and is not regulated by the mTORC1 inhibitor rapamycin. Our results therefore suggest a model whereby nutrients signal to mTORC1 via activation of MAP4K3.  相似文献   

3.
Planarian flatworms are able to both regenerate their whole bodies and continuously adapt their size to nutrient status. Tight control of stem cell proliferation and differentiation during these processes is the key feature of planarian biology. Here we show that the planarian homolog of the phosphoinositide 3-kinase-related kinase (PIKK) family member SMG-1 and mTOR complex 1 components are required for this tight control. Loss of smg-1 results in a hyper-responsiveness to injury and growth and the formation of regenerative blastemas that remain undifferentiated and that lead to lethal ectopic outgrowths. Invasive stem cell hyper-proliferation, hyperplasia, hypertrophy, and differentiation defects are hallmarks of this uncontrolled growth. These data imply a previously unappreciated and novel physiological function for this PIKK family member. In contrast we found that planarian members of the mTOR complex 1, tor and raptor, are required for the initial response to injury and blastema formation. Double smg-1 RNAi experiments with tor or raptor show that abnormal growth requires mTOR signalling. We also found that the macrolide rapamycin, a natural compound inhibitor of mTORC1, is able to increase the survival rate of smg-1 RNAi animals by decreasing cell proliferation. Our findings support a model where Smg-1 acts as a novel regulator of both the response to injury and growth control mechanisms. Our data suggest the possibility that this may be by suppressing mTOR signalling. Characterisation of both the planarian mTORC1 signalling components and another PIKK family member as key regulators of regeneration and growth will influence future work on regeneration, growth control, and the development of anti-cancer therapies that target mTOR signalling.  相似文献   

4.
Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase originally discovered as the molecular target of the immunosuppressant rapamycin. mTOR forms two compositionally and functionally distinct complexes, mTORC1 and mTORC2, which are crucial for coordinating nutrient, energy, oxygen, and growth factor availability with cellular growth, proliferation, and survival. Recent studies have identified critical, non-redundant roles for mTORC1 and mTORC2 in controlling B cell development, differentiation, and functions, and have highlighted emerging roles of the Folliculin-Fnip protein complex in regulating mTOR and B cell development. In this review, we summarize the basic mechanisms of mTOR signaling; describe what is known about the roles of mTORC1, mTORC2, and the Folliculin/Fnip1 pathway in B cell development and functions; and briefly outline current clinical approaches for targeting mTOR in B cell neoplasms. We conclude by highlighting a few salient questions and future perspectives regarding mTOR in B lineage cells.  相似文献   

5.
The mechanistic target of rapamycin (mTOR) plays a central role in cellular growth and metabolism. mTOR forms two distinct protein complexes, mTORC1 and mTORC2. Much is known about the regulation and functions of mTORC1 due to availability of a natural compound, rapamycin, that inhibits this complex. Studies that define mTORC2 cellular functions and signaling have lagged behind. The development of pharmacological inhibitors that block mTOR kinase activity, and thereby inhibit both mTOR complexes, along with availability of mice with genetic knockouts in mTOR complex components have now provided new insights on mTORC2 function and regulation. Since prolonged effects of rapamycin can also disrupt mTORC2, it is worth re-evaluating the contribution of this less-studied mTOR complex in cancer, metabolic disorders and aging. In this review, we focus on recent developments on mammalian mTORC2 signaling mechanisms and its cellular and tissue-specific functions.  相似文献   

6.
哺乳动物雷帕霉素靶(mTOR)和蛋白激酶B(Akt/PKB)与肿瘤发生的密切关系已被广泛地认可.mTOR是一种丝/苏氨酸激酶,可以通过影响mRNA转录、代谢、自噬等方式调控细胞的生长.它既是PI3K的效应分子,也可以是PI3K的反馈调控因子.mTORC1 和mTORC2是mTOR的两种不同复合物. 对雷帕霉素敏感的mTORC1受到营养、生长因子、能量和应激4种因素的影响.生长因子通过PI3K/Akt信号通路调控mTORC1是最具特征性调节路径.而mTORC2最为人熟知的是作为Akt473磷酸化位点的上游激酶. 同样,Akt/PKB在细胞增殖分化、迁移生长过程中发挥着重要作用. 随着Thr308和Ser473两个位点激活,Akt/PKB也得以全面活化.因此,mTORC2-Akt-mTORC1的信号通路在肿瘤形成和生长中是可以存在的.目前临床肿瘤治疗中,PI3K/Akt/mTOR是重要的靶向治疗信号通路.然而,仅抑制mTORC1活性,不是所有的肿瘤都能得到预期控制.雷帕霉素虽然能抑制mTORC1,但也能反馈性地增加PI3K信号活跃度,从而影响治疗预后.近来发现的第二代抑制剂可以同时抑制mTORC1/2和PI3K活性,这种抑制剂被认为在肿瘤治疗上颇具前景.本综述着重阐述了PI3K/Akt/mTOR信号通路的传导、各因子之间的相互调控以及相关抑制剂的发展.  相似文献   

