首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A monoclonal antibody (CAMPATH-1G) against the human lymphocyte surface protein CD52, which is similar to the epididymal secretion HE5, was used to ascertain the presence of this protein on maturing primate spermatozoa by flow cytometry. The percentage of human viable spermatozoa stained specifically with this antibody increased from sperm in spermatocoeles (0.5%), to the efferent ducts (3.8%), corpus (47.2%), and cauda (85.7%) epididymidis. Positive cells revealed staining mainly over the whole tail and postacrosomal region of the sperm head. Spermatozoa (∼10%) from both the efferent ducts and corpus epididymidis took up additional antigen when incubated with human distal cauda epididymidal plasma as a source of CD52, and 12–22% of human testicular sperm (from spermatocoeles) took up CD52 from human seminal plasma. In the cynomolgus monkey, nonspecific binding of control IgG was greater than that in human males and net CD52 staining was measurable only on ∼30% of corpus sperm where it was mainly on the principal piece. Neither caput nor cauda sperm took up human CD52 upon incubation with human seminal plasma, but an additional 27% of corpus sperm expressed CD52. Such uptake of CD52 was drastically reduced, or did not occur, when seminal plasma had been fractionated by filtration through 0.1 μm filters (filtrate II) or 300,000 Da cutoff filters (filtrate III), respectively. Western blots revealed that CD52 contents were much reduced in filtrate II and nondetectable in filtrate III of seminal plasma. Similar reduction of CD52 in the filtrate of cauda epididymidal plasma indicates the association of this epididymal secretion with large molecular factors and suggests their involvement as carriers in the in vivo transfer of the secretion onto the epididymal sperm surface. The in vitro uptake of CD52 by some but not all immature sperm and the detection by Western blotting of much less CD52 in the corpus than the cauda luminal plasma suggest that the acquisition of this epididymal secretion by spermatozoa depends on their maturation status as well as the availability of the protein in the epididymal lumen. Mol. Reprod. Dev. 48:267–275, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Mammalian spermatozoa acquire functionality during epididymal maturation, and the ability to penetrate and fertilize the oocyte during capacitation. The aim of this study was to assess the effects of epididymal maturation, ejaculation and in vitro capacitation on sperm viability, acrosome integrity, mitochondrial activity, membrane fluidity, and calcium influx, both as indicators of capacitation status and sperm motility. Results indicated that boar spermatozoa acquired the ability to move in the epididymal corpus; however, their motility was not linear until the ejaculation. Epididymal spermatozoa showed low membrane fluidity and intracellular calcium content; ejaculation led to an increased calcium content, while membrane fluidity showed no changes. Acrosome integrity remained constant throughout the epididymal duct and after ejaculation and in vitro capacitation. The frequency of viable spermatozoa with intact mitochondrial sheath was higher in caput and ejaculated samples than in corpus and cauda samples, whereas the frequency of spermatozoa with high membrane potential was significantly lower in cauda samples. In vitro capacitation resulted in a decreased frequency of viable spermatozoa with intact mitochondrial sheath and an increased frequency of spermatozoa with high membrane potential in ejaculated samples. These results indicated that both epididymal maturation and ejaculation are key events for further capacitation, because only ejaculated spermatozoa are capable of undergoing the set of changes leading to capacitation.  相似文献   

3.
Sperm antigen expression during epididymal transit was examined in 4- to 16-week-old intact and castrated ICR mice, using the avidin-biotin complex (ABC) immunohistochemical method with monoclonal antibody T21 against a flagellar surface antigen. On untreated sections, the antigen was first expressed weakly on sperm in the proximal part of the corpus epididymis, and intraluminal components were stained in 4-week-old mice. Epididymal epithelial cells and their stereocilia, and cells in other reproductive organs were not stained. In contrast, on sections treated with neuraminidase, (1) the initial site of antigen appearance is a more proximal position in treated than in untreated sections, (2) stereocilia stained strongly, (3) the staining intensity of sperm and intraluminal components increased, and (4) some clear cells in the epithelium from the distal position of the caput to the corpus epididymis were stained. These results indicate that the antigen is produced by clear cells of the epididymal epithelium, that the antigenic determinant is masked initially by sialic acid residues, and that expression of the antigenic determinant on the sperm surface during epididymal maturation apparently involves desialylation.  相似文献   

