首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We developed capillary affinity electrophoresis (CAE) to analyze the molecular interaction between carbohydrate chains and proteins in solution state. A mixture of oligosaccharides derived from a glycoprotein was labeled with 8-aminopyrene-1,3,6-trisulfonate (APTS), and used as glycan library without isolation. Interaction of a carbohydrate-binding protein with each oligosaccharide in the mixture could be simultaneously observed, and relative affinities of oligosaccharides toward the protein were accurately determined. In this study, we applied CAE to detect the presence of lectins in some plants (Japanese elderberry bark and tulip bulb). In the crude extract of the elderberry bark, binding activity toward sialo-carbohydrate chains could be easily detected. We also examined the presence of lectins in the crude extract of tulip bulbs and determined the detailed carbohydrate-binding specificity of Tulipa gesneriana agglutinin (TGA), one of the lectins from tulip bulbs. Kinetic studies demonstrated that TGA showed novel carbohydrate-binding specificity and preferentially recognized triantennary oligosaccharides with Gal residues at nonreducing termini and a Fuc residue linked through alpha(1-6) linkage at chitobiose portion of the reducing termini but not tetraantennary carbohydrates. The results described here indicate that CAE will be a valuable method for both screening of lectins in natural sources and determination of their detailed carbohydrate-binding specificities.  相似文献   

2.
Complex mixtures of cellular glycoproteins contain a myriad of different carbohydrate chains that cannot be easily analyzed without rigorous purification of each individual glycoprotein. We have analyzed the carbohydrate chains in complex mixtures of cellular glycoproteins by separation using sodium dodecyl-sulfate polyacrylamide gel electrophoresis and interacting the gels with several 125I-labeled lectins. By use of in situ chemical modifications of the glycoproteins after their electrophoretic separation together with the known carbohydrate-binding specifities of several lectins, it has been possible to estimate glycoprotein carbohydrate chain structures. As an example we have examined the cellular glycoproteins of a ovary-colonizing metastatic variant of B16 melanoma and report the types of carbohydrate chains that are found on various melanoma glycoproteins.  相似文献   

3.
Schistosome eggs and egg-derived molecules are potent immunomodulatory agents. There is increasing evidence that the interplay between egg glycoproteins and host C-type lectins plays an important role in shaping immune responses during schistosomiasis. As most experiments in this field so far have been performed using complex protein/glycoprotein mixtures or synthetic model glycoconjugates, it is still largely unclear which individual moieties of schistosome eggs are immunologically active. In this review we will discuss molecular aspects of Schistosoma mansoni egg glycoproteins, their interactions with C-type lectins, and the relevance to schistosome egg immunobiology.  相似文献   

4.
Many studies have demonstrated the capacity of glycan-based compounds to disrupt microbial binding to mucosal epithelia. Therefore, oligosaccharides have potential application in the prevention of certain bacterial diseases. However, current screening methods for the identification of anti-adhesive oligosaccharides have limitations: they are time-consuming and require large amounts of oligosaccharides. There is a need to develop analytical techniques which can quickly screen for, and structurally define, anti-adhesive oligosaccharides prior to using human cell line models of infection. Considering this, we have developed a rapid method for screening complex oligosaccharide mixtures for potential anti-adhesive activity against bacteria. Our approach involves the use of whole bacterial cells to "deplete" free oligosaccharides from solution. As a case study, the free oligosaccharides from the colostrum of Holstein Friesian cows were screened for interactions with whole Escherichia coli cells. Reductions in oligosaccharide concentrations were determined by High pH Anion Exchange Chromatography and Hydrophilic Interaction Liquid Chromatography (HILIC-HPLC). Oligosaccharide structures were confirmed by a combination of HILIC-HPLC, exoglycosidase digestion and off-line negative ion mode MS/MS. The depletion assay confirmed selective bacterial interaction with certain bovine oligosaccharides which in previous studies, by other methodologies, had been shown to interact with E. coli. In particular, the bacterial cells depleted the following oligosaccharides in a population dependent manner: 3'-sialyllactose, disialyllactose, and 6'-sialyllactosamine. The assay methodology was further validated by studies in which we demonstrated the inhibitory activity of 3'-sialyllactose, and a mixture of bovine colostrum oligosaccharides, on E. coli adhesion to differentiated HT-29 cells.  相似文献   

