首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A fluorescence high-performance liquid chromatographic method is described for the direct determination of conjugated 17-oxosteroids in biological fluids without hydrolysis. Conjugated 17-oxosteroids are extracted with Sep-Pak C18 cartridge, labeled with dansyl hydrazine in trichloroacetic acid—benzene solution and then separated by high-performance liquid chromatography on reversed-phase μBondapak C18 column using 0.01M sodium acetate in methanol—water—acetic acid (65:35:1, v/v) as the mobile phase. The eluate is monitored by a fluorophotometer at 365 nm (excitation) and 520 nm (emission). Linearities of fluorescence intensities (peak heights) with the amounts of various conjugated 17-oxosteroids were obtained between 10 pmol and 100 pmol. This method is sensitive, reliable and useful for the simultaneous determination of conjugated 17-oxosteroids in urine and serum.  相似文献   

2.
An ion-pair liquid high-performance chromatography method with solid-phase extraction for measuring urinary concentrations of sodium cromoglycate following inhalation has been developed and validated. Sodium cromoglycate was extracted from urine on a 100-mg phenyl cartridge (Isolute, Jones Chromatography) and then quantified on a 25-cm C8 Spherisorb 5 μm stationary phase with a mobile phase of methanol-0.045 M phosphate buffer-0.05 M dodecyl triethyl ammonium phosphate (550:447.6:2.4, v/v) pH 2.3, at 0.85 ml min−1 using nedocromil sodium as an internal standard and UV detection at 238 nm. The inter- and intra-day reproducibilities were 8.33 and 13.63%, respectively, at 0.25 mg l−1. The limit of determination for sodium cromoglycate was 0.25 mg l−1 (with a signal-to-noise ration of greater than 10:1). Following oral and inhaled administration of 20 mg of sodium cromoglycate to eight healthy volunteers, the mean and S.D. of sodium cromoglycate excreted in the urine at 0.5, 1 and 24 h post-dose were 0.02, 0.05 and 0.33%, and 0.16, 0.30 and 1.55% of the dose, respectively. The urinary recovery of sodium cromoglycate at 0.5 and 1 h following inhalation can therefore be used to compare the amount of drug reaching the respiratory tract using different sodium cromoglycate inhaled products or inhalation methods.  相似文献   

3.
The high-performance liquid chromatographic method with UV detection described below permits the selective determination of traces of palladium in human urine. After UV photolysis, during which the complete organic matrix was destroyed, the palladium was selectively enriched by solid-phase extraction (SPE). The reversed-phase C18 SPE column material was loaded with the ligand N,N-diethyl-N′-benzoylthiourea (DEBT) which shows an excellent complexing capacity for palladium in acidic solutions and at room temperature. The Pd(DEBT)2 complex was eluted with ethanol. After isocratic separation on the analytical column (MeOH/H2O 98:2 (v/v)), the complex was detected at 274 nm. The detection limit was 10 ng Pd/l. The relative standard deviations (RSD) of the within-series imprecision were in the range between 11% (75 ng Pd/l) and 7% (180 ng Pd/l). The between-day imprecision was 11% (75 ng Pd/l) and 5% (180 ng Pd/l). The recovery rates ranged between 94 and 96%. Using this method, urine samples of 44 persons from the general population were analysed. Only in one urine sample could palladium be detected. For comparison, 10 persons with occupational palladium exposure were examined. The urinary concentrations ranged from <10 to 2538 ng/l.  相似文献   

4.
A method is described for the determination of pyronaridine in plasma using high-performance liquid chromatography with fluorescence detection. The method involves liquid-liquid extraction with phosphate buffer (pH 6.0, 0.05 M) and diethyl ether-hexane (70:30%, v/v) and chromatographic separation on a C18 column (Nucleosil, 250 × 4.6 mm I.D., 5 μm particle size) with acetonitrile-0.05 M phosphate buffer pH 6.0 (60:40%, v/v) as the mobile phase (1 ml/min) and detection by fluorescence (λex = 267 nm, λem = 443 nm). The detector response is linear up to 1000 ng and the overall recoveries pyronaridine and quinine were 90.0 and 60.3%, respectively. The assay procedure was adequately sensitive to measure 10 ng/ml pyronaridine in plasma samples with acceptable precision (< 15% C.V.). The method was found to be suitable for use in clinical pharmacological studies.  相似文献   

