首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of peroxidase amino acid sequences show limited homology to short regions comprising the known active site cleft of yeast cytochrome c peroxidase. Otherwise no clear homology is visible in linear alignments between this enzyme and other peroxidases. We have subjected eight peroxidase sequences to hydrophobic cluster analysis. Our results suggest that these peroxidases are evolutionary related and that they share many folding characteristics.  相似文献   

2.
Ascorbate (AsA) peroxidase can be inactivated both by p-chloromercuribenzoateand by the depletion of AsA but guaiacol peroxidases, such ashorseradish peroxidase, cannot. The cytosolic isozymes of AsAperoxidase are less sensitive to depletion of AsA than the chloroplasticisozymes, which include stromal [Chen and Asada (1989) PlantCell Physiol. 30: 987] and thyla-koid-bound [Miyake and Asada(1992) Plant Cell Physiol. 33: 541] enzymes. Exploring theseproperties, we established simple methods for separate assaysof AsA peroxidase and guaiacol peroxidase and of the three isozymesof AsA peroxidase in plant extracts. These methods were usedto characterize the guaiacol peroxidases and isozymes of AsAperoxidase in plants and algae. (Received October 20, 1993; Accepted February 7, 1994)  相似文献   

3.
Ascorbate peroxidase is a hydrogen peroxide-scavenging enzyme that is specific to plants and algae and is indispensable to protect chloroplasts and other cell constituents from damage by hydrogen peroxide and hydroxyl radicals produced from it. In this review, first, the participation of ascorbate peroxidase in the scavenging of hydrogen peroxide in chloroplasts is briefly described. Subsequently, the phylogenic distribution of ascorbate peroxidase in relation to other hydrogen peroxide-scavenging peroxidases using glutathione, NADH and cytochrome c is summarized. Chloroplastic and cytosolic isozymes of ascorbate peroxidase have been found, and show some differences in enzymatic properties. The basic properties of ascorbate peroxidases, however, are very different from those of the guaiacol peroxidases so far isolated from plant tissues. Amino acid sequence and other molecular properties indicate that ascorbate peroxidase resembles cytochrome c peroxidase from fungi rather than guaiacol peroxidase from plants, and it is proposed that the plant and yeast hydrogen peroxide-scavenging peroxidases have the same ancestor.  相似文献   

4.
Peroxidase active against 2,2'-azino-bis-[3-ethylbenzthiazoline-6-sulphonicacid] (ABTS) and guaiacol were found in the apoplastic fluid,as well as ionically and covalently associated with pine cellwalls. The highest activity was found covalently bound to cellwalls, while the lowest activity was in the apoplastic fluid.Both ABTS and guaiacol peroxidases increased with the hypocotylage in the three fractions, apoplastic, ionically and covalentlybound. Furthermore, the changes in both peroxidases along thehypocotyl were also studied. Both apoplastic ABTS- and guaiacol-peroxidasesincreased from the apical towards the basal region of the hypocotylsof 10-d-old seedlings. A relation between peroxidase activityin the apoplastic fluid and the cell wall stiffening in pinehypocotyls is proposed.Copyright 1995, 1999 Academic Press Cell wall, growth, hypocotyl, peroxidase, pine, Pinus pinaster Aiton  相似文献   

5.
Two isozymes of ascorbate (AsA) peroxidase were found in tealeaves, and one of them (AsA peroxidase II) was purified tohomogeneity, as judged by polyacrylamide gel electrophoresis.AsA peroxidase II is a monomer with a molecular weight of 34,000and contains protoheme, but it is not a glycoprotein. The enzymeshowed a Soret peak at 409 run and at 420 nm when oxidized andreduced, respectively, with an a-band at 556 nm. The oxidizedenzyme showed two small peaks at 478 nm and 530 nm. The peakat 478 nm disappeared when the enzyme was inactivated by depletionof AsA or by the addition of cyanide. Antibody raised againstAsA peroxidase II from tea did not cross-react with guaiacolperoxidase from spinach, and antibody against the guaiacol peroxidasedid not with AsA peroxidases from tea leaf. The amino acid compositionand amino acid sequence of the amino-terminal region of AsAperoxidase II were determined. Little homology in terms of aminoacid sequence was found between AsA peroxidase II and variousguaiacol peroxidases. The enzymatic and molecular propertiesof the two isozymes showed distinct differences with respectto molecular weight, sensitivity to AsA-depletion, specificityfor the electron donor, and other enzymatic properties. (Received April 13, 1989; Accepted July 25, 1989)  相似文献   