4.
The determinant of a mouse sperm maturation antigen was examined morphologically and biochemically with monoclonal antibody T21 as a probe. The plasma membrane components of cauda epididymal spermatozoa were extracted with nonionic detergent Nonidet P-40 and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions and by immunoblotting. Wheat germ agglutinin-lectin staining and immunoblotting indicated that the antigen recognized by T21 is a sialoglycoprotein of about 54,000 daltons (54 kDa). The antigenic determinant was more distinctly exposed after treatment with neuraminidase, as evaluated by immunohistochemistry, immunocytochemistry, and immunoblotting. The cryptic nature of the determinant was further confirmed by immunostaining nitrocellulose strips, subsequently digesting the strips with neuraminidase, and then reimmunostaining them. Results obtained by periodate oxidation treatment suggested that the epitope is a carbohydrate. Immunoperoxidase electron microscopy confirmed that the antigen is distributed on the flagellar plasma membrane of the sperm. This was demonstrated clearly when sperm were desialylated with neuraminidase. These results indicate that the 54 kDa sialoglycoprotein sperm maturation antigen has a cryptodeterminant which can be masked by a sialic acid residue, that is recognized by monoclonal antibody T21.  相似文献   

5.
Ram sperm, isolated from the caput, corpus, and cauda epididymidis, plus ejaculated cells were washed free of loosely bound components and tested for their ability to bind fluorescein-conjugated lectins (Con A, SBA, RCA, PNA, ECA and WGA) as assessed by epiluminescent-fluorescence light microscopy and flow cytometry. Detailed preliminary studies established an appropriate lectin-to-sperm ratio and incubation conditions for quantitative comparisons of sperm cell types and permitted a detailed analysis of both the amount of lectin bound as well as its distribution on the various aspects of the cell surface. Con A (mannose positive) bound weakly over the entire surface, with little change associated with maturation in the male tract. SBA (N-acetylgalactosamine positive) bound moderately strongly to caput sperm, with an emphasis on the apical ridge portion of the cell; during epididymal transit this binding was greatly diminished and was regained upon ejaculation. RCA, PNA, and ECA (galactose positive) gave generally equivalent results, where initially strong binding to the entire sperm surface decreased (over all parts of the surface except the anterior head) during epididymal maturation, with no change associated with ejaculation. WGA (sialic acid positive) binding initially was weak, but increased with epididymal transit and ejaculation. In vitro incubations with beta-galactosidase and neuraminidase confirmed the assignments given above. These data, when coupled with previous reports describing the heterogeneous distribution of proteins and lipids and changes in their distribution associated with epididymal maturation, serve to quantitatively describe changes in those aspects of the cell surface that are probably responsible for the acquisition of the capacity of the sperm to bind successfully to the oocyte.  相似文献   

6.
Proacrosin from guinea pig cauda epididymal sperm has a lower molecular weight compared with the testicular zymogen. In this study, we have examined the structural basis of this change and where the conversion in proacrosin molecular weight occurs during sperm maturation. Immunoblotting of trifluoromethanesulfonic acid-deglycosylated testicular and cauda epididymal sperm extracts with antibody to guinea pig testicular proacrosin demonstrated that the polypeptide backbones of proacrosins from the testis and cauda epididymal sperm had the same molecular weights (approximately 44,000). Keratanase, an endo-beta-galactosidase specific for lactosaminoglycans, partially digested testicular proacrosin but had no effect on proacrosin from cauda epididymal sperm. In extracts of testis, caput epididymis, and corpus epididymis analyzed by immunoblotting, anti-proacrosin recognized a major antigen with an apparent molecular weight (Mr) of 55,000, although a 50,000-Mr minor antigen began to appear in the corpus epididymis. By contrast, extracts of cauda epididymis, vas deferens, and cauda epididymal sperm had the 50,000 Mr protein as the only immunoreactive antigen. By enzymography following electrophoresis, the major bands of proteolytic activity in extracts of testis, caput epididymis, and corpus epididymis had 55,000 Mr. A band of protease activity with 55,000 Mr also appeared in extracts of the corpus epididymis. However, the most prominent bands of proteolytic activity in cauda epididymis, vas deferens, and cauda epididymal sperm had 50,000 Mr. In addition, two other major protease activities were detected with 32,000 and 34,000 Mr; the relationships of these proteases to proacrosin are unclear. From these results, we conclude that the oligosaccharides of proacrosin are altered during epididymal transit and that this modification occurs in the corpus epididymis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We examine here the biochemical properties and epididymal localization of a maturation dependent ram sperm surface antigen. A monoclonal antibody, ESA152, identifies an antigen that is present on the surface of ejaculated sperm, but is absent from testicular sperm. Crosslinking of the ESA152 antigen with bivalent antibodies induces the acrosome reaction, redistributing the antigen into the anterior region of the sperm head where it associates with the fusion product of the plasma membrane and the outer acrosomal membrane. The ESA152 antigen appears as a polypeptide of 18 kDa on immunoblots of SDS-polyacrylamide gels. The ESA152 epitope includes the sialic acid termini of N-linked oligosaccharides, as shown by its sensitivity to neuraminidase and endoglycosidase F. The ESA152 antigen is a highly hydrophobic integral membrane protein that resists aqueous extraction, partitions into the detergent phase of Triton-X-114, and solubilizes in chloroform-methanol mixtures. The anchoring of ESA152 is unaffected by phosphtidylinositol specific phospholipase C. The antigen is absent from extracts of caput and corpus epididymidis but appears abruptly in the first segment of the cauda. Immunofluorescence reveals that the ESA152 epitope first appears in clusters of cells in the luminal epithelium of the proximal cauda, prior to or concurrent with its appearance on sperm. © 1993 Wiley-Liss, Inc.  相似文献   

