首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
ATBF1(AT motif binding factor 1)基因是一个新发现的抑癌基因,其表达产物是目前发现的分子量最大的转录调节因子,它能和甲胎蛋白(alpha fetoprotein, AFP)基因增强子AT富聚区结合,调节AFP的转录.ATBF1基因表达过程中,由于转录本mRNA的选择性剪接,可产生ATBF1-A和ATBF1-B两种异构体,这两种异构体对AFP表达的调节具有相互对抗作用.ATBF1-A是ATBF1基因的主要表达形式,其能抑制癌细胞生长,而ATBF1-B则能促进癌细胞增殖.本文分析ATBF1异构体如何调控AFP表达及其作用的多样性,阐述ATBF1表达下调对肿瘤细胞生长和侵袭产生的影响;探讨ATBF1异构体抑癌作用的可能机制和选择性应用ATBF1异构体治疗肿瘤的科学意义.  相似文献   

11.
12.
13.
14.
15.
16.
Alpha-fetoprotein (AFP) expression is observed in embryonic tissues and, the expression of this protein is absent in normal adult tissues. The re-elevation of serum AFP strongly suggests generation of a malignant tumor in an adult. We demonstrated here that AFP-producing gastric cancer (AFP-gastric cancer) could be treated by a combination therapy with a low dose of Mitomycin-C (MMC) and lymphokineactivated killer T (LAK-T) cells. Treatment with MMC of AFP-gastric cancer cells enhanced their susceptibility to LAK-T cells and induced ATBF1 gene expression. We revealed here a novel signal pathway for regulation of the cell cycle of AFP-gastric cancer cells through ATBF1, which enhances the promoter activity of the p21 (Waf1/Cip1) gene. Immunoprecipitation revealed the direct interaction between ATBF1 and p53. Overexpressed ATBF1 stimulated p21 (Waf1/Cip1) promoter activity up to 4-fold compared with basal activity. The expression level of ATBF1 mRNA was doubled by MMC (0.05 microg/ml) treatment. The MMC treatment and ATBF1 overexpression synergistically activated the p21 (Waf1/Cip1) promoter activity in a dose-dependent manner up to 7-fold compared with basal activity.  相似文献   

17.
18.
ATBF1 was first discovered as a suppressor of AFP expression in hepatocytes. It is present in brain, adult liver, lung, and gastro-intestinal tract. Recently, it has been reported that ATBF1 regulates myoblastic differentiation and interacts with v-Myb in regulation of its transactivation. Using the yeast two-hybrid system, we searched for protein-protein interactions to uncover new functions for ATBF1. We present here experimental evidence that ATBF1 is a new regulatory factor for STAT3-mediated signal transduction through its interaction with PIAS3. PIAS3 was thus identified as an ATBF1-binding protein. In co-transfection experiments, the full-length ATBF1 was found to form complexes with PIAS3 in Hep G2 cells. In the luciferase assay, ATBF1 was found to have no influence on STAT3 signaling induced by IL-6 stimulation, but it did synergistically enhance PIAS3 inhibition of activated STAT3. In conclusion, ATBF1 can suppress the IL-6-mediated cellular response by acting together with PIAS3.  相似文献   

19.
The present study aimed to elucidate the function of AT motif-binding factor 1 (ATBF1) during neurogenesis in the developing brain and in primary cultures of neuroepithelial cells and cell lines (Neuro 2A and P19 cells). Here, we show that ATBF1 is expressed in the differentiating field in association with the neuronal differentiation markers beta-tubulin and MAP2 in the day E14.5 embryo rat brain, suggesting that it promotes neuronal differentiation. In support of this, we show that ATBF1 suppresses nestin expression, a neural stem cell marker, and activates the promoter of Neurod1 gene, a marker for neuronal differentiation. Furthermore, we show that in Neuro 2A cells, overexpressed ATBF1 localizes predominantly in the nucleus and causes cell cycle arrest. In P19 cells, which formed embryonic bodies in the floating condition, ATBF1 is mainly cytoplasmic and has no effect on the cell cycle. However, the cell cycle was arrested when ATBF1 became nuclear after transfer of P19 cells onto adhesive surfaces or in isolated single cells. The nuclear localization of ATBF1 was suppressed by treatment with caffeine, an inhibitor of PI(3)K-related kinase activity of ataxa-telangiectasia mutated (ATM) gene product. The cytoplasmic localization of ATBF1 in floating/nonadherent cells is due to CRM1-dependent nuclear export of ATBF1. Moreover, in the embryonic brain ATBF1 was expressed in the cytoplasm of proliferating stem cells on the ventricular zone, where cells are present at high density and interact through cell-to-cell contact. Conversely, in the differentiating field, where cell density is low and extracellular matrix is dense, the cell-to-matrix interaction triggered nuclear localization of ATBF1, resulting in the cell cycle arrest. We propose that ATBF1 plays an important role in the nucleus by organizing the neuronal differentiation associated with the cell cycle arrest.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号