6.
The hydrogen peroxide that is photoproduced in thylakoids isscavenged by the thylakoid-bound ascorbate peroxidase (tAPX)[Miyake and Asada (1992) Plant Cell Physiol. 33: 541]. tAPXwas purified from spinach thylakoids to homogeneity as judgedby SDS-polyacrylamide gel electrophoresis, and its molecularproperties were studied. Spinach tAPX was a monomer with a molecularweight of 40,000, which is about 10,000 higher than that ofthe stromal ascorbate peroxidase (sAPX) from spinach chloroplasts.tAPX cross-reacted with the antibody raised against sAPX fromtea leaves, as determined by Western blotting, which also providedevidence for the higher molecular weight of tAPX from spinachthylakoids than that of tea sAPX. The amino acid sequence ofthe amino-terminal region of tAPX showed a low degree of homologyto those of cytosolic APXs from spinach, pea and Arabidopsisthaliana, but a high degree of homology to that of stromal APXfrom tea. Thus, the amino-terminal region of tAPX seems notto be a domain required for binding of the enzyme to the thylakoidmembranes. tAPX contained protoheme IX, as identified by itspyridine hemochromogen, and gave a Soret peak at 403 nm and433 nm with an a band at 555 nm in its oxidized and reducedforms, respectively. Resembling sAPX but differing from cytosolicAPX, tAPX showed high specificity for ascorbate as the electrondonor. tAPX was inhibited by cyanide, thiol-modifying reagents,thiols and several suicide inhibitors, such as hydroxyurea andp-aminophenol. 1Present address: Beijing Vegetable Research Centre, PO Box2443, Beijing, China.  相似文献   

7.
We present evidence of two peroxidases in maize (Zea mays L.) mitochondria. One of these uses guaiacol and the other uses cytochrome c as the electron donor. Treatments of fresh mitochondria with protease(s) indicate that ascorbate and glutathione peroxidases are likely bound to the mitochondria as cytosolic contaminants, whereas guaiacol and cytochrome peroxidases are localized within the mitochondria. These two mitochondrial peroxidases are distinct from contaminant peroxidases and mitochondrial electron transport enzymes. Cytochrome peroxidase is present within the mitochondrial membranes, whereas guaiacol peroxidase is loosely bound to the mitochondrial envelope. Unlike other cellular guaiacol peroxidases, mitochondrial guaiacol peroxidase is not glycosylated. Digestion of lysed mitochondria with trypsin activated mitochondrial guaiacol peroxidase but inhibited cytochrome peroxidase. Isoelectric focusing gel analysis indicated guaiacol peroxidase as a major isozyme (isoelectric point 6.8) that is also activated by trypsin. No change in the mobility of guaiacol peroxidase due to trypsin treatment on native polyacrylamide gel electrophoresis was observed. Although both peroxidases are induced by chilling acclimation treatments (14[deg]C), only cytochrome peroxidase is also induced by chilling (4[deg]C). Because chilling induces oxidative stress in the maize seedlings and the mitochondria are a target for oxidative stress injury, we suggest that mitochondrial peroxidases play a role similar to catalase in protecting mitochondria from oxidative damage.  相似文献   

8.
One of the characteristic properties of ascorbate peroxidase(APX), which distinguishes it from guaiacol peroxidase, Cytc peroxidase and glutathione peroxidase, is the rapid inactivationof the enzyme under conditions where an electron donor is absent.When thylakoid-bound APX (tAPX) in 100 µM ascorbate wasdiluted 500-fold with an ascorbate-depleted medium, the enzymaticactivity was lost with half time of about 15 s. The inactivationof tAPX was suppressed under anaerobic conditions and also bythe addition of catalase, but it was unaffected by the additionof superoxide dismutase. These observations suggest that hydrogenperoxide at nanomolar levels, produced by autooxidation of ascorbateat lower than micromolar levels, might participate in the inactivationof tAPX. The participation of hydrogen peroxide was confirmedby the inactivation of tAPX upon incubation with hydrogen peroxideunder anaerobic conditions. In the absence of ascorbate, theheme of the two-electron-oxidized intermediate of tAPX (designatedCompound I) is decomposed by hydrogen peroxide. Thus, the instabilityof Compound I to hydrogen peroxide is responsible for the inactivationof APX when ascorbate is not available for Compound I and theenzyme cannot turnover. (Received October 16, 1995; Accepted February 21, 1996)  相似文献   