8.
Development of the sperm's capacity to interact with the zona pellucida was investigated at the stage when the acrosome reaction (AR) is induced. The response of epididymal sperm to agents that affect the occurrence of the AR was used to monitor maturational changes. Despite the finding that sperm from the three main epididymal regions were competent to undergo ARs induced by the divalent cation ionophore A23187 (56% AR, 74% AR, and 83% AR in caput, corpus, and cauda, respectively), the cells' responses to solubilized zonae pellucidae were different. When challenged with 5 zonae equivalents/microliter, both corpus and cauda sperm shed their acrosomes in high numbers (75% AR and 86% AR, respectively), whereas caput sperm did not (23% AR). Previous work has shown that the presence of M42 monoclonal antibody (mAb) during in vitro and in vivo fertilization inhibits sperm penetration through the zona pellucida by specific interference with zonae pellucidae-induced ARs. In this study, presence of the M42 mAb did not affect the incidence of A23187-induced ARs, whereas the zona-induced ARs that occurred in both corpus and cauda sperm were inhibited fully with M42 immunoglobulin (Ig) G. In addition, the antigen recognized by M42 mAb on sperm, termed M42 Ag, was examined during epididymal maturation. Although antigen localization appeared indistinguishable by immunofluorescence on sperm taken from the caput, corpus, and cauda regions of the epididymis, modification of this antigen during epididymal transit was detected. Equilibrium-binding studies using 125I-M42 IgG demonstrated a progressive increase during epididymal transit in the amount of M42 mAb that bound to fixed cells. Corpus and cauda sperm bound 185% and 240%, respectively, of the 125I-M42 IgG detected on caput sperm. These changes in expression of M42 Ag paralleled a structural change: the Mr of the antigen decreased from a 195,000/210,000 doublet in caput sperm to a 185,000/200,000 doublet in corpus and cauda sperm, as determined by immunoblot analysis of sodium dodecyl sulfate (SDS)-extracted sperm. Results presented here demonstrate that mouse sperm develop the capacity to undergo a zona-induced AR during epididymal maturation. The M42 antigen, which is involved in the zona-induced AR, is modified during epididymal transit coincident with development of the sperm's responsiveness to zonae. Our working hypothesis, based on these results, is that development of the sperm's capacity to undergo a physiological AR is related to modification of M42 Ag.  相似文献   

9.
The bat Corynorhinus mexicanus provides an interesting experimental model for the study of epididymal sperm maturation because after spermatogenesis and the regression of the testes, this bat stores sperm in the epididymal cauda for several months. Earlier research conducted by our group suggested that sperm maturation in this species must be completed in the caudal region of the epididymis. One of the major signal transduction events during sperm maturation is the tyrosine phosphorylation of sperm proteins. The aim of the present study was to comparatively evaluate tyrosine phosphorylation in spermatozoa obtained from the caput, corpus and cauda of the epididymis during the sperm storage period. The maturation status of the sperm was determined by the percentage of capacitation and tyrosine phosphorylation in sperm obtained from the epididymis. The highest proportion of tyrosine phosphorylation was registered after the sperm had reached the cauda epididymis during the middle of the storage period. In conclusion, in Corynorhinus mexicanus and most likely in other chiropteran species with an asynchronous male reproductive pattern, epididymal sperm maturation ends in the caudal region of the epididymis and is related to the time that the sperm remains in the epididymis before mating activity.  相似文献   