5.
A reversed-phase high-performance liquid chromatographic method is described for the determination of 3-methylhistidine content in human urine using pre-column derivatization with phenylisothiocyanate, isocratic elution with 15 mM sodium acetate—acetonitrile (92:8, v/v) and electrochemical detection. The limit of quantitation was 0.1 pmol. The method has been applied in routine analyses of 3-methylhistidine in both clinical and research work.  相似文献   

6.
叶绿素的快速提取与精密测定   总被引:5,自引:0,他引:5  
Arnon法是叶绿素提取和测定最经典、最常用的方法, 此法虽经多次改进, 但仍存在着检测波长误差大、计算公式有误、提取速度慢、测定结果不够准确以及操作步骤繁琐等缺陷。该文提出了二甲基亚砜(DMSO)高温提取、80%丙酮稀释的两步快速浸提法, 使叶绿素提取和测定过程缩短至3小时以内。通过对提取温度、提取时间、稀释比例及吸收光谱等进行系统分析, 筛选出了叶绿素的最佳提取条件和叶绿素含量的准确计算公式, 并用多种类型的植物材料验证了改进后的提取方法, 证明该方法具优越性和可靠性。具体测定方法是将植物材料切成1 mm宽的细丝或细段, 取50-100 mg材料于10 mL具塞试管中; 加入2 mL DMSO, 使植物材料浸没其中, 65°C高温避光提取至植物材料变白或透明; 冷却后加入8 mL 80%丙酮, 混匀, 测定663.6和646.6 nm处的吸光度。用公式计算叶绿素浓度: Ca (mg∙L-1)=12.27A663.6-2.52A646.6; Cb (mg∙L-1)=20.10A646.6-4.92A663.6; CT (mg∙L-1)=Ca+Cb=7.35A663.6+17.58A646.6。  相似文献   

7.
A reversed-phase ion-pair high-performance liquid chromatography method for the determination of acyclovir and its metabolite 9-carboxymethoxymethylguanine is described. The samples are purified by reversed-phase solid-phase extraction. The components are separated on a C18 column with a mobile phase containing 18% acetonitrile, 5 mM dodecyl sulphate and 30 mM phosphate buffer, pH 2.1, and measured by fluorescence detection using an excitation wavelength of 285 nm and an emission wavelenght of 380 nm. Detection limits are 0.12 μM (plasma)) and 0.60 μM (urine) for acyclovir, and 0.26 μM (plasma) and 1.3 μM (urine) for metabolite. Correlation coefficients that were better than 0.998 were obtained normally. This analytical method, which enables simultaneous measurement of parent compound and metabolite, has been used in kinetics studies and for therapeutic drug monitoring in different patient groups with variable degrees of renal dysfunction.  相似文献   

8.
A simple and sensitive HPLC method for determination of metronidazole in human plasma has been developed. A step of freezing the protein precipitate allowed an efficient separation of aqueous and organic phases minimizing the noise level and improved therefore the limit of quantitation (10 ng ml−1 using 1 ml of plasma sample). The separation of compounds was performed on a RP 18 column with acetonitrile–aqueous 0.01 M phosphate solution (15:85, v/v) as mobile phase. Detection was performed by UV absorbance at 318 nm. Metronidazole was well resolved from the plasma constituents and internal standard. An excellent linearity was observed between peak-height ratios plasma concentrations over a concentration range of 0.01 to 10 μg ml−1. Within-day and between-day precision (expressed by relative standard deviation) and accuracy (mean error in per cent) did not exceed 4% between 1 and 10 μg ml−1 and 8.3 and 7.2% respectively for the limit of quantitation. The method is suitable for bioavailability and pharmacokinetic studies in humans.  相似文献   

9.
A simple and rapid on-line method for the determination of chlorthalidone in urine is proposed. The sample containing the internal standard is injected in a CN precolumn. After a 2-ml water rinsing, the precolumn is coupled for 30 s to the HPLC column via a switching valve, allowing the on-line elution of the compounds of interest. Analysis is carried out by reversed-phase chromatography with an acetonitrile-0.01 M phosphate buffer pH 7 (20:80, v/v) eluent, using UV detection at 214 nm. While the LC separation is performed, the precolumn is regenerated and conditioned, and is ready to receive the next sample at the end of the run. Accurate (>95%) and precise (<10%) analyses, in the range of 0.1–20 μg/ml of chlorthalidone in urine, have been achieved using this method.  相似文献   