7.
The mammalian target of rapamycin (mTOR) regulates cell growth and survival by integrating nutrient and hormonal signals. These signaling functions are distributed between at least two distinct mTOR protein complexes: mTORC1 and mTORC2. mTORC1 is sensitive to the selective inhibitor rapamycin and activated by growth factor stimulation via the canonical phosphoinositide 3-kinase (PI3K)→Akt→mTOR pathway. Activated mTORC1 kinase up-regulates protein synthesis by phosphorylating key regulators of mRNA translation. By contrast, mTORC2 is resistant to rapamycin. Genetic studies have suggested that mTORC2 may phosphorylate Akt at S473, one of two phosphorylation sites required for Akt activation; this has been controversial, in part because RNA interference and gene knockouts produce distinct Akt phospho-isoforms. The central role of mTOR in controlling key cellular growth and survival pathways has sparked interest in discovering mTOR inhibitors that bind to the ATP site and therefore target both mTORC2 and mTORC1. We investigated mTOR signaling in cells and animals with two novel and specific mTOR kinase domain inhibitors (TORKinibs). Unlike rapamycin, these TORKinibs (PP242 and PP30) inhibit mTORC2, and we use them to show that pharmacological inhibition of mTOR blocks the phosphorylation of Akt at S473 and prevents its full activation. Furthermore, we show that TORKinibs inhibit proliferation of primary cells more completely than rapamycin. Surprisingly, we find that mTORC2 is not the basis for this enhanced activity, and we show that the TORKinib PP242 is a more effective mTORC1 inhibitor than rapamycin. Importantly, at the molecular level, PP242 inhibits cap-dependent translation under conditions in which rapamycin has no effect. Our findings identify new functional features of mTORC1 that are resistant to rapamycin but are effectively targeted by TORKinibs. These potent new pharmacological agents complement rapamycin in the study of mTOR and its role in normal physiology and human disease.  相似文献   

8.
The mammalian target of rapamycin (mTOR) is centrally involved in growth, survival and metabolism. In cancer, mTOR is frequently hyperactivated and is a clinically validated target for drug development. Until recently, we have relied largely on the use of rapamycin to study mTOR function and its anticancer potential. Recent insights now indicate that rapamycin is a partial inhibitor of mTOR through allosteric inhibition of mTOR complex-1 (mTORC1) but not mTOR complex-2 (mTORC2). Both the mechanism of action and the cellular response to mTORC1 inhibition by rapamycin and related drugs may limit the effectiveness of these compounds as antitumor agents. We and others have recently reported the discovery of second-generation ATP-competitive mTOR kinase inhibitors (TKIs) that bind to the active sites of mTORC1 and mTORC2, thereby targeting mTOR signaling function globally (see refs. 1-4). The discovery of specific, active-site mTOR inhibitors has opened a new chapter in the 40-plus year old odyssey that began with the discovery of rapamycin from a soil sample collected on Easter Island (see Vézina C, et al. J Antibiot 1975). Here, we discuss recent studies that highlight the emergence of rapamycin-resistant mTOR function in protein synthesis, cell growth, survival and metabolism. It is shown that these rapamycin-resistant mTOR functions are profoundly inhibited by TKIs. A more complete suppression of mTOR global signaling network by the new inhibitors is expected to yield a deeper and broader antitumor response in the clinic.  相似文献   

9.
The mechanistic target of rapamycin (mTOR) plays a central role in cellular growth and metabolism. mTOR forms two distinct protein complexes, mTORC1 and mTORC2. Much is known about the regulation and functions of mTORC1 due to availability of a natural compound, rapamycin, that inhibits this complex. Studies that define mTORC2 cellular functions and signaling have lagged behind. The development of pharmacological inhibitors that block mTOR kinase activity, and thereby inhibit both mTOR complexes, along with availability of mice with genetic knockouts in mTOR complex components have now provided new insights on mTORC2 function and regulation. Since prolonged effects of rapamycin can also disrupt mTORC2, it is worth re-evaluating the contribution of this less-studied mTOR complex in cancer, metabolic disorders and aging. In this review, we focus on recent developments on mammalian mTORC2 signaling mechanisms and its cellular and tissue-specific functions.Key words: mTOR, mTORC2, rictor, cancer, metabolism, ribosomes, protein synthesis, protein maturation, AGC kinases, growth factor signaling  相似文献   

