首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
It has long been debated whether binder IB represents a unique form of the glucocorticoid receptor or is derived from the larger molecular weight form, binder II, by limited proteolysis. Transformed glucocorticoid receptors in kidney, liver and mixed kidney/liver cytosols were examined using anion exchange and gel filtration chromatography. The transformed receptor in liver cytosols chromatographs as binder II on DEAE-Sephadex A-50 anion exchange columns and has a Stokes radius of approx 6.0 nm. The transformed receptor in kidney cytosols chromatographs as binder IB on DEAE-Sephadex A-50 anion exchange columns and has a Stokes radius of 3.0-4.0 nm (3.2 nm on agarose; 3.0-4.0 nm on Sephadex G-100). Using cytosols prepared from mixed homogenates (2 g kidney plus 8 g liver tissue), our experiments show that binder II is converted to a lower molecular weight form (Rs = 3.2 nm on agarose; Rx = 3.9 nm on Sephadex G-100) that is identical to binder IB in its elution position from DEAE-Sephadex anion exchange resin. Identical results are obtained using kidney/liver/cytosols mixed in vitro in which only the hepatic receptor, binder II, is labelled with [3H]TA. These results support the hypothesis that the renal receptor, binder IB, is a proteolytic fragment of binder II and does not represent a polymorphic form of the glucocorticoid receptor. The renal converting activity is dependent on free-SH for full activity but is insensitive to the protease inhibitors leupeptin, antipain, and PMSF. The conversion of hepatic binder II to binder IB in in vitro mixing experiments can be prevented if kidney cytosol is gel filtered on Sephadex G-25 and the eluted macromolecular fraction is adjusted to 10 mM EGTA (or EDTA) prior to mixing with the [3H]TA labelled hepatic cytosol.  相似文献   

2.
The DNA-binding and physical properties of the rat liver cytosol glucocorticoid receptor were determined before and after Sephacryl S-300 filtration in the presence or absence of molybdate. Cytosol was prepared and labeled with [3H]triamcinolone acetonide in buffer containing molybdate. Prior to gel filtration, only 5 +/- 3% (mean +/- S.E.) of labeled receptors bound to DNA-cellulose. After gel filtration in the presence and absence of molybdate, the per cent of labeled receptors binding to DNA-cellulose was 57 +/- 10% and 83 +/- 1%, respectively. Nonreceptor fractions from the Sephacryl S-300 column contained a heat-stable factor which blocked receptor activation but did not block the binding of activated receptors to DNA-cellulose. The activation inhibitor eluted from the column in the region of the albumin standard, but after heating its size was considerably reduced (Mr less than 3500). Receptors activated by Sephacryl S-300 filtration underwent the same size changes in the presence or absence of molybdate. Prior to gel filtration, the S20,w of labeled receptors in the presence of molybdate was 9.2 +/- 0.2 S. After filtration in the presence and absence of molybdate, the S20,w of labeled receptors was 4.2 +/- 0.2 and 4.4 +/- 0.1 S, respectively. The Stokes radius (Rs) of labeled receptors after gel filtration in either the presence or absence of molybdate was 65 +/- 1 A. From the Rs and S20,w values, the molecular weight (Mr) of activated receptors was calculated to be 115,000 to 121,000, which was in close agreement with the Mr of affinity-labeled receptors determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

3.
We have previously shown that the purified or unfractionated cytosolic, activated glucocorticoid receptor of rat liver consists of a polypeptide with a Stokes radius of approximately 6 nm, a sedimentation coefficient of 4S and a molecular mass of approximately 90,000 Daltons. We have confirmed previous observations by other authors that if sodium molybdate is introduced into the cytosol preparation buffer the non-activated glucocorticoid receptor appears as an 8 nm, 9S species with an apparent molecular mass of 330,000 Daltons. In order to study the physicochemical parameters of the glucocorticoid receptor prior to ligand binding, we have used an enzyme-linked immunosorbent assay (ELISA) based on antibodies raised in rabbits against the purified activated glucocorticoid receptor. In isotonic buffer, the non-liganded glucocorticoid receptor was shown to have a Stokes radius of 6 nm in the absence and 8 nm in the presence of molybdate. Furthermore, experimental conditions known to result in activation of the glucocorticoid receptor complex (increased ionic strength, increased temperature) did not lead to activation of the 6 nm non-liganded glucocorticoid receptor as judged from the lack of binding of the treated, non-liganded receptor to DNA-cellulose. The existence of both 6 and 8 nm forms of nonactivated, non-liganded glucocorticoid receptor in vitro suggests that dissociation of an 8 nm form to a 6 nm form, if it occurs in vivo, is probably not the only molecular event constituting the activation of the glucocorticoid receptor.  相似文献   