10.
11.
The bovine maturation-associated sperm membrane antigen CD52-like molecule has been analysed using a mouse anti-sperm monoclonal antibody developed against bull spermatozoa. The antigen recognised by monoclonal antibody IVA-543 was detected on blood mononuclear cells (including lymphocytes and monocytes) and on a minor population of polymorphonuclear leukocytes. The bovine CD52-like molecule is secreted by the epididymal epithelium and then it is inserted into the sperm membrane during the epididymal transport in the distal part of epididymis. The CD52-like molecule was absent from spermatozoa derived from testes, and the highest proportion of IVA-543-reactive sperm was observed in the cauda epididymis (91.6%).This study has shown that the new molecule identified on bovine cells has properties analogous to those previously described for CD52 molecules in man, mouse, rat, monkey, and dog.  相似文献   

12.
CD52 is a human GPI-anchored antigen, expressed exclusively in the immune system and part of the reproductive system (epididymal cells). Sperm cells acquire the antigen from the epididymal secretions when transiting in the epididymal corpus and cauda. The peptide backbone of CD52, consisting of only 12 aminoacids, is generally considered no more than a scaffold for post-translational modifications, such as GPI-anchor and especially N-glycosylation which occur at the third asparagine. The latter modification is highly heterogeneous, especially in the reproductive system, giving rise to many different glycoforms, some of which are tissue specific. A peculiar O-glycan-containing glycoform is also found in reproductive and immune systems. We determined to locate CD52 in microdomains of leukocytes and sperm membranes using two antibodies: (1) CAMPATH-1G, the epitope of which includes the last three aminoacids and part of the GPI-anchor of glycoforms present in leukocytes and sperm cells; (2) anti-gp20, the epitope of which belongs to the unique O-glycan-bearing glycoform also present in both cell types. Using a Brij 98 solubilization protocol and sucrose gradient partition we demonstrated that the CD52 glycoforms recognized by both antibodies are markers of typical raft microdomains in leukocytes, whereas in capacitated sperm the O-glycoform is included in GM3-rich microdomains different from the cholesterol and GM1-rich lipid rafts with which CAMPATH antigen is stably associated. The importance of the association between GM3 and O-glycans for formation of specialized microdomains was confirmed by heterologous CD52 insertion experiments. When prostasomes from human seminal fluid were incubated with rat sperm from different epididymal regions, the CD52 glycoform recognized by anti-gp20 decorated rat epididymal corpus and cauda sperm, associated with the same low-cholesterol GM3-rich sperm membrane fractions as in human sperm. The glycoforms recognized by CAMPATH-1G were not found in rat sperm. The relationship between this differential insertion and differences in glycosylation of rat and human CD52 is discussed.  相似文献   

13.
Changes that occur to mammalian sperm upon epididymal transit and maturation render these cells capable of moving progressively and capacitating. Signaling events leading to mammalian sperm capacitation depend on the modulation of proteins by phosphorylation and dephosphorylation cascades. Recent experiments have demonstrated that the Src family of kinases plays an important role in the regulation of these events. However, sperm from cSrc null mice display normal tyrosine phosphorylation associated with capacitation. We report here that, despite normal phosphorylation, sperm from cSrc null mice display a severe reduction in forward motility, and are unable to fertilize in vitro. Histological analysis of seminiferous tubules in the testes, caput and corpus epididymis do not reveal obvious defects. However, the cauda epididymis is significantly smaller, and expression of key transport proteins in the epithelial cells lining this region is reduced in cSrc null mice compared to wild type littermates. Although previously, we and others have shown the presence of cSrc in mature sperm from cauda epididymis, a closer evaluation indicates that this tyrosine kinase is not present in sperm from the caput epididymis, suggesting that this protein is acquired by sperm later during epididymal maturation. Consistent with this observation, cSrc is enriched in vesicles released by the epididymal epithelium known as epididymosomes. Altogether, these observations indicate that cSrc is essential for cauda epididymal development and suggest an essential role of this kinase in epididymal sperm maturation involving cSrc extracellular trafficking.  相似文献   