5.
Characterization of lactoferrin binding by Aeromonas hydrophila.   总被引:3,自引:0,他引:3       下载免费PDF全文
Various lactoferrin preparations (iron-saturated and iron-depleted human milk lactoferrins and bovine milk and colostrum lactoferrins) were bound by Aeromonas hydrophila. Binding was (i) reversible (65% of bound lactoferrin was displaced by unlabeled lactoferrin), (ii) specific (lactoferrin but not other iron-containing glycoproteins such as ferritin, transferrin, hemoglobin, and myoglobin inhibited binding), and (iii) significantly reduced by pepsin and neuraminidase treatment of the bacteria. The glycosidic domains of the lactoferrin molecule seem to be involved in binding since precursor monosaccharides of the lactoferrin oligosaccharides (mannose, fucose, and galactose) and glycoproteins which have homologous glycosidic moieties similar to those of the lactoferrin oligosaccharides (asialofetuin or fetuin) strongly inhibited lactoferrin binding. A. hydrophila also binds transferrin, ferritin, cytochrome c, hemin, and Congo red. However, binding of these iron-containing compounds seems to involve bacterial surface components different from those required for lactoferrin binding. Expression of lactoferrin binding by A. hydrophila was influenced by culture conditions. In addition, there was an inverse relationship between lactoferrin binding and siderophore production by the bacterium.  相似文献   

6.
Various lactoferrin preparations (iron-saturated and iron-depleted human milk lactoferrins and bovine milk and colostrum lactoferrins) were bound by Aeromonas hydrophila. Binding was (i) reversible (65% of bound lactoferrin was displaced by unlabeled lactoferrin), (ii) specific (lactoferrin but not other iron-containing glycoproteins such as ferritin, transferrin, hemoglobin, and myoglobin inhibited binding), and (iii) significantly reduced by pepsin and neuraminidase treatment of the bacteria. The glycosidic domains of the lactoferrin molecule seem to be involved in binding since precursor monosaccharides of the lactoferrin oligosaccharides (mannose, fucose, and galactose) and glycoproteins which have homologous glycosidic moieties similar to those of the lactoferrin oligosaccharides (asialofetuin or fetuin) strongly inhibited lactoferrin binding. A. hydrophila also binds transferrin, ferritin, cytochrome c, hemin, and Congo red. However, binding of these iron-containing compounds seems to involve bacterial surface components different from those required for lactoferrin binding. Expression of lactoferrin binding by A. hydrophila was influenced by culture conditions. In addition, there was an inverse relationship between lactoferrin binding and siderophore production by the bacterium.  相似文献   

7.
Milk provides nutritional, immunological and developmental components for newborns. Whereas identification of such components has been performed by targeting proteins and free oligosaccharides, structural and functional analyses of the N-glycome of milk glycoproteins are scarce. In this study, we investigated, for the first time, the alterations of the bovine milk N-glycome during early lactation (1 day, 1, 2, 3 and 4 weeks postpartum), characterizing more than 80 N-glycans. The glycomic profile of colostrum on day 1 after calving differed substantially from that in other periods during early lactation. The proteins in colostrum obtained 1 day postpartum were more highly sialylated than milk samples obtained at other time points, and the N-glycolylneuraminic acid (Neu5Gc)/N-acetylneuraminic acid (Neu5Ac) ratio was significantly higher on day 1, showing a gradual decline with time. In order to dissect the N-glycome of colostrum, alterations of the N-glycosylation profile of major bovine milk proteins during the early lactation stage were elucidated, revealing that the alteration is largely attributable to qualitative and quantitative N-glycosylation changes of IgG, the major glycoprotein in colostrum. Furthermore, by preparing and analyzing IgGs in which the N-glycan structure and subtypes were well characterized, we found that the interaction between IgG and FcRn was not affected by the structure of the N-glycans attached to IgG. We also found that bovine FcRn binds IgG(2) better than IgG(1) , strongly suggesting that the role of FcRn in the bovine mammary gland is to recycle IgG(2) from the udder to blood, rather than to secrete IgG(1) into colostrum.  相似文献   