10.
The mechanistic target of rapamycin (mTOR) integrates both intracellular and extracellular signals to regulate cell growth and metabolism. However, the role of mTOR signaling in osteoblast differentiation and bone formation is undefined, and the underlying mechanisms have not been elucidated. Here, we report that activation of mTOR complex 1 (mTORC1) is required for preosteoblast proliferation; however, inactivation of mTORC1 is essential for their differentiation and maturation. Inhibition of mTORC1 prevented preosteoblast proliferation, but enhanced their differentiation in vitro and in mice. Activation of mTORC1 by deletion of tuberous sclerosis 1 (Tsc1) in preosteoblasts produced immature woven bone in mice due to excess proliferation but impaired differentiation and maturation of the cells. The mTORC1-specific inhibitor, rapamycin, restored these in vitro and in vivo phenotypic changes. Mechanistically, mTORC1 prevented osteoblast maturation through activation of the STAT3/p63/Jagged/Notch pathway and downregulation of Runx2. Preosteoblasts with hyperactive mTORC1 reacquired the capacity to fully differentiate and maturate when subjected to inhibition of the Notch pathway. Together, these findings identified the role of mTORC1 in osteoblast formation and established that mTORC1 prevents preosteoblast differentiation and maturation through activation of the Notch pathway.  相似文献   

11.
脂肪组织是一种主要的能量储存和内分泌器官。脂肪生成是一系列复杂的细胞分化过程,受到细胞营养水平、激素和代谢物等调节。哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)复合物包括哺乳动物雷帕霉素靶蛋白复合体1(mammalian target of rapamycin complex 1,mTORC1)和mTORC2两种蛋白质复合体。mTOR复合物含有的脂质激酶样域奠定了mTOR通路调控脂肪生成的基础。对mTORC1和mTORC2的部分组成蛋白质研究也验证了mTOR调控成脂的功能。基于前期的研究,我们综述了miR-199a-3p、miR-103、miR-188、68 kD有丝分裂中的Src相关底物(Src-associated substrate in mitosis of 68 kD,Sam68)、内皮抑素等物质通过mTORC1和mTORC2蛋白质复合体调控脂肪生成的机制。同时,进一步构建了包括胰岛素/IGF通路、PI3K-AKT通路、氨基酸通路、AMPK通路、cAMP通路、cGMP通路、NOTCH通路以及影响上述通路的bta-miR-150、4-O-甲基蔗糖和多种蛋白质在内的mTOR信号通路调控脂肪生成的网络。本文主要综述了mTOR复合物的特性和mTOR通路调控脂肪生成方面的最新研究进展,指出mTORC2具有调控脂质摄取和脂质分解的作用,调控mTORC1功能的作用,但是有关mTORC2的研究相对mTORC1较少,因此,对脂肪生成和脂质代谢的进一步研究需要集中于mTORC2。  相似文献   

12.
The mechanistic target of rapamycin, mTOR, is a protein kinase that integrates environmental and nutritional inputs into regulation of cell growth and metabolism. Key outputs of mTOR signalling occur from the lysosome membrane in the form of the multi‐subunit mTOR complex 1 (mTORC1), which phosphorylates multiple targets. While class I phosphoinositide kinase (PI3K‐I) is a well‐known activator of mTORC1, a recent paper (Marat et al, 2017) shows that a class II PI3K with a different substrate specificity, PI3K‐C2β, serves to inhibit mTORC1 on lysosomes under conditions of growth factor deprivation.  相似文献   