4.
The relationship between glucocorticoid receptor subunit dissociation and activation was investigated by DEAE-cellulose and DNA-cellulose chromatography of monomeric and multimeric [3H]triamcinolone acetonide ([3H]TA)-labeled IM-9 cell glucocorticoid receptors. Multimeric (7-8 nm) and monomeric (5-6 nm) complexes were isolated by Sephacryl S-300 chromatography. Multimeric complexes did not bind to DNA-cellulose and eluted from DEAE-cellulose at a salt concentration (0.2 M KCl) characteristic of unactivated steroid-receptor complexes. Monomeric [3H]TA-receptor complexes eluted from DEAE-cellulose at a salt concentration (20 mM KCl) characteristic of activated steroid-receptor complexes. However, only half of these complexes bound to DNA-cellulose. This proportion could not be increased by heat treatment, addition of bovine serum albumin, or incubation with RNase A. Incubation of monomeric complexes with heat inactivated cytosol resulted in a 2-fold increase in DNA-cellulose binding. Unlike receptor dissociation, this increase was not inhibited by the presence of sodium molybdate. Fractionation of heat inactivated cytosol by Sephadex G-25 chromatography demonstrated that the activity responsible for the increased DNA binding of monomeric [3H]TA-receptor complexes was macromolecular. These results are consistent with a two-step model for glucocorticoid receptor activation, in which subunit dissociation is a necessary but insufficient condition for complete activation. They also indicate that conversion of the steroid-receptor complex to the low-salt eluting form is a reflection of receptor dissociation but not necessarily acquisition of DNA-binding activity.  相似文献   

5.
We have investigated the stability of the [3H]dexamethasone 21-mesylate-labeled nonactivated glucocorticoid-receptor complex in rat thymus cytosol containing 20 mM sodium molybdate. Cytosol complexes were analyzed under nondenaturing conditions by gel filtration chromatography in the presence of molybdate and under denaturing conditions by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. When analyzed under nondenaturing conditions, complexes from fresh cytosol and from cytosol left for 2 h at 3 degrees C eluted from gel filtration as a single peak of radioactivity with a Stokes radius of approximately 7.7 nm, suggesting that no proteolysis of the complexes had occurred in either cytosol. When analyzed under denaturing conditions, however, whereas the fresh cytosol gave a receptor band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis at Mr approximately 90,000 (corresponding to the intact complex), the cytosol that had been left for 2 h at 3 degrees C gave only a fragment (Mr approximately 50,000). This fragment, just as the intact complex, could be thermally activated to a DNA-binding form. Proteolysis of the receptor could be blocked by preparing the cytosol in the presence of EGTA, leupeptin, or a heat-stable factor present in the cytosol of rat liver and WEHI-7 mouse thymoma cells. From these results we conclude: (i) 20 mM molybdate does not protect the nonactivated glucocorticoid-receptor complex present in rat thymus cytosol against proteolysis under conditions which are commonly used for cell-free labeling of the receptor, and (ii) the demonstration of a Stokes radius of approximately 8 nm for the nonactivated glucocorticoid-receptor complex is not sufficient to indicate that the receptor complex is present in its intact form.  相似文献   

6.
A monoclonal IgG 2a antibody directed against the activated rat liver glucocorticoid receptor (GR) was used to prepare an immunoaffinity matrix of high capacity. The molybdate-stabilized GR from rat liver cytosol was immunoadsorbed on this gel. A non-hormone-binding protein of Mr approximately 90,000, as determined after denaturing gel electrophoresis, was eluted from this matrix following removal of molybdate and exposure to heat (25 degrees C) and salt (0.15 M NaCl). Subsequently, the Mr approximately 90,000 protein was purified to homogeneity using high-performance ion-exchange chromatography, covalently radiolabelled, and analyzed by high-performance size-exclusion chromatography and sucrose gradient ultracentrifugation. Hydrodynamic characterization indicates that, under our experimental conditions, the molybdate-stabilized rat liver GR (Rs approximately 7.4 nm, s20,w approximately 9.1 S, calculated mol. wt Mr approximately 285,000) includes one steroid-binding unit (Rs approximately 5.5 nm, S20,w approximately 4.3 S, calculated Mr approximately 100,000) and a dimer of Mr approximately 90,000 non-hormone-binding protein (Rs approximately 6.9 nm, S20,w approximately 6.1 S, calculated native Mr approximately 180,000).  相似文献   