8.
D K Mandal  C F Brewer 《Biochemistry》1992,31(50):12602-12609
We have previously demonstrated that the interactions between branched chain oligosaccharides and glycopeptides isolated from glycoproteins and glycolipids with specific lectins lead to the formation of homopolymeric carbohydrate-protein cross-linked complexes, even in the presence of mixtures of the carbohydrates or lectins [cf. Bhattacharyya, L., Fant, J., Lonn, H., & Brewer, C. F. (1990) Biochemistry 29, 7523-7530]. Recently, we have shown that highly ordered cross-linked lattices are formed between the tetrameric glycoprotein soybean agglutinin (SBA), which possesses a Man9 oligomannose chain per monomer, and the Glc/Man-specific plant lectin concanavalin A (Con A) [Khan, M. I., Mandal, D. K., & Brewer, C. F. (1991) Carbohydr. Res. 213, 69-77]. Using radiolabeling and quantitative precipitation techniques, we show in the present study that Con A binds and forms unique cross-linked complexes with four different glycoproteins having different numbers and types of carbohydrate chains as well as different quaternary structures. The glycoproteins include quail ovalbumin, Lotus tetragonolobus isolectin A (LTL-A), Erythrina cristagalli lectin (ECL), and Erythrina corallodendron lectin (EcorL). The results show that a preparation of quail ovalbumin containing either one Man7 or Man8 oligomannose chain per molecule forms a 1:2 cross-linked complex with tetrameric Con A, thereby demonstrating bivalency of the single carbohydrate chain(s) on the glycoprotein. Tetrameric LTL-A and dimeric ECL, which possess two xylose-containing carbohydrate chains per monomer, both form 1:2 and 1:1 cross-linked complexes (per monomer) of glycoprotein to lectin, depending on their relative ratios in solution. However, dimeric EcorL, which has the same carbohydrate structure and number of chains as ECL, forms only a 1:2 cross-linked complex with tetrameric Con A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
乳寡糖是由乳汁中含量丰富的固体物质组成.研究结果表明,乳寡糖有提高免疫、益生元及抗感染等作用,已发现与婴儿肠道发育、神经智力发育等多方面关系密切.水牛奶是除牛奶外的第二大奶源,国际上公认其为营养含量高、口感好的优质乳制品,但目前针对水牛乳寡糖的研究多以美洲水牛为研究对象,尚无中国水牛的相关研究.本研究利用固相萃取对已脱脂和除去蛋白质的广西水牛初乳乳汁样品进行纯化,并采用苯胺 (aniline,Bn)衍生化试剂对其进行衍生化处理,通过UPLC-ESI-Q-TOF-MS液相质谱进行优化后,对水牛初乳中的寡糖组分进行测定并与牛乳进行了对比,最终测得奶牛初乳中19种及水牛初乳中的9种乳寡糖组分,并对二者的种类及含量进行比较,发现在两种初乳的乳寡糖中,中性糖二糖m/z 385.15和中性糖三糖m/z 547.21以及酸性糖m/z 635.23均为其主要寡糖成分,与其他乳寡糖相比含量相对较高.总体而言水牛初乳中的中性寡糖占比比奶牛初乳高,二者中性糖占乳寡糖总量的比例分别为88.88%和63.16%.  相似文献   

10.
The requirement for intact carbohydrates of glycoproteins at the cell surface was investigated after treatment of lymphoma cells with compounds which interfere at different steps in N-linked glycosylation: swainsonine and 1-deoxynojirimycin act at different levels during the processing, so that complex oligosaccharides cannot be formed; 2-deoxyglucose, beta-hydroxynorvaline, and tunicamycin completely prevent the formation of N-linked (high-mannose as well as complex) oligosaccharides. The role of sialic acid was investigated by treating the cells with neuraminidase. These treatments resulted in altered patterns of surface-labelled glycoproteins after SDS-polyacrylamide gel electrophoresis. Blood-borne arrest of lymphoma cells in the spleen was sensitive to neuraminidase and to treatments interfering with the processing of complex N-linked oligosaccharides. It is suggested that carbohydrates are signals for cellular interactions involved in the recirculation and homing behaviour of lymphoid cells and probably interact with endogenous lectins at their site of homing.  相似文献   