9.
A cDNA clone encoding an ascorbate peroxidase was isolated from the cDNA library from halotolerant Chlamydomonas W80 by a simple screening method based on the bacterial expression system. The cDNA clone contained an open reading frame encoding a mature protein of 282 amino acids with a calculated molecular mass of 30,031 Da, preceded by the chloroplast transit peptide consisting of 37 amino acids. In fact, ascorbate peroxidase was localized in the chloroplasts of Chlamydomonas W80 cells; the activity was detected in the stromal fraction but not in the thylakoid membrane. The deduced amino acid sequence of the cDNA showed 54 and 49% homology to chloroplastic and cytosolic ascorbate peroxidase isoenzymes of spinach leaves, respectively. The enzyme from Chlamydomonas W80 cells was purified to electrophoretic homogeneity. The molecular properties of the purified enzyme were similar to those of the other algal ascorbate peroxidases rather than those of ascorbate peroxidases from higher plants. The enzyme was relatively stable in ascorbate-depleted medium compared with the chloroplastic ascorbate peroxidase isoenzymes of higher plants. The presence of NaCl (3%) as well as of beta-d-thiogalactopyranoside was needed for the expression of Chlamydomonas W80 ascorbate peroxidase in Escherichia coli.  相似文献   

10.
The phylogenetics of Class I of the heme peroxidase-catalase superfamily currently representing over 940 known sequences in all available genomes of prokaryotes and eukaryotes has been analysed. The robust reconstructed tree for 193 Class I peroxidases with 6 selected Class II representatives reveals all main trends of molecular evolution. It suggests how the ancestral peroxidase gene might have been transferred from prokaryotic into eukaryotic genomes. Besides well known families of catalase-peroxidases, cytochrome c peroxidases and ascorbate peroxidases, the phylogenetic analysis shows for the first time the presence of two new well separated clades of hybrid-type peroxidases that might represent evolutionary bridges between catalase-peroxidases and cytochrome c peroxidases (type A) as well as between ascorbate peroxidases and Class II peroxidases (type B). Established structure-function relationships are summarized. Presented data give useful hints on the origin and evolution of catalytic promiscuity and specificity and will be a valuable basis for future functional analysis of Class I enzymes as well as for de novo design.  相似文献   

11.
Purification and characterization of pea cytosolic ascorbate peroxidase   总被引:2,自引:0,他引:2  
The cytosolic isoform of ascorbate peroxidase was purified to homogeneity from 14-day-old pea (Pisum sativum L.) shoots. The enzyme is a homodimer with molecular weight of 57,500, composed of two subunits with molecular weight of 29,500. Spectral analysis and inhibitor studies were consistent with the presence of a heme moiety. When compared with ascorbate peroxidase activity derived from ruptured intact chloroplasts, the purified enzyme was found to have a higher stability, a broader pH optimum for activity, and the capacity to utilize alternate electron donors. Unlike classical plant peroxidases, the cytosolic ascorbate peroxidase had a very high preference for ascorbate as an electron donor and was specifically inhibited by p-chloromercurisulfonic acid and hydroxyurea. Antibodies raised against the cytosolic ascorbate peroxidase from pea did not cross-react with either protein extracts obtained from intact pea chloroplasts or horseradish peroxidase. The amino acid sequence of the N-terminal region of the purified enzyme was determined. Little homology was observed among pea cytosolic ascorbate peroxidase, the tea chloroplastic ascorbate peroxidase, and horseradish peroxidase; homology was, however, found with chloroplastic ascorbate peroxidase isolated from spinach leaves.  相似文献   