7.
Glucocorticoid-receptor complexes in rat thymus cytosol were characterized by gel-filtration and ion-exchange chromatography and by other procedures. Two forms of non-transformed complex were identified at low ionic strength in the presence of molybdate, with Stokes radii of approx. 8 and 6 nm. The 8 nm molybdate-stabilized form could be converted to the 6 nm form by chromatography on Sephacryl S-300 or Lipidex 1000 or by incubation with charcoal or phospholipase C, but not by chromatography on Sephadex G-25. The dissociation rate of the complex was reduced by treatment with charcoal or Lipidex 1000, but none of the treatments caused transformation to a DNA-binding form. Transformation of the complex, by exposure to elevated temperature or ionic strength in the absence of molybdate, resulted in the appearance of a different 6 nm form, distinguished by an increased affinity for DNA-cellulose and a reduced affinity for DEAE-cellulose. These results suggest that receptor transformation is preceded by structural changes associated with the loss of a lipid factor from the complex. Non-polar steroid antagonists, and lipophilic compounds such as phenothiazines, were found to bind to secondary, hydrophobic sites on the receptor and to exert allosteric effects on the primary steroid-binding site; these and other observations emphasize the importance of hydrophobic interactions as determinants of the structure and properties of glucocorticoid receptors.  相似文献   

8.
The use of high-performance ion-exchange chromatography (HPIEC) on a Mono Q column was investigated for the analysis of glucocorticoid receptor. In the presence of 10 mM sodium molybdate, both liganded and unliganded glucocorticoid receptor were eluted as a single and sharp peak (0.32 M NaCl). In the absence of molybdate and after exposure to heat and salt, another peak of specifically bound radioactivity was eluted with 0.08 M NaCl. When HPIEC was performed in the absence of molybdate, two molecular forms of the liganded receptor were detected which eluted with 0.08 M NaCl (Stokes' radius Rs = 5.1 nm, s20,w = 4.6 S, calculated mol. wt Mr approximately 100,000) and 0.32 M NaCl (Rs = 7.3 nm, S20,w = 9.0 S, calculated Mr approximately 280,000). Analysis of both forms with mini-columns of DNA-Ultrogel, DEAE-Trisacryl and hydroxylapatite (HA-Ultrogel) confirmed the identity of the two peaks with transformed and non-transformed glucocorticoid-receptor complexes. These results suggest that HPIEC may provide a useful tool for the rapid resolution and quantification of receptor molecular forms.  相似文献   

9.
When freshly prepared glucocorticoid-receptor complex from rat liver cytosol was incubated at 23 degrees C in the presence of sodium molybdate, its subsequent binding to isolated nuclei, DNA-cellulose and ATP-Sepharose was blocked. In addition, binding to these acceptors by cytosol receptor complex fractionated with (NH4)2SO4 was also blocked by incubation of the complexes with 50 mM-sodium molybdate. However, molybdate had no effect on the binding of activated receptor complexes to ATP-Sepharose. Molybdate was also effective in extracting the nuclear- and DNA-cellulose-bound glucocorticoid-receptor complexes in a dose-dependent manner. Molybdate appears to exert its effects directly on the receptor by interacting with both non-activated and activated receptor forms.  相似文献   

10.
The glucocorticoid receptor from rat liver cytosol prepared in 2 ml buffer/g tissue sedimented at approximately 10 S in low salt density gradient centrifugation without molybdate. When the receptor was heated at 25 degrees C, both approximately 10 S and approximately 7 S forms were seen in low salt gradient. The approximately 10 S form was not capable of binding to DNA-cellulose and was stabilized by sodium molybdate, namely it corresponded to untransformed receptor. The approximately 7 S form was capable of binding to DNA-cellulose and regarded as transformed receptor. On the other hand, partially-purified transformed receptor labeled with [3H]dexamethasone-21-mesylate sedimented at approximately 5 S, which migrated as a approximately 94 kDa species in SDS-polyacrylamide gel electrophoresis. The reconstitution analysis of this partially-purified approximately 5 S receptor and liver cytosol, showed the shift to approximately 7 S form. RNase A or T1 converted approximately 7 S transformed form into approximately 5 S but it did not affect approximately 10 S untransformed form. 5-20 mM sodium molybdate also shifted approximately 7 S to approximately 5 S. These results indicate that the approximately 7 S transformed form of the glucocorticoid receptor observed in low salt conditions might be an oligomer, probably including both approximately 5 S steroid-binding component and RNA/ribonucleoprotein, and that molybdate dissociates these interactions in a specific manner.  相似文献   