11.
Although the properties of milk oligosaccharides have been of scientific interest for many years, their structural diversity presents a challenging analytical task. In the quest for a simple and robust technology to characterize the different oligosaccharides present in milk, we developed an analytical scheme based on their fluorescent labeling, pre-fractionation by weak anionic exchange chromatography and separation by hydrophilic interaction liquid chromatography (HILIC)-high performance liquid chromatography (HPLC). HILIC relies on the hydrophilic potential of the molecule, which accounts for differences in properties such as molecular volume, lipophilic surface area, charge, composition, structure, linkage and oligosaccharide branching. The robustness of the methodology has been demonstrated using bovine colostrum oligosaccharides as a case study. Structural assignments for 37 free glycans, including 20 sialylated species, were obtained by a combination of HILIC-HPLC, exoglycosidase digestion and offline negative-ion mode mass spectrometry (MS)/MS. Parameters obtained for each glycan, including linkages, enzymatic digestion products and glucose unit values, will be added to GlycoBase, a public access database (http://glycobase.nibrt.ie/glycobase.html). This approach provides a basis for the analysis of free milk oligosaccharides in a fast and sensitive manner and could be adapted for an automated technology platform amenable to diverse environments. Indeed, our approach, in conjunction with bacterial-binding assays, can provide a better understanding of the structural elements required for biological activity of free milk oligosaccharides and could serve as a scientific basis for the selection of such bioactives from various food sources.  相似文献   

12.
Carbohydrates present on cell surfaces participate in numerous biological recognition phenomena including cell–cell interactions, cancer metastasis and pathogen invasion. Therefore, synthetic carbohydrates have a potential to act as pharmaceutical substances for treatment of various pathological phenomena by inhibiting specifically the interaction between cell surface carbohydrates and their protein receptors (lectins). However, the inherently low affinity of carbohydrate-protein interactions has often been an obstacle for successful generation of carbohydrate based pharmaceuticals. Multivalent glycoconjugates, i.e. structures carrying several copies of the active carbohydrate sequence in a carrier molecule, have been constructed to overcome this problem. Here we present two novel types of multivalent carbohydrate conjugates based on chondroitin oligomer and cyclodextrin carriers. These carriers were modified to express primary amino groups, and oligosaccharides were then bound to carrier molecules by reductive amination. Multivalent conjugates were produced using the human milk type oligosaccharides LNDFH I (Lewis-b hexasaccharide), LNnT, and GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc.  相似文献   

13.
Recent studies indicate that some mammalian S-type lectins bind preferentially to oligosaccharides containing the repeating disaccharide [3Gal beta 1,4GlcNAc beta 1]n or poly-N-acetyllactosamine (PL) sequence. We report here our investigation on the distribution of these sequences in glycoproteins in Chinese hamster ovary (CHO) cells and the interaction of glycoproteins containing PL chains with an immobilized S-type lectin (L14) from calf heart tissue. Our results demonstrate that PL chains are carried by a few high molecular weight glycoproteins which are bound by tomato-lectin Sepharose and one of these was precipitated by antibody to LAMP-1 (a lysosomal-associated membrane glycoprotein). More importantly, these high molecular weight glycoproteins, including LAMP-1, were bound with high affinity by L14. These results indicate that mammalian S-type lectins are highly specific in their interactions with glycoproteins and that LAMPs carry important recognition sequences for these lectins.  相似文献   

14.
Swainsonine and swainsonine-containing plants produce biochemical and neurological changes in several mammalian species. The toxin is a potent inhibitor of liver lysosomal alpha-D-mannosidase and Golgi mannosidase II. The inhibition of the latter enzyme causes the production of abnormal glycoproteins containing hybrid oligosaccharides instead of complex types in a variety of cultured cells. In view of the widespread occurrence and biological importance of N-linked glycoproteins in the central nervous system, we initiated studies to determine the structure of oligosaccharides in glycoproteins prepared from the brain of control, swainsonine-fed, and locoweed-fed animals. The results presented here indicate that the feeding led to alteration in the structure of brain glycoproteins. Over 25% of the glycoproteins which presumably contained complex-type oligosaccharides were modified and now contained hybrid oligosaccharides. The structure of the N-linked oligosaccharide (glycopeptide) was established by (a) studying the binding properties of the glycopeptide to immobilized lectins of known sugar specificity, and (b) comparing the size of the glycopeptide before and after treatment with exo- and endoglycosidases. The production of hybrid oligosaccharides occurred despite the apparent absence of mannosidase II in brain. The relationships of the altered structure of brain glycoproteins, accumulation of mannose-rich oligosaccharides in the brain, and abnormal behavior of the animals administered swainsonine or locoweed are discussed.  相似文献   