13.
The mechanistic target of rapamycin (mTOR) signaling pathway is an evolutionary conserved pathway that senses signals from nutrients and growth factors to regulate cell growth, metabolism and survival. mTOR acts in two biochemically and functionally distinct complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2), which differ in terms of regulatory mechanisms, substrate specificity and functional outputs. While mTORC1 signaling has been extensively studied in islet/β-cell biology, recent findings demonstrate a distinct role for mTORC2 in the regulation of pancreatic β-cell function and mass. mTORC2, a key component of the growth factor receptor signaling, is declined in β cells under diabetogenic conditions and in pancreatic islets from patients with type 2 diabetes. β cell-selective mTORC2 inactivation leads to glucose intolerance and acceleration of diabetes as a result of reduced β-cell mass, proliferation and impaired glucose-stimulated insulin secretion. Thereby, many mTORC2 targets, such as AKT, PKC, FOXO1, MST1 and cell cycle regulators, play an important role in β-cell survival and function. This indicates mTORC2 as important pathway for the maintenance of β-cell homeostasis, particularly to sustain proper β-cell compensatory response in the presence of nutrient overload and metabolic demand. This review summarizes recent emerging advances on the contribution of mTORC2 and its associated signaling on the regulation of glucose metabolism and functional β-cell mass under physiological and pathophysiological conditions in type 2 diabetes.  相似文献   

14.
Cell growth is influenced by environmental stress. Mammalian target of rapamycin (mTOR), the central regulator of cell growth, can be positively or negatively regulated by various stresses through different mechanisms. The p38 MAP kinase pathway is essential in cellular stress responses. Activation of MK2, a downstream kinase of p38α, enhances mTOR complex 1 (mTORC1) activity by preventing TSC2 from inhibiting mTOR activation. The p38β-PRAK cascade targets Rheb to inhibit mTORC1 activity upon glucose depletion. Here we show the activation of p38β participates in activation of mTOR complex 1 (mTORC1) induced by arsenite but not insulin, nutrients, anisomycin, or H(2)O(2). Arsenite treatment of cells activates p38β and induces interaction between p38β and Raptor, a regulatory component of mTORC1, resulting in phosphorylation of Raptor on Ser(863) and Ser(771). The phosphorylation of Raptor on these sites enhances mTORC1 activity, and contributes largely to arsenite-induced mTORC1 activation. Our results shown here and in previous work demonstrate that the p38 pathway can regulate different components of the mTORC1 pathway, and that p38β can target different substrates to either positively or negatively regulate mTORC1 activation when a cell encounters different environmental stresses.  相似文献   

15.
The cellular response to hypoxia involves several signalling pathways that mediate adaptation and survival. REDD1 (regulated in development and DNA damage responses 1), a hypoxia‐inducible factor‐1 target gene, has a crucial role in inhibiting mammalian target of rapamycin complex 1 (mTORC1) signalling during hypoxic stress. However, little is known about the signalling pathways and post‐translational modifications that regulate REDD1 function. Here, we show that REDD1 is subject to ubiquitin‐mediated degradation mediated by the CUL4A–DDB1–ROC1–β‐TRCP E3 ligase complex and through the activity of glycogen synthase kinase 3β. Furthermore, REDD1 degradation is crucially required for the restoration of mTOR signalling as cells recover from hypoxic stress. Our findings define a mechanism underlying REDD1 degradation and its importance for regulating mTOR signalling.  相似文献   

16.
The mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine protein kinase that regulates numerous cellular processes including cell growth, proliferation, cell cycle, and autophagy. mTOR forms two different multi-protein complexes referred to as mTOR complex 1 (mTORC1) and mTORC2, and each complex exerts distinct functions exclusively. mTORC1 activity is sensitive to the selective inhibitor rapamycin, whereas mTORC2 is resistant. mTORC1 is regulated by many intra- and extra-cellular cues such as growth factors, nutrients, and energy-sensing signals, while mTORC2 senses ribosome maturation and growth factor signaling. This review focuses on current understandings by which mTORC1 pathway senses cellular nutrient availability for its activation.  相似文献   

17.
mTORC1 (mammalian target of rapamycin complex 1) is controlled by diverse signals (e.g. hormones, growth factors, nutrients and cellular energy status) and regulates a range of processes including anabolic metabolism, cell growth and cell division. We have studied the impact of inhibiting mTOR on protein synthesis in human cells. Partial inhibition of mTORC1 by rapamycin has only a limited impact on protein synthesis, but inhibiting mTOR kinase activity causes much greater inhibition of protein synthesis. Using a pulsed stable-isotope-labelling technique, we show that the rapamycin and mTOR (mammalian target of rapamycin) kinase inhibitors have differential effects on the synthesis of specific proteins. In particular, the synthesis of proteins encoded by mRNAs that have a 5'-terminal pyrimidine tract is strongly inhibited by mTOR kinase inhibitors. Many of these mRNAs encode ribosomal proteins. mTORC1 also promotes the synthesis of rRNA, although the mechanisms involved remain to be clarified. We found that mTORC1 also regulates the processing of the precursors of rRNA. mTORC1 thus co-ordinates several steps in ribosome biogenesis.  相似文献   