11.
The hydrophobicity of the nontransformed and transformed androgen receptor from rat submandibular gland and heat shock protein 90 (hsp90) from rat submandibular gland and liver was characterized by using high-performance hydrophobic-interaction chromatography on TSK gel Ether-5PW. In the absence of molybdate, cytosol [3H]R1881-androgen receptor complexes were mainly eluted in the 1.3 M region (Peak 1) with a small peak in the 0.8 M region (Peak 2) of a descending salt gradient (2 to 0 M) of ammonium sulfate. In the presence of molybdate, Peak 2 was predominant. When labeled-cytosol was applied after being heated at 25 degrees C for 30 min, a third peak (Peak 3) at around 0.64 M ammonium sulfate was newly observed. Peaks 2 and 3 were observed, while Peak 1 completely disappeared with the labeled-cytosol precipitated at 40% saturated ammonium sulfate. The Stokes radius of Peak 1 was 7 nm, and of Peak 2 was 8 nm. Both peaks were retained poorly by DNA-cellulose but bound rather well to DEAE-cellulose. These results suggest that these two peaks represent the nontransformed receptor, indicating that there are isoforms of the nontransformed androgen receptor which are distinguished by their hydrophobic properties and Stokes radii. Peak 3 had a Stokes radius of 5 nm and preferentially bound to DNA-cellulose, suggesting that this peak corresponds to the transformed receptor. These results indicated that the transformation of the androgen receptor accompanies the enrichment of the hydrophobicity of the receptor molecule. Hsp90 purified from rat livers and hsp90 in the cytosol both from livers and submandibular glands were eluted from Ether-5PW at 0.8 M ammonium sulfate, at almost the same position as Peak 2. This finding suggests that the enrichment of hydrophobicity on transformation is due to dissociation of hsp90 from the nontransformed androgen receptor.  相似文献   

12.
Hydrogen peroxide and diamide inactivate the steroid-binding capacity of unoccupied glucocorticoid receptors in rat liver cytosol at 0 degrees C, and steroid-binding capacity is reactivated with dithiothreitol. Treatment of cytosol with peroxide or sodium molybdate, but not diamide, inhibits the irreversible inactivation (i.e., inactivation not reversed by dithiothreitol) of steroid-binding capacity that occurs when cytosol is incubated at 25 degrees C. Pretreatment of cytosol with the thiol derivatizing agent methyl methanethiosulfonate at 0 degrees C prevents the ability of peroxide, but not molybdate, to stabilize binding capacity at 25 degrees C. As derivatization of thiol groups prevents peroxide stabilization of steroid-binding capacity and as treatment with dithiothreitol reverses the effect, we propose that peroxide acts by promoting the formation of new disulfide linkages. The receptor in our rat liver cytosol preparations is present as three major degradation products of Mr 40,000, 52,000, and 72,000 in addition to the Mr 94,000 intact receptor. Like the intact receptor, these three forms exist in the presence of molybdate as an 8-9S complex, they bind glucocorticoid in a specific manner, and they copurify with the intact Mr 94,000 receptor on sequential phosphocellulose and DNA-cellulose chromatography. Despite the existence of receptor cleavage products, it is clear that peroxide does not stabilize steroid-binding capacity by inhibiting receptor cleavage.  相似文献   