15.
Mammalian milk or colostrum contains up to 10% of carbohydrate, of which free lactose usually constitutes more than 80%. Lactose is synthesized within lactating mammary glands from uridine diphosphate galactose (UDP-Gal) and glucose by a transgalactosylation catalysed by a complex of β4-galactosyltransferase and α-lactalbumin (α-LA). α-LA is believed to have evolved from C-type lysozyme. Mammalian milk or colostrum usually contains a variety of oligosaccharides in addition to free lactose. Each oligosaccharide has a lactose unit at its reducing end; this unit acts as a precursor that is essential for its biosynthesis. It is generally believed that milk oligosaccharides act as prebiotics and also as receptor analogues that act as anti-infection factors. We propose the following hypothesis. The proto-lacteal secretions of the primitive mammary glands of the common ancestor of mammals contained fat and protein including lysozyme, but no lactose or oligosaccharides because of the absence of α-LA. When α-LA first appeared as a result of its evolution from lysozyme, its content within the lactating mammary glands was low and lactose was therefore synthesized at a slow rate. Because of the presence of glycosyltransferases, almost all of the nascent lactose was utilized for the biosynthesis of oligosaccharides. The predominant saccharides in the proto-lacteal secretions or primitive milk produced by this common ancestor were therefore oligosaccharides rather than free lactose. Subsequent to this initial period, the oligosaccharides began to serve as anti-infection factors. They were then recruited as a significant energy source for the neonate, which was achieved by an increase in the synthesis of α-LA. This produced a concomitant increase in the concentration of lactose in the milk, and lactose therefore became an important energy source for most eutherians, whereas oligosaccharides continued to serve mainly as anti-microbial agents. Lactose, in addition, began to act as an osmoregulatory molecule, controlling the milk volume. Studies on the chemical structures of the milk oligosaccharides of a variety of mammalian species suggest that human milk or colostrum is unique in that oligosaccharides containing lacto-N-biose I (LNB) (Gal(β1 → 3)GlcNAc, type I) predominate over those containing N-acetyllactosamine (Gal(β1 → 4)GlcNAc, type II), whereas in other species only type II oligosaccharides are found or else they predominate over type I oligosaccharides. It can be hypothesized that this feature may have a selective advantage in that it may promote the growth of beneficial colonic bacteria, Bifidobacteria, in the human infant colon.  相似文献   

16.
Analysis of oligosaccharides by mass spectrometry (MS) has enabled the investigation of the glycan repertoire of organisms with high resolution and sensitivity. It is difficult, however, to correlate the expression of glycosyltransferases with the glycan structures present in a particular cell type or tissue because the use of MS for quantitative purposes has significant limitations. For this reason, in order to develop a technique that would allow relative glycan quantification by MS analysis between two samples, a procedure was developed for the isotopic labeling of oligosaccharides with (13)C-labeled methyl iodide using standard permethylation conditions. Separate aliquots of oligosaccharides from human milk were labeled with (12)C or (13)C methyl iodide; the labeled and non-labeled glycans were mixed in known proportions, and the mixtures analyzed by MS. Results indicated that the isotopic labeling described here was capable of providing relative quantitative data with a dynamic range of at least two orders of magnitude, adequate linearity, and reproducibility with a coefficient of variation that was 13% on average. This procedure was used to analyze N-linked glycans released from various mixtures of glycoproteins, such as alpha-1 acid glycoprotein, human transferrin, and bovine fetuin, using MS techniques that included matrix assisted laser desorption ionization-time of flight MS and electrospray ionization with ion cyclotron resonance-Fourier transformation MS. The measured (12)C:(13)C ratios from mixtures of glycans permethylated with either (12)CH(3)I or (13)CH(3)I were consistent with the theoretical proportions. This technique is an effective procedure for relative quantitative glycan analysis by MS.  相似文献   