12.
用RACE方法从青蒿(Artemisia annua L.)高产株系001中克隆了一个过氧化物酶.将此基因在大肠杆菌BL21(DE3)pLysS细胞中进行原核表达得到重组蛋白(APOD1),表达的蛋白分别以抗坏血酸、愈创木酚为底物进行过氧化反应,结果显示,APOD1催化愈创木酚的活力是抗坏血酸的1.8倍左右,由此表明,克隆的APOD1类属于植物经典过氧化物酶(第三大类过氧化物酶).经与其他植物过氧化物酶同源性比较分析,推测APOD1的氨基酸序列与白羽扇豆(Lupinus albus)、辣根菜(Armoracia rusticana)、小麦(Triticum aestivum)、烟草(Nicotiana tabacum)和蕃茄(Lycopersicon esculentum)的一致性分别为42.0%、36.2%、38.9%、33.6%和32.8%.Northern杂交分析表明,此基因在青蒿的根、茎和叶中均有表达.加入APOD1至青蒿细胞提取液有利于青蒿酸向青蒿素的生物转化,但APOD1并不能直接以青蒿酸作为氧化底物.  相似文献   

13.
The amino acid sequences of the 51% different horseradish peroxidase HRP C and turnip peroxidase TP 7 have previously been completed by us, but the three-dimensional structures are unknown. Recently the amino acid sequence and the crystal structure of yeast cytochrome c peroxidase have appeared. The three known apoperoxidases consist of 300 +/- 8 amino acid residues. The sequences have now been aligned and show 18% and 16% identity only, between the yeast peroxidase and plant peroxidase HRP C and TP 7, respectively. We show that different structural tests all support similar protein folds in plant peroxidases and yeast peroxidase and, therefore, a common evolutionary origin. The following tests support this thesis: (a) predicted helices in the plant peroxidases follow the complex pattern observed in the crystal structure of cytochrome c peroxidase; (b) their hydropathic profiles are similar and agree with observed buried and exposed peptide chain in cytochrome c peroxidase; (c) half-cystines which are distant in the amino acid sequence of plant peroxidases become spatial neighbours when fitted into the cytochrome c peroxidase model; (d) the two-domain structure proposed from limited proteolysis of apoperoxidase HRP C is observed in the crystal structure of cytochrome c peroxidase. The similarities and differences of the plant and yeast peroxidases and the reactive side chains of a plant peroxidase active site are described. The characteristics of Ca2+-binding sequences, derived from several superfamilies, are applied to predict the Ca2+-binding sequences in plant peroxidases.  相似文献   

14.
The frxC gene, found in liverwort chloroplast DNA, encodes aprotein of unknown function. The deduced amino acid sequenceof the protein shows significant homology to that of ni-trogenaseFe-protein encoded by the nifH gene. We have cloned the frxCand nifH genes from the nitrogen-fixing cyanobacterium Plectonemaboryanum, using frxC- and nifH-specific probes, and have determinedtheir nucleotide sequences. The amino acid sequence deducedfrom the frxC gene of P. boryanum exhibits 83% homology to thatof the protein encoded by the/rxCgene from liverwort, whereasit exhibits only 34% homology to that encoded by the nifH genefrom the same organism, namely, P. boryanum. Northern blot analysisshowed that the frxC gene was transcribed more actively undernitrogenase-repressed conditions than under nitrogenase-inducedconditions, suggesting that the FrxC protein has a functiondistinct from nitrogen fixation. These results, together withthe phylogenetic relationship between the nifH and frxC genes,indicate that the frxC and nifH genes are derived from a commonancestral gene but have evolved independently to encode proteinswith different functions. (Received April 27, 1991; Accepted August 12, 1991)  相似文献   

15.
The amino acid sequences of the two heme c-containing tryptic peptides of Pseudomonas cytochrome-c peroxidase have been determined. The tryptic peptides were isolated from two cyanogen bromide fragments of the protein. Both heme-binding sites have the Cys-X-Y-Cys-His structure characteristic of c-type cytochromes. The sequences of the two peptides show distinct homology with each other, suggesting the occurrence of gene doubling during evolution of the protein molecule. The function of the heme c moieties in the catalytic cycle of the enzyme is discussed on the basis of their homology with the proximal histidine region of peroxidase (horseradish peroxidase and yeast cytochrome-c peroxidase) and cytochromes (horse cytochrome c and Pseudomonas cytochrome c-551).  相似文献   