13.
The activation in vitro of dioxin and glucocorticoid receptors from a non-DNA binding to a DNA binding state was characterized. Ligand-free dioxin and glucocorticoid receptors were partially co-purified from rat liver cytosol, and both receptors sedimented at 9 S following labeling with the respective ligand. The 9 S forms of the dioxin and glucocorticoid receptors have previously been shown to represent heteromeric complexes containing the Mr approximately equal to 90,000 heat shock protein. The 9 S ligand-free or ligand-bound glucocorticoid receptor was converted to the monomeric 4-5 S form upon exposure to 0.4 M NaCl even in the presence of the stabilizing agent molybdate. Under identical conditions, the 9 S ligand-free and ligand-bound dioxin receptor forms remained essentially intact. However, in the absence of molybdate, the dioxin receptor could be converted to a 4-5 S form upon exposure to high concentrations of salt. These results indicate that the glucocorticoid receptor readily dissociates from the 9 S to the 4-5 S form even in the absence of hormone, whereas both the ligand-free and ligand-occupied 9 S dioxin receptor forms represent more stable species. Gel mobility shift experiments revealed that the 4-5 S glucocorticoid receptor interacted with a glucocorticoid response element both in the absence and presence of ligand. On the other hand, occupation of the dioxin receptor by ligand greatly enhanced the ability of the receptor to be activated to a form that binds to its target enhancer element. Once dissociated, the monomeric form of the dioxin receptor was also able to interact with its DNA target sequences even in the absence of ligand. Thus, ligand binding efficiently facilitates subunit dissociation of the dioxin receptor but is not a prerequisite for DNA binding per se. Given the apparent stability of its non-DNA binding 9 S form, the dioxin receptor system might be a useful model for the investigation of the mechanism of activation of soluble receptor proteins.  相似文献   

14.
The glucocorticoid hormone-receptor complex has been shown to exist in several forms. The transformation status of various forms of the complex isolated from rat thymus cytosol in the presence of molybdate was determined. The non-transformed receptor had a higher affinity for DEAE-cellulose than the transformed receptor. The rate at which the non-transformed complex was transformed to a smaller form with a low affinity for DEAE-cellulose by exposure to salt was greater in the absence of molybdate than in its presence. We conclude that salt-induced transformation of the complex is retarded but not prevented by molybdate and is associated with subunit dissociation.  相似文献   

15.
In structure and general mode of action, the Ah receptor is very similar to the receptors for steroid hormones. Molybdate previously has been shown to be highly effective at preserving ligand-binding function in steroid receptors during their exposure to elevated temperature or high ionic strength and at stabilizing steroid receptors as high molecular weight oligomeric complexes. Since such stabilization by molybdate can be very useful during characterization and purification of receptors, we tested the effects of molybdate on the Ah receptor to determine if the Ah receptor, like the receptors for steroid hormones, might be stabilized. In hepatic cytosols from C57BL/6N mice and Sprague-Dawley rats, molybdate concentrations up to 30 mM in homogenizing and analysis buffers did not alter the concentration of specific Ah receptor sites detected by binding of [3H]2,3,7,8-tetrachlorodibenzo-p-dioxin. However, inclusion of 20 mM molybdate in the homogenizing buffer did significantly protect unliganded Ah receptor from thermal inactivation at 20 degrees C and from KCl-induced loss of ligand-binding ability. In accord with previous reports, 20 mM molybdate in homogenizing and analysis buffers greatly increased the concentration of detectable glucocorticoid receptor in rat hepatic cytosol and estrogen receptor in rat uterine cytosol. Exposure to 0.4 M KC1 caused the glucocorticoid receptor from rat liver to shift sedimentation from approximately equal to 8 S to approximately equal to 4 S and caused a severe loss of specific glucocorticoid binding. Presence of 20 mM molybdate stabilized the glucocorticoid receptor as a single discrete peak sedimenting at approximately equal to 8 S. In contrast, the Ah receptor from rat liver exposed to 0.4 M KC1 in the presence of molybdate sedimented as biphasic peaks; one peak (approximately equal to 9.5 S) corresponded to the form of Ah receptor observed at low ionic strength, while the other peak (approximately equal to 5.5 S) corresponded to the form of Ah receptor seen in cytosol treated with 0.4 M KC1 in the absence of molybdate. Addition of heparin to hepatic cytosols from mice or rats shifted sedimentation of Ah receptor from approximately equal to 9.5 S to approximately equal to 5.5 S. Molybdate, again, provided stabilization in the approximately equal to 9.5 S form, but only for about one-half the total Ah receptor content in both rat and mouse hepatic cytosols. In sum, molybdate is far less effective at stabilizing rodent Ah receptors than it is at stabilizing steroid receptors in the same species.  相似文献   

