共查询到20条相似文献,搜索用时 15 毫秒
1.
Aldehyde dehydrogenases (ALDHs) are members of NAD(P)(+)-dependent protein superfamily that catalyze the oxidation of a wide range of endogenous and exogenous highly reactive aliphatic and aromatic aldehyde molecules to their corresponding non toxic carboxylic acids. Research evidence has shown that ALDHs represent a promising class of genes to improve growth development, seed storage and environmental stress adaptation in higher plants. The recently completed genome sequences of several plant species have resulted in the identification of a large number of ALDH genes, most of which still need to be functionally characterized. In this paper, we identify members of the ALDH gene superfamily in soybean genome, and provide a unified nomenclature for the entire soybean ALDH gene families. The soybean genome contains 18 unique ALDH sequences encoding members of five ALDH families involved in a wide range of metabolic and molecular detoxification pathways. In addition, we describe the biochemical requirements and cellular metabolic pathways of selected members of ALDHs in soybean responses to environmental stress conditions. 相似文献
2.
3.
Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics 总被引:1,自引:0,他引:1
Chad Brocker Melpomene Vasiliou Sarah Carpenter Christopher Carpenter Yucheng Zhang Xiping Wang Simeon O. Kotchoni Andrew J. Wood Hans-Hubert Kirch David Kopečný Daniel W. Nebert Vasilis Vasiliou 《Planta》2013,237(1):189-210
In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD+- or NADP+-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as ‘aldehyde scavengers’ by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried out genome-wide identification of ALDH genes in a number of plant species—including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies. 相似文献
4.
This report describes the isolation of a heretofore uncharacterized aldehyde dehydrogenase (ALDH) with retinal dehydrogenase activity from rat kidney and the cloning and expression of a cDNA that encodes its human ortholog, the previously unknown ALDH12. The human ALDH12 cDNA predicts a 487-residue protein with the 23 invariant amino acids, four conserved regions, cofactor binding motif (G(209)XGX(3)G), and active site cysteine residue (Cys(287)) that typify members of the ALDH superfamily. ALDH12 seems at least as efficient (V(m)/K(m)) in converting 9-cis-retinal into the retinoid X receptor ligand 9-cis-retinoic acid as two previously identified ALDHs with 9-cis-retinal dehydrogenase activity, rat retinal dehydrogenase (RALDH) 1 and RALDH2. ALDH12, however, has approximately 40-fold higher activity with 9-cis- retinal than with all-trans-retinal, whereas RALDH1 and RALDH2 have equivalent and approximately 4-fold less efficiencies for 9-cis-retinal versus all-trans-retinal, respectively. Therefore, ALDH12 is the first known ALDH to show a preference for 9-cis-retinal relative to all-trans-retinal. Evidence consistent with the possibility that ALDH12 could function in a pathway of 9-cis-retinoic acid biosynthesis in vivo includes biosynthesis of 9-cis-retinoic acid from 9-cis-retinol in cells co-transfected with cDNAs encoding ALDH12 and the 9-cis-retinol/androgen dehydrogenase, cis-retinoid/androgen dehydrogenase type 1. Intense ALDH12 mRNA expression in adult and fetal liver and kidney, two organs that reportedly have relatively high concentrations of 9-cis-retinol, reinforces this notion. 相似文献
5.
6.
The gene frequencies of ADH22and ALDH22were lower in Tibetan and Mongolian populations than in Vietnamese, Han Chinese, and three Chinese minority populations. 相似文献
7.