18.
mTOR (mammalian target of rapamycin) signalling and macroautophagy (henceforth autophagy) regulate numerous pathological and physiological processes, including cellular responses to altered nutrient levels. However, the mechanisms regulating mTOR and autophagy remain incompletely understood. Lysosomes are dynamic intracellular organelles intimately involved both in the activation of mTOR complex 1 (mTORC1) signalling and in degrading autophagic substrates. Here we report that lysosomal positioning coordinates anabolic and catabolic responses with changes in nutrient availability by orchestrating early plasma-membrane signalling events, mTORC1 signalling and autophagy. Activation of mTORC1 by nutrients correlates with its presence on peripheral lysosomes that are physically close to the upstream signalling modules, whereas starvation causes perinuclear clustering of lysosomes, driven by changes in intracellular pH. Lysosomal positioning regulates mTORC1 signalling, which in turn influences autophagosome formation. Lysosome positioning also influences autophagosome-lysosome fusion rates, and thus controls autophagic flux by acting at both the initiation and termination stages of the process. Our findings provide a physiological role for the dynamic state of lysosomal positioning in cells as a coordinator of mTORC1 signalling with autophagic flux.  相似文献   

19.
Branched-chain amino acids (BCAAs) have been applied as an oral supplementation to patients with liver cirrhosis. BCAAs not only improve nutritional status of patients but also decrease the incidence of liver cancer. Mammalian target of rapamycin (mTOR) links cellular metabolism with growth and proliferation in response to nutrients, energy, and growth factors. BCAAs, especially leucine, have been shown to regulate protein synthesis through mTOR activities. On the other hand, cellular senescence is suggested to function as tumor suppressor mechanisms, and induced by a variety of stimuli including DNA damage-inducing drugs. However, it is not clear how BCAA supplementation prevents the incidence of liver cancer in patients with cirrhosis. Here we showed that human cancer cells, HepG2 and U2OS, cultured in medium containing BCAAs with Fischer''s ratio about 3, which was shown to have highest activities to synthesize and secrete of albumin, had higher activities to induce premature senescence and elevate mTORC1 activities. Furthermore, BCAAs themselves enhanced the execution of premature senescence induced by DNA damage-inducing drugs, which was effectively prevented by rapamycin. These results strongly suggested the contribution of the mTORC1 pathway to the regulation of premature senescence. Interestingly, the protein levels of p21, a p53 target and well-known gene essential for the execution of cellular senescence, were upregulated in the presence of BCAAs. These results suggested that BCAAs possibly contribute to tumor suppression by enhancing cellular senescence mediated through the mTOR signalling pathway.  相似文献   

20.
Nutrition and physical activity have profound effects on skeletal muscle metabolism and growth. Regulation of muscle mass depends on a thin balance between growth-promoting and growth-suppressing factors. Over the past decade, the mammalian target of rapamycin (mTOR) kinase has emerged as an essential factor for muscle growth by mediating the anabolic response to nutrients, insulin, insulin-like growth factors and resistance exercise. As opposed to the mTOR signaling pathway, the AMP-activated protein kinase (AMPK) is switched on during starvation and endurance exercise to upregulate energy-conserving processes. Recent evidence indicates that mTORC1 (mTOR Complex 1) and AMPK represent two antagonistic forces governing muscle adaption to nutrition, starvation and growth stimulation. Animal knockout models with impaired mTORC1 signaling showed decreased muscle mass correlated with increased AMPK activation. Interestingly, AMPK inhibition in p70S6K-deficient muscle cells restores cell growth and sensitivity to nutrients. Conversely, muscle cells lacking AMPK have increased mTORC1 activation with increased cell size and protein synthesis rate. We also demonstrated that the hypertrophic action of MyrAkt is enhanced in AMPK-deficient muscle, indicating that AMPK acts as a negative feedback control to restrain muscle hypertrophy. Our recent results extend this notion by showing that AMPKα1, but not AMPKα2, regulates muscle cell size through the control of mTORC1 signaling. These results reveal the diverse functions of the two catalytic isoforms of AMPK, with AMPKα1 playing a predominant role in the control of muscle cell size and AMPKα2 mediating muscle metabolic adaptation. Thus, the crosstalk between AMPK and mTORC1 signaling is a highly regulated way to control changes in muscle growth and metabolic rate imposed by external cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号