10.
A sensitive, selective and efficient reversed-phase high-performance liquid chromatographic (HPLC) method is reported for the determination of furosemide in human plasma and urine. The method has a sensitivity limit of 5 ng/ml in plasma, with acceptable within- and between-day reproducibilities and good linearity (r2>0.99) over a concentration range from 0.05 to 2.00 μg/ml. The one-step extract of furosemide and the internal standard (warfarin) from acidified plasma or urine was eluted through a μBondapak C18 column with a mobile phase composed of 0.01 M potassium dihydrogenphosphate and acetonitrile (62:38, v/v) adjusted to pH 3.0. Within-day coefficients of variation (C.V.s) ranged from 1.08 to 8.63% for plasma and from 2.52 to 3.10% for urine, whereas between-day C.V.s ranged from 4.25 to 10.77% for plasma and from 5.15 to 6.81% for urine at three different concentrations. The minimum quantifiable concentration of furosemide was determined to be 5 ng/ml. The HPLC method described has the capability of rapid and reproducible measurement of low levels of furosemide in small amounts of plasma and urine. This method was utilized in bioavailability/pharmacokinetic studies for the routine monitoring of furosemide levels in adults, children and neonate patients.  相似文献   

11.
A simple HPLC method with photodiode-array (PDA) ultraviolet detection was developed for the simultaneous determination of four active polyphenol components of hawthorn (Crataegus), chlorogenic acid, epicatechin, hyperoside and isoquercitrin, in rat plasma. Following extraction from the plasma samples with ethyl acetate–methanol (2:1, v/v), these four compounds were successfully separated using a C18 column with a gradient elution of 5 and 25% acetonitrile in 25 mM phosphate buffer (pH 2.4). The flow-rate was set at 1 ml/min and the eluent was detected at 325 nm for chlorogenic acid, 278 nm for epicatechin, and 360 nm for both hyperoside and isoquercitrin. Narignin (0.82 μg) was used as the internal standard and was detected at 278 nm. The method is linear over the studied range of 0.16–40, 0.63–160, 0.13–32 and 0.13–30 μg/ml for chlorogenic acid, epicatechin, hyperoside and isoquercitrin, respectively. The correlation coefficient for each analyte was greater than 0.995. The intra-day and inter-day precision of the analysis was better than 4 and 7%, respectively. The extraction recoveries at low to high concentration were greater than 85% for both epicatechin and chlorogenic acid, and greater than 94% for both hyperoside and isoquercitrin. The detection limits were 0.04, 0.20, 0.03 and 0.03 μg/ml for chlorogenic acid, epicatechin, hyperoside and isoquercitrin. The developed method was used to analyze the plasma concentrations of the four analytes after the intravenous administration of hawthorn polyphenol extract to rats.  相似文献   

12.
A rapid, highly sensitive method for the determination of morphine and its metabolites morphine-3-glucuronide (M3G), morphine-6-glucuronide (M6G) and normorphine has been developed using high-performance liquid chromatography–electrospray mass spectrometry, with the deuterated analogues as internal standards. The analytes were extracted automatically using end-capped C2 solid-phase extraction cartridges. Baseline separation of morphine, M3G and M6G was achieved on a LiChrospher 100 RP-18 end-capped analytical column (125×3 mm I.D., 5 μm particle size) with water–acetonitrile–tetrahydrofuran–formic acid (100:1:1:0.1, v/v) as the mobile phase. Morphine and normorphine coeluate and were separated mass spectrometrically. The mass spectrometer was operated in the selected-ion monitoring mode using m/z 272 for normorphine, m/z 286 for morphine, m/z 462 for morphine-6-glucuronide. Due to an interfering peak, M3G was measured by tandem mass spectrometry in the daughter-ion mode. The limits of quantitation achieved with this method were 1.3 pmol/ml for morphine, 1.5 pmol/ml for normorphine, 1.0 pmol/ml for M6G and 5.4 pmol/ml for M3G in serum or cerebrospinal fluid. The limits of quantitation achieved in urine were 10 pmol/ml for morphine, 20 pmol/ml for normorphine and M6G and 50 pmol/ml for M3G using a sample size of 100 μl. The method described was successfully applied to the determination of morphine and its metabolites in human serum, cerebrospinal fluid and urine in pharmacokinetic and drug interaction studies.  相似文献   