The mechanism of acetaldehyde detoxification in Drosophila melanogaster adults has been studied by comparing physiological in vitro and in vivo data. ADH+ and ADH− flies, both lacking aldehyde dehydrogenase activity from ADH (ALDHADH, ALDH (ALDH) or both enzymes were exposed to acetaldehyde or ethanol, and the toxicity and internal accumulation of both compounds were determined. Acetaldehyde was extremely lethal for flies whose ALDH activity had been inhibited by cyanamide, though acetaldehyde was effectively detoxified by flies whose ALDHADH activity had been inhibited by acetone. After exposure to acetaldehyde, both acetaldehyde and ethanol rapidly accumulated in flies lacking ALDH activity, but not in flies lacking ALDHADH activity. However, ethanol but not acetaldehyde quickly accumulated in flies lacking ALDH activity after exposure to ethanol. Our results provide in vivo evidence that, as opposed to larvae, in D. melanogaster adults acetaldehyde is mainly oxidized into acetate by means of ALDH enzymes. However, the reducing activity of the ADH enzyme, which transforms acetaldehyde into ethanol, also plays an essential role in the detoxification of acetaldehyde. Differences in ALDH activity might be important to explain the differences in ethanol tolerance found in natural populations. 相似文献
8.
Horwitz J Ding L Vasiliou V Cantore M Piatigorsky J 《Biochemical and biophysical research communications》2006,348(4):1302-1309
Scallop eye lens Omega-crystallin is an inactive aldehyde dehydrogenase (ALDH1A9) related to cytoplasmic ALDH1A1 and mitochondrial ALDH2 that migrates by gel filtration chromatography as a homodimer. Because mammalian ALDH1A1 and ALDH2 are homotetramers, we investigated the native molecular mass of scallop Omega-crystallin by multi-angle laser light scattering. The results indicate that the scallop Omega-crystallin is a tetrameric, not a dimeric protein. Moreover, phylogenetic tree analysis shows that scallop Omega-crystallin clusters with the mitochondrial ALDH2 and ALDH1B1 rather than the cytoplasmic ALDH1A, yet it lacks the mitochondrial N-terminal leader sequence characteristic of the mitochondrial ALDHs. The mitochondrial grouping, enzymatic inactivity, and anomalous gel filtration behavior make scallop cytoplasmic Omega-crystallin an interesting protein for structural studies of evolutionary adaptations to become an enzyme-crystallin. 相似文献
9.
Peng Wang Zhunian Wang Yongchao Dou Xiaoxiao Zhang Maoyuan Wang Xinmin Tian 《Planta》2013,238(5):907-922
Membrane bound O-acyl transferase (MBOAT) family is composed of gene members encoding a variety of acyltransferase enzymes, which play important roles in plant acyl lipid metabolism. Here, we present the first genome-enabled identification and analysis of MBOAT gene models in plants. In total, we identified 136 plant MBOAT sequences from 14 plant species with complete genomes. Phylogenetic relationship analyses suggested the plant MBOAT gene models fell into four major groups, two of which likely encode enzymes of diacylglycerol acyltransferase 1 (DGAT1) and lysophospholipid acyltransferase (LPLAT), respectively, with one–three copies of paralogs present in each of the most plant species. A group of gene sequences, which are homologous to Saccharomyces cerevisiae glycerol uptake proteins (GUP), was identified in plants; copy numbers were conserved, with only one copy represented in each of the most plant species; analyses showed that residues essential for acyltransferases were more prone to be conserved than vertebrate orthologs. Among four groups, one was inferred to emerge in land plants and experience a rapid expansion in genomes of angiosperms, which suggested their important roles in adaptation of plants in lands. Sequence and phylogeny analyses indicated that genes in all four groups encode enzymes with acyltransferases. Comprehensive sequence identification of MBOAT family members and investigation into classification provide a complete picture of the MBOAT gene family in plants, and could shed light into enzymatic functions of different MBOAT genes in plants. 相似文献
10.