16.
This investigation was undertaken 1) to determine whether the increased glucocorticoid-receptor binding activities, observed in hypertrophied plantaris muscles, are associated with a reduced ability to undergo receptor activation and 2) to examine whether glucocorticoid-receptor complexes in hypertrophied muscles undergo a shift in the relative distribution of the two thermally activated receptor forms (termed binder II and corticosteroid binder IB) to a distribution that is found in slow-twitch or heart muscle types. Plantaris muscles of female adrenalectomized rats, enlarged by surgical removal of synergists, were 60% heavier and had higher glucocorticoid cytosol binding (125 +/- 14 vs. 79 +/- 8 fmol/mg protein) than these muscles of controls. Activation, which was quantitated by the ability of the steroid-receptor complex to bind to DNA, was similar in overloaded and control muscles (57 +/- 2 vs. 62 +/- 4%). Diethylaminoethyl-cellulose chromatography of activated receptors showed approximately 16% of the radioactivity appearing as binder II and 38% as binder IB in both hypertrophied and control muscles. These results show that although enlarged plantaris muscles are undergoing certain fast- to slow-twitch biochemical transformations, the activated glucocorticoid-receptor distribution does not shift to that observed in slow fibers.  相似文献   

17.
Purification of the glucocorticoid receptor from rat liver cytosol.   总被引:12,自引:0,他引:12  
The [3H]-triamcinolone acetonide-labeled glucocorticoid receptor from rat liver cytosol was purified to 85% homogeneity according to sodium dodecyl sulfate gel electrophoresis. It consisted of one subunit with a molecular weight of 89,000 and had one ligand-binding site per molecule. The purification involved sequential chromatography on phosphocellulose, DNA-cellulose twice, and Sephadex G-200. Between the two chromatography steps on DNA-cellulose, the receptor was heat activated. The receptor was affinity eluted from the second DNA-cellulose column with pyrodixal 5'-phosphate. The purification achieved in the first three chromatographic steps varied between 60 and 95% homogeneity in different experiments. After chromatography on the second DNA-cellulose column, the steroid.receptor complex had a Stokes radius of 6.0 nm and a sedimentation coefficient of 3.4 S in 0.15 M KCl. In the absence of KCl, the sedimentation coefficient was 3.6 S. After concentration on hydroxylapatite, the steroid.receptor complex was analyzed by isoelectric focusing in polyacrylamide gel. The radioactivity was shown to focus together with the major protein band with pI 5.8. Following limited proteolysis with trypsin, the radioactivity, together with the major protein band, focused at pI 6.2 as previously described for the unpurified steroid.receptor complex.  相似文献   

18.
The interaction of the rat hepatic receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) with immobilized heparin (heparin-Sepharose) or DNA (DNA-cellulose) has been compared to the polyanionic-binding properties of the rat hepatic glucocorticoid receptor. Both the nonoccupied and in vitro occupied forms of the receptors interacted with heparin-Sepharose but with varying strength, as determined by ligand binding assays or an enzyme-linked immunosorbent assay based on a monoclonal antibody against the steroid- and DNA-binding Mr approximately 94,000 glucocorticoid receptor protein. In the absence of ligand, both the dioxin and glucocorticoid receptors eluted from heparin-Sepharose at 0.1-0.2 M KCl, in contrast to the in vitro occupied receptor forms which eluted at 0.3-0.4 M KCl. Following elution of the in vitro occupied dioxin receptor from heparin-Sepharose, it was efficiently retained on DNA-cellulose and eluted at an ionic strength of approximately 0.2 M KCl. In the presence of 20 mM sodium molybdate which is known to inhibit the activation of steroid hormone receptors to a DNA-binding form, both the dioxin and glucocorticoid receptors eluted at 0.1-0.2 M KCl from heparin-Sepharose. In analogy to what has previously been shown for the glucocorticoid receptor, sodium molybdate stabilized a large dioxin-receptor complex with a sedimentation coefficient, S20,w, of 9-10 S, a Stokes radius of approximately 7.5 nm, and a calculated Mr of 290,000-310,000. Limited proteolysis of both the dioxin and glucocorticoid receptors with trypsin which is known to eliminate the DNA-binding property of both receptor forms also resulted in a decreased strength in the interaction of both in vitro occupied receptors with heparin-Sepharose (elution at 0.1-0.2 M KCl). In line with these data, calf thymus DNA in solution competed for receptor binding to heparin-Sepharose. In conclusion, the chromatographic properties of the dioxin receptor on heparin-Sepharose are indistinguishable from those of the glucocorticoid receptor, and both receptors appear to be structurally and functionally closely related proteins.  相似文献   