14.
Highly purified plasma membranes, isolated by an aqueous two-phase polymer method from goat epididymal spermatozoa, were found to possess a kinase activity that causes phosphorylation of serine and threonine residues of several endogenous plasma membrane proteins. Cyclic AMP, cyclic GMP, Ca(2+)-calmodulin, phosphatidylserine-diolein, polyamines and heparin had no appreciable effect on this kinase. Autoradiographic analysis showed that the profile of the phosphorylation of membrane proteins by this endogenous cAMP-independent protein kinase underwent marked modulation during the transit of spermatozoa through the epididymis. In caput sperm plasma membrane, 18, 21, 43, 52, 74 and 90 kDa proteins were phosphorylated, whereas, in the corpus and cauda epididymal spermatozoa, a differential phosphorylation pattern was observed with respect to the 90, 74, 21 and 18 kDa proteins. The rate of phosphorylation of the 74 kDa protein decreased markedly during the early phase of sperm maturation (caput to distal corpus epididymides) whereas there was little change in kinase activity in sperm plasma membrane. In contrast, the rates of phosphorylation of the 18 and 21 kDa proteins increased during the terminal phase (distal corpus to distal cauda epididymides) of sperm maturity, although the kinase activity of membrane decreased significantly during this phase. The modulation of the phosphorylated states of these specific membrane proteins may play an important role in the maturation of epididymal spermatozoa.  相似文献   

15.
A murine monoclonal antibody raised against hamster cauda epididymal spermatozoa was shown to recognize an Mr 34,000 component of epididymal epithelium. Antigen was localized by immunocytochemistry on the surface and in the apical cytoplasm of principal cells in the proximal corpus epididymidis but not in the caput or initial segment regions. Spermatozoa from the corpus epididymidis expressed antigen on their post-acrosomal plasma membrane and annulus. Epididymal principal cells from the proximal corpus region when cultured in vitro bound antibody on their apical surface for at least 5 days. Spermatozoa from the caput epididymidis co-cultured with epithelium expressed antigen after incubation for 8 and 24 h. These results suggest that a surface change to epididymal spermatozoa during maturation in vivo may also be elicited during in-vitro culture.  相似文献   

16.
A specific 135-kDa protein was purified from porcine cauda epididymal fluid. Analysis of its N-terminal amino acid sequence revealed it to be a new protein. Stable clones of hybridomas that produced monoclonal antibodies against the purified 135-kDa protein were established. A clone, B-11, reacting both with epididymal fluid and with sperm plasma membranes was selected and used in this study. Immunoblotting analysis showed that B-11 reacted only with a 135-kDa protein among epididymal fluid proteins. In contrast, B-11 did not recognize a similar 135-kDa sperm protein but did strongly react with a 27-kDa protein among sperm membrane proteins, extracted by NP-40 in the presence of protease inhibitors. B-11 also reacted only with a 27-kDa protein fragment among trypsin digests of the 135-kDa epididymal protein. The 135-kDa protein was first detected, by ELISA or immunoblotting analysis, at the beginning of the corpus epididymis. Maximal levels were reached in the distal corpus and levels were slightly decreased in the cauda epididymis. On the other hand, the surface of caput sperm were found to contain small amounts of antigen(s), the concentration of which gradually increased during epididymal transit. In immunocytochemical studies, the antigen was detectable in the epithelial cells from the initial segment to the corpus of the epididymis but not in the caudal cells. In the lumen, the presence of the 135 kDa protein was apparent in the corpus (at a maximum in the middle and distal corpus) and to a lesser degree in the caudal lumen. The 27-kDa protein was distributed all over the equatorial region of the acrosome of less than 10% of caput epididymal sperm. As sperm passed through the corpus epididymis, the percentage of immunoreactive cells increased and the protein was restricted to specific domains of the sperm head. Thus, on the mature sperm, antigen was localized in a crescent-shaped area of the equatorial segment just behind the anterior part of the acrosome and on the apical rim of the sperm head. This is the first observation of a sperm surface antigen derived from an epididymal protein as a proteolytic fragment that interacts with specific regions of the sperm membrane during the process of spermatozoa maturation.  相似文献   