Most mammalian species express high concentrations of ALDH3A1 in corneal epithelium with the exception of the rabbit, which expresses high amounts of ALDH1A1 rather than ALDH3A1. Several hypotheses that involve catalytic and/or structural functions have been postulated regarding the role of these corneal ALDHs. The aim of the present study was to characterize the biochemical properties of the rabbit ALDH1A1. We have cloned and sequenced the rabbit ALDH1A1 cDNA, which is 2,073 bp in length (excluding the poly(A+) tail), and has 5' and 3' nontranslated regions of 46 and 536 bp, respectively. This ALDH1A1 cDNA encodes a protein of 496 amino acids (Mr = 54,340) that is: 86-91% identical to mammalian ALDH1A1 proteins, 83-85% identical to phenobarbital-inducible mouse and rat ALDH1A7 proteins, 84% identical to elephant shrew ALDH1A8 proteins (eta-crystallins), 69-73% identical to vertebrate ALDH1A2 and ALDH1A3 proteins, 65% identical to scallop ALDH1A9 protein (omega-crystallin), and 55-57% to cephalopod ALDH1C1 and ALDH1C2 (omega-crystallins). Recombinant rabbit ALDH1A1 protein was expressed using the baculovirus system and purified to homogeneity with affinity chromatography. We found that rabbit ALDH1A1 is catalytically active and efficiently oxidizes hexanal (Km = 3.5 microM), 4-hydroxynonenal (Km = 2.1 microM) and malondialdehyde (Km = 14.0 microM), which are among the major products of lipid peroxidation. Similar kinetic constants were observed with the human recombinant ALDH1A1 protein, which was expressed and purified using similar experimental conditions. These data suggest that ALDH1A1 may contribute to corneal cellular defense against oxidative damage by metabolizing toxic aldehydes produced during UV-induced lipid peroxidation. 相似文献
11.
12.
The fatty aldehyde dehydrogenase (Vh-ALDH) isolated from the luminescent bacterium, Vibrio harveyi, differs from other aldehyde dehydrogenases in its high affinity for NADP(+). The binding of NADP(+) appears to arise from the interaction of the 2'-phosphate of the adenosine moiety of NADP(+) with a threonine (T175) in the nucleotide recognition site just after the beta(B) strand as well as with an arginine (R210) that pi stacks over the adenosine moiety. The active site of Vh-ALDH contains the usual suspects of a cysteine (C289), two glutamates (E253 and E377) and an asparagine (N147) involved in the aldehyde dehydrogenase mechanism. However, Vh-ALDH has one polar residue in the active site that distinguishes it from other ALDHs; a histidine (H450) is in close contact with the cysteine nucleophile. As a glutamate has been implicated in promoting the nucleophilicity of the active site cysteine residue in ALDHs, the close contact of a histidine with the cysteine nucleophile in Vh-ALDH raises the possibility of alternate routes to increase the reactivity of the cysteine nucleophile. The effects of mutation of these residues on the different functions catalyzed by Vh-ALDH including acylation, (thio)esterase, reductase and dehydrogenase activities should help define the specific roles of the residues in the active site of ALDHs. 相似文献
13.
Mammalian aldehyde dehydrogenase 7A1 (ALDH7A1) is homologous to plant ALDH7B1 which protects against various forms of stress such as increased salinity, dehydration and treatment with oxidants or pesticides. Deleterious mutations in human ALDH7A1 are responsible for pyridoxine-dependent and folinic acid-responsive seizures. In previous studies, we have shown that human ALDH7A1 protects against hyperosmotic stress presumably through the generation of betaine, an important cellular osmolyte, formed from betaine aldehyde. Hyperosmotic stress is coupled to an increase in oxidative stress and lipid peroxidation (LPO). In this study, cell viability assays revealed that stable expression of mitochondrial ALDH7A1 in Chinese hamster ovary (CHO) cells provides significant protection against treatment with the LPO-derived aldehydes hexanal and 4-hydroxy-2-nonenal (4HNE) implicating a protective function for the enzyme during oxidative stress. A significant increase in cell survival was also observed in CHO cells expressing either mitochondrial or cytosolic ALDH7A1 treated with increasing concentrations of hydrogen peroxide (H(2)O(2)) or 4HNE, providing further evidence for anti-oxidant activity. In vitro enzyme activity assays indicate that human ALDH7A1 is sensitive to oxidation and that efficiency can be at least partially restored by incubating recombinant protein with the thiol reducing agent β-mercaptoethanol (BME). We