19.
The cytosolic glucocorticoid receptor of 21st gestational day rat epiphyseal chondrocytes has been evaluated. The receptor, a single class of glucocorticoid binding component approached saturation, utilizing [3H]triamcinolone acetonide ([3H]TA) as the radiolabeled ligand, at approximately 1.8-2.0 x 10(-8) M. The dissociation constant (Kd) reflected high-affinity binding, equaling 4.0 +/- 1.43 x 10(-9) M (n = 7) for [3H]TA. The concentration of receptor estimated from Scatchard analysis was approximately 250 fmol/mg cytosolic protein and when calculated on a sites/cell basis equalled 5800 sites/cell. The relative binding affinities of steroid for receptor were found to be triamcinolone acetonide greater than corticosterone greater than hydrocortisone greater than progesterone greater than medroxyprogesterone acetate much greater than 17 alpha-hydroxyprogesterone much greater than testosterone greater than 17 beta-estradiol. Cytosolic preparations activated in vitro by warming (25 degrees C for 20 min) were shown to exhibit an increased affinity for DNA-cellulose. 46% of the total specifically bound activated ligand-receptor complex was bound to DNA-cellulose. Cytosol maintained at 0-4 degrees C in the presence of 10 mM molybdate or activated in vitro in the presence of molybdate, bound to DNA-cellulose at 8 and 10% respectively. DEAE-Sephadex elution profiles of the nonactivated receptor were indicative of a single binding moiety which eluted from the columns at 0.4 M KCl. Elution profiles of activated receptor were suggestive of an activation induced receptor lability. The 0.4 M KCl peak was diminished, while a concomitant increase in the 0.2 M KCl peak was only modestly discernible. Evaluation of endogenous proteolytic activity in chondrocyte cytosol using [methyl-14C]casein as substrate show a temperature-dependent proteolytic activity with a pH optimum of 5.9-6.65. The proteolytic activity was susceptible to heat inactivation and was inhibitable, by 20 mM EDTA. The sedimentation coefficient of the nonactivated receptor was 9.3s (n = 6) on sucrose density gradients and exhibited steroid specificity and a resistance to activation induced molecular alterations when incubated in the presence of 10 mM molybdate. Receptor activation in vitro, in the absence of molybdate induced an increased receptor susceptibility to proteolytic attack and/or enhanced ligand receptor dissociation as evidenced by a diminution of the 9.3s binding form without a concomitant increase in 5s or 3s receptor fragments.  相似文献   

20.
An immunoglobulin (IgG) fraction from serum of a rabbit immunized with a highly purified preparation of glucocorticoid receptor from rat liver cytosol contained specific antibodies to glucocorticoid receptor. This was shown following incubation of the [3H]triamcinolone acetonide-glucocorticoid receptor (TA-GR) complex with the IgG fraction by (I) adsorption of the [3H]TA-GR-antibody complex to protein A linked to Sepharose, (II) an increased sedimentation rate of the [3H]TA-GR-antibody complex compared to that of the [3H]TA-GR complex, and (III) an increased molecular size of the [3H]TA-GR-antibody complex when compared to that of the [3H]TA-GR complex as judged from gel filtration. The antibody fraction was characterized with regard to titer, cross-reactivity and specificity. The antibodies cross-reacted with the glucocorticoid receptor from various rat tissues (liver, thymus and hippocampus), as well as with the glucocorticoid receptor from human normal lymphocytes, chronic lymphatic leukemia cells and human hippocampus. In the rat liver, the antibody bound to both the nuclear and the cytosolic glucocorticoid receptor (Stokes radius 6.1 nm). It did not cross-react with the proteolytic fragments of the glucocorticoid receptor, the 3.6 nm complex or the 1.9 nm complex. Binding of the antibodies was not seen to the androgen, estrogen or progestin receptors in rat to rat serum transcortin. With an indirect competitive ELISA (enzyme-linked immunosorbent assay) combined with various separation techniques, based on different physiocochemical principles, it was shown that the glucocorticoid receptor was the only detectable antibody binding protein from rat liver cytosol using this assay system. These findings also indicate an immunochemical similarity between glucocorticoid receptors in different tissues as well as in different species, but not between glucocorticoid receptors and other steroid hormone receptor proteins. The cytosolic and nuclear glucocorticoid receptors in rat liver were shown to be immunochemically similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号