13.
A simple and highly sensitive high-performance liquid chromatographic method for the direct determination of urinary glucuronide conjugates is described. The method is based on the direct derivatization of the glucuronic acid moiety in glucuronide conjugates with 6,7-dimethoxy-1-methyl-2 (1 H)-quinoxalinone-3-propionylcarboxylic acid hydrazide. The derivatization reaction proceeds in aqueous solution in the presence of pyridine and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at 0–37°C. The resulting fluorescent derivatives are separated on a C18 column using methanol—acetonitrile—0.5% triethylamine in water (1:1:2, v/v) as mobile phase, and are detected spectrofluorimetrically at 445 nm with excitation at 367 nm. The detection limits (signal-to-noise RATIO = 3) for the glucuronides are 13–48 fmol for an injection volume of 10 μl (130–480 fmol per 5 μl of human urine). The method was applied to the measurement of etiocholanorone-3-glucuronide and androsterone-3-glucuronide in human urine. The method is simple and rapid without conventional liquid—liquid extraction of the glucuronides from urine.  相似文献   

14.
Aromatase inhibition is a well-defined treatment option for postmenopausal breast cancer. Although several aromatase inhibitors such as aminoglutethimide, formestane, fadrozole have been found to inhibit in vivo aromatization by>85%, previous studies reported plasma estrogen levels to be sustained at approximately 20–50% of their control level during treatment with these drugs. The discrepancy could be due to lack of sensitivity or non-specific crossreactions in the radioimmunoassay (RIA) methods. Mean plasma levels of estrone (E1) and estradiol (E2) in postmenopausal women are approximately 80 and 20 pmol/l, respectively; on the contrary, mean plasma levels of the estrogen conjugate estrone sulphate (E1S) are approximately 4–500 pmol/l. Most RIA methods for plasma E2 and E1 measurements have sensitivity limits in the range of 2–3 and 7–10 pmol/l, respectively; accordingly, the suppression of plasma estrogens by more than 80–90% will produce hormone values below the sensitivity limit of the method in many patients. Recently, we developed a new method to determine plasma E1S. This assay has a sensitivity limit of 2.7 pmol/l. In theory, this method may allow the determination of plasma E1S levels suppressed to less than 2% of control values in the majority of patients. Using this method, we found different aromatase inhibitors such as formestane, aminoglutethimide, formestane and aminoglutethimide administered in concert or anastrozole to suppress plasma E1S levels down to 24, 13, 7 and 4%, respectively. The suppression of plasma E1S evaluated with this method thus approaches the percentage aromatase inhibition measured with tracer studies.  相似文献   

15.
The title determination was conducted by HPLC with electrochemical detection using an ODS column and a mobile phase of acetonitrile: 0.1 M phosphate buffer (pH 2.5) (15:85, v/v). The eight catechins, gallocatechin (GC), epigallocatechin (EGC), catechin (C), epicatechin (EC), epigallocatechin gallate (EGCg), gallocatechin gallate (GCg), epicatechin gallate (ECg), and catechin gallate (Cg), were detected at 0.6 V vs Ag/AgCl. Good linear relationships between current and amount were noted for 0.5-250 pmol of each catechin, with a correlation coefficient of 0.999 in each case. The detection limit for any one was 0.5 pmol (signal to noise ratio, S/N = 3). After the ingestion of 340 ml canned green tea, GC, EGC, C, and EC, mostly in conjugated form, were determined in urine samples. Conjugated catechins were hydrolyzed by enzymes using sulfatase and beta-glucuronidase. The time courses of the above four catechins showed a maxima at 1-3 h after tea ingestion. (+), (-)-EC and (+), (-)-C were present in canned tea.  相似文献   

16.
A sensitive high-performance liquid chromatographic assay has been developed to determine the levels of 3'-amino-3'-deoxy-thymidine (AMT), a cytotoxic metabolite of 3'-azido-3'-deoxy-thymidine (AZT, zidovudine), in human plasma. The sample pretreatment involved solid-phase extraction using cation-exchange extraction columns. Chromatography was carried out on a C8 column, using a mobile phase of methanol—0.01 M ammonium acetate (pH 5)—0.25 M sodium dioctylsulfosuccinate (60:40:4, v/v/v) and ultraviolet detection at 265 nm. The method has been validated, and stability tests under various conditions have been performed. The lower limit of quantitation is 5 ng/ml (using 500-μl human plasma samples). The bioanalytical assay has been used for the determination of AMT in patients with AIDS who used AZT.  相似文献   