17.
Mass spectrometry has been coupled with flash liquid chromatography to yield new capabilities for isolating nonchromophoric material from complicated biological mixtures. A flash liquid chromatography/tandem mass spectrometry (LC/MS/MS) method enabled fraction collection of milk oligosaccharides from biological mixtures based on composition and structure. The method is compatible with traditional gas pressure-driven flow flash chromatography widely employed in organic chemistry laboratories. The online mass detector enabled real-time optimization of chromatographic parameters to favor separation of oligosaccharides that would otherwise be indistinguishable from coeluting components with a nonspecific detector. Unlike previously described preparative LC/MS techniques, we have employed a dynamic flow connection that permits any flow rate from the flash system to be delivered from 1 to 200 ml/min without affecting the ionization conditions of the mass spectrometer. A new way of packing large amounts of graphitized carbon allowed the enrichment and separation of milligram quantities of structurally heterogeneous mixtures of human milk oligosaccharides (HMOs) and bovine milk oligosaccharides (BMOs). Abundant saccharide components in milk, such as lactose and lacto-N-tetraose, were separated from the rarer and less abundant oligosaccharides that have greater structural diversity and biological functionality. Neutral and acidic HMOs and BMOs were largely separated and enriched with a dual binary solvent system.  相似文献   

18.
F41 and K99 fimbriae of enterotoxigenic Escherichia coli were found to bind to periodate-sensitive oligosaccharides of glycoproteins from bovine and porcine colostrum. Only a minor component of casein fractions (kappa-casein) possessed receptors for one type of fimbriae (K99). Both whey and fat globule membranes were rich in glycoproteins with receptor structures. Porcine colostrum seemed to contain a higher quantity of receptors than bovine colostrum.  相似文献   

19.
A new, powerful method is presented for screening the binding in real time and taking place under dynamic conditions of oligosaccharides to lectins. The approach combines an SPR biosensor and HPLC profiling with fluorescence detection, and is applicable to complex mixtures of oligosaccharides in terms of ligand-fishing. Labeling the oligosaccharides with 2-aminobenzamide ensures a detection level in the fmol range. In an explorative study the binding of RNase B-derived oligomannose-type N-glycans to biosensor-immobilized concanavalin A (Con A) was examined, and an affinity ranking could be established for Man(5)GlcNAc(2) to Man(9)GlcNAc(2), as monitored by HPLC. In subsequent experiments and using well-defined labeled as well as nonlabeled oligosaccharides, it was found that the fluorescent tag does not interfere with the binding and that the optimum epitope for the interaction with Con A comprises the tetramannoside unit Manalpha2Manalpha6(Manalpha3)Man[D(3)B(A)4'], rather than the generally accepted trimannoside Manalpha6 (Manalpha3)Man [B(A)4' or 4(4')3]. In a similar experimental setup, the interaction of various fucosylated human milk oligosaccharides with the fucose-binding lectin from Lotus tetragonolobus purpureaus was studied, and it appeared that oligosaccharides containing blood group H could selectively be retained and eluted from the lectin-coated surface. Finally, using the same lectin and a mixture of O-glycans derived from bovine submaxillary gland mucin, minor constituents but containing fucose could selectively be picked from the analyte solution as demonstrated by HPLC profiling.  相似文献   

20.
Two endogenous cerebellar mannose binding lectins have been isolated in an active form by immunoaffinity chromatography employing their respective immobilized antibodies. One of them, termed cerebellar soluble lectin (CSL), was extracted in the absence of detergents, whereas the other, called Receptor 1 (R1), was soluble only in the presence of detergents. Tests of inhibition of agglutination of erythrocytes were performed with mono-, oligo and polysaccharides, as well as glycoconjugates of known structures. On the basis of agglutinating activities these 2 lectins are different from the previously reported lectins in brain, since they were not inhibited by galactosides and lactosides and were only marginally inhibited by glycosaminoglycans. CSL and R1 were better inhibited by mannose-rich glycopeptides as compared to the corresponding oligosaccharides. The different inhibition patterns obtained with glycans of known structures indicated that these lectins are very discriminative. Although CSL and R1 have similar specificities, they differed in their binding properties towards glycopeptides of ovalbumin. Both lectins showed considerable affinity for endogenous cerebellar glycopeptides, also rich in mannose. These glycopeptides belong to a few endogenous Con A-binding cerebellar glycoprotein subunits and are not present on other endogenous Con A-binding glycoproteins. In the forebrain, where CSL and R1 were also present, at least some of the glycoproteins interacting with the lectins were different from that observed in the cerebellum. Our data overall suggest that specific cell recognition in the nervous system could be invoked via the interactions between widely distributed lectins and cell-specific glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号