16.
A 34-kDa cationic peroxidase (Cicpx) with a pI of 8.9 was purified to homogeneity (RZ 3.5) from the medium of cell suspension cultures of chicory (Cichorium intybus L.) by a combination of ammonium sulphate precipitation, ultrafiltration, ion exchange and gel filtration chromatography. The partial amino acid sequence presented a low homology with other plant peroxidases. Antibody against spinach peroxidase was shown to cross react with chicory isoperoxidase on immunoblots. Unlike anionic peroxidases, Cicpx displayed a high reactivity towards guaiacol and no reactivity towards syringaldazine, indicating that Cicpx was not involved in the lignification process. Thus, further investigations are necessary to assign a specific function to this particular isoperoxidase.  相似文献   

17.
18.
It was previously reported that an unique peroxidase isoenzyme, cationic cell-wall-bound peroxidase (CWPO-C), from poplar callus oxidizes sinapyl alcohol, ferrocytochrome c and synthetic lignin polymers, unlike other plant peroxidases. Here, the catalytic mechanism of CWPO-C was investigated using chemical modification and homology modeling. The simulated CWPO-C structure predicts that the entrance to the heme pocket of CWPO-C is the same size as those of other plant peroxidases, suggesting that ferrocytochrome c and synthetic lignin polymers cannot interact with the heme of CWPO-C. Since Trp and Tyr residues are redox-active, such residues located on the protein surface were predicted to be active sites for CWPO-C. Modification of CWPO-C Trp residues did not suppress its oxidation activities toward guaiacol and syringaldazine. On the other hand, modification of CWPO-C Tyr residues using tetranitromethane strongly suppressed its oxidation activities toward syringaldazine and 2,6-dimethoxyphenol by 90%, respectively, and also suppressed its guaiacol oxidation activity to a lesser extent. Ferrocytochrome c was not oxidized by Tyr-modified CWPO-C. These results indicate that the Tyr residues in CWPO-C mediate its oxidation of syringyl compounds and high-molecular-weight substrates. Homology modeling indicates that Tyr-177 and Tyr-74 are located near the heme and exposed on the protein surface of CWPO-C. These results suggest that Tyr residues on the protein surface are considered to be important for the oxidation activities of CWPO-C with a wide range of substrates, and potentially unique oxidation sites for the plant peroxidase family.  相似文献   

19.
An exhaustive screening of the Pleurotus ostreatus genome was performed to search for nucleotide sequences of heme peroxidases in this white-rot fungus, which could be useful for different biotechnological applications. After sequence identification and manual curation of the corresponding genes and cDNAs, the deduced amino acid sequences were converted into structural homology models. A comparative study of these sequences and their structural models with those of known fungal peroxidases revealed the complete inventory of heme peroxidases of this fungus. This consists of cytochrome c peroxidase and ligninolytic peroxidases, including manganese peroxidase and versatile peroxidase but not lignin peroxidase, as representative of the "classical" superfamily of plant, fungal, and bacterial peroxidases; and members of two relatively "new" peroxidase superfamilies, namely heme-thiolate peroxidases, here described for the first time in a fungus from the genus Pleurotus, and dye-decolorizing peroxidases, already known in P.?ostreatus but still to be thoroughly explored and characterized.  相似文献   

20.
Dye-decolorizing peroxidases (DyP) are atypical peroxidases showing no homology to other fungal peroxidases and lacking the typical heme binding region conserved among plant peroxidase superfamily. The gene and the corresponding cDNA encoding DyP from Pleurotus ostreatus have been identified on the basis of sequence homology analyses. The deduced amino acid sequence shares 43% identity with DyP from the ascomycete Thanatephorus cucumeris Dec 1. Analyses of the protein sequence by homology searches pointed out some properties of the DyP-type peroxidase family, which includes members from bacteria, ascomycete, and basidiomycete fungi. Some amino acids (C374, H379, and Y501 in the P. ostreatus DyP sequence) are proposed as candidates for the heme ligand, providing a basis for further investigations on the structure of the DyP type peroxidase family members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号