17.
A sensitive analytical procedure for bupivacaine dosing in plasma samples by reversed-phase high-performance liquid chromatography is described. After a two-step extraction, the analysis was performed using a C18 column and a mobile phase of 0.01 M sodium dihydrogen-phosphate (pH 2.1)—acetonitrile (80:20, v/v). The extraction yield of bupivacaine from plasma was 73.5 ± 5.1% (mean ± S.D., n = 10). The within-day and between-day reproducibilities at a concentration of 100 ng/ml were 2.1% and 5.6%, respectively (n = 10). Calibration curves were linear (r2 = 0.9996) between 5 and 1000 ng/ml. The limit of detection, defined by a signal-to-noise ratio of 3:1, was 2 ng/ml. The accuracy at a concentration of 100 ng/ml was 2.3%. This method could be applied to the plasma analysis of seven other local anaesthetics (articaine, etidocaine, lidocaine, mepivacaine, pramocaine, procaine and tetracaine). The procedure was used in bioavailability studies of bupivacaine-loaded poly( -lactide) (i.e. PLA) and poly( -lactide-co-glycolide) (i.e. PLGA) microspheres after subcutaneous and intrathecal administrations in rabbits.  相似文献   

18.
A stereoselective high-performance liquid chromatography assay method was developed for the quantitation of R-(+)- and S_-(−)-mepivacaine in human serum. The assay uses a Pirkle brush-type. ((S)-tert.-leucine, (R)-(-naphthyl)ethylamine stationary phase (Sumichiral OA-4700, 250×4 mm I.D.) at ambient temperature with a mobile phase of hexane-ethylenedichloride-absolutte methanol (85:10:5, v/v) for the separation of R-(+) and (S)-(−)-mepivacaine. The eluents were monitored using UV detection at 220 nm. Isolation of the analytes from serum was performed using a 1-ml C18 solid-phase extraction cartridge with high recovery and selectivity. The detection limits were 100 ng/ml for each enantiomer and the limits of quantitation were 150 ng/ml for both enantiomers. Linear calibration curves in the 150–2400 ng/ml range showed good correlation coefficients (r>0.9994, N=3). Precision and accuracy of the method were within 2.1–5.3 and 2.0–3.6%, respectively, for (R)-(+)-mepivacaine and 2.7–5.7% and 1.7–4.2%, respectively, for S-(−)-mepivacaine.  相似文献   

19.
This paper describes a high-performance liquid chromatographic method with ultraviolet absorbance detection at 304 nm for the determination of 6-chloro-5-(1-naphthyloxy)-2-methylthio benzimidazole (αBIOF10) — a new fasciolicide agent — and its sulphoxide (SOαBIOF10), in plasma and urine. It requires 2 ml of biological fluid, an extraction using Sep-Pak cartridges, and methanol for drug elution. Analysis is performed on a μBondapak C18 (10 μm) column, using methanol–acetonitrile–water (40:30:30, v/v) as the mobile phase. Results showed that the assay is sensitive: 12 ng/ml for αBIOF10 and SOαBIOF10 in plasma and 3.6 ng/ml for both compounds in urine. The response was linear between 0.195 and 12.5 μg/ml. Maximum intra-day coefficient of variation was 5.3%. Recovery obtained was 97.8% for both αBIOF10 and SOαBIOF10. In urine, recovery was 99.6% and 93.1% for αBIOF10 and SOαBIOF10 respectively. The method was used to perform a preliminary pharmacokinetic study in two sheep and was found to be satisfactory.  相似文献   

20.
A high-performance liquid chromatographic method for the determination of the histamine H1-receptor antagonist cetirizine in human urine was developed. Cetirizine and the internal standard are extracted from acidified (pH 5) urine (0.5 ml) into chloroform and the organic layer is evaporated to dryness. The residue is chromatographed on a Spherisorb 5ODS-2 column using Pic A (5 mM aqueous tetrabutylammonium phosphate)—methanol—tetrahydrofuran (33:65:2, v/v) as the mobile phase with ultraviolet detection (230 nm). The calibration graph is linear from 0.1 to 10 μg/ml and using 0.5 ml of urine the detection limit is 20 ng/ml. The within-run relative standard deviation is <6% and the accuracy is within 10% of the theoretical value at concentrations between 0.1 and 10 μg/ml in urine. There is a good correlation (r = 0.99606) with a previously described capillary gas chromatographic assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号