17.
A method for objective quantification of hamster sperm movement parameters as an indicator of maturation along the epididymis was established using a computerised system. Analysis of spermatozoa released into medium from five epididymal regions showed that the most drastic increases in percentage motility and curvilinear velocity (VCL) occurred from the distal corpus to the beginning of the proximal cauda and in straight-line velocity (VSL) from the beginning to a more distal site within the proximal cauda region. Both high osmolarity (400 mOsm/kg) and the thiol-oxidising agent diamide (10 μM) increased flagellar straightness of distal corpus spermatozoa, but VSL was increased only with the latter. The thiol-reducing agent dithiothreitol (DTT, 1mM) stimulated and maintained percentage motility and velocities of spermatozoa from the caput, stimulated only percentage motility of distal corpus sperm, but decreased velocities of those from the proximal cauda in prolonged incubation. In rats, diamide increased path straightness but not velocities of caput spermatozoa and yet caused immotility within 15 min, whereas DTT prolonged the maintenance of in vitro motility. The slight increases in kinematic parameters in the presence of DTT were enhanced by a 2-min preincubation with diamide. The finding that the effects of DTT and diamide were not compensatory suggests that the influence of the SH/S-S status on sperm movement is multifaceted, with decreasing sensitivity to stimulation upon sperm maturation. © 1994 Wiley-Liss, Inc.  相似文献   

18.
The epididymal epithelia, by secretion, fluid reabsorption and transition, provide a favorable environment for sperm maturation. We observed, with histochemical method, the regional differences of four hydrolases and five dehydrogenases in caput, corpus and cauda of rat epididymis to  相似文献   

19.
Murine cauda epididymal sperm possess a site, the acceptor, on the plasma membrane over the apical cap region of the acrosome which recognizes both a proteinase inhibitor of seminal vesicle origin and homologous zonae. The acceptor site may participate in both capacitation and zona binding. This presentation explores the effect of in vitro incubation in a medium known to induce capacitation on the binding capabilities of this site. Approximately 80% of fresh cauda epididymal sperm will bind the seminal inhibitor in vitro. Incubating sperm, pretreated with inhibitor for 2 hr in a medium (M199-M) known to support capacitation, reduces by 60% the number of sperm showing evidence of the inhibitor. No such decrease is seen when sperm are incubated in a medium (M199) that does not support capacitation. During the 2-hr incubation in either medium, 60-70% of the sperm retain two diverse components on the plasma membrane over the acrosome: a receptor for the Fc portion of IgG and an epitope recognized by a monoclonal antibody to the acceptor site. These observations suggest that the plasma membrane in the acrosome region of the cell remains structurally intact during incubation. Furthermore, sperm retain the ability to bind the seminal inhibitor during incubation. After a 2-hr incubation in M199-M, sperm pretreated with heat-solubilized zonae no longer bind the inhibitor. These sperm, however, retain the plasma membrane over the acrosomal cap region. When the sperm are incubated in M199, no decrease in inhibitor binding due to zona treatment is noted.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In the current study we investigated the progesterone receptor exposure on the sperm from the testis and different parts of the epididymis, the relation to the sperm maturation stage, the functionality of the progesterone receptor and the capacity of sperm to undergo acrosome reaction. Exposed progesterone receptors on spermatozoa were detected using Progesterone-BSA conjugate labeled with fluorescein isothiocyanate (P-BSA-FITC) or a monoclonal antibody against progesterone receptor, C-262. Either progesterone or calcium ionophore was used to induce acrosome reaction. A high percentage (69 +/- 8%; mean +/- SD) of spermatozoa from the cauda epididymis showed P-BSA-FITC labeling at the onset of incubation, whereas only 0.1 +/- 1 and 4 +/- 2%, of spermatozoa from the testes, caput, and corpus epididymis, respectively, were labeled. There was no significant increase in P-BSA-FITC binding during the course of a 6 hr incubation. Treatment with either 10 microM progesterone or 5 microM calcium ionophore induced acrosome reaction in cauda epididymal sperm but not in testicular sperm, caput or corpus epipidymal sperm. It is concluded that the matured sperm of the dog from cauda epididymis and freshly ejaculated sperm demonstrate a functional membrane-bound progesterone receptor while less matured spermatozoa from the testicle, caput, and corpus epididymis fail to demonstrate such a receptor. Acrosome reaction of dog sperm can be induced using either progesterone or calcium ionophore; however, the maturation stages of spermatozoa influence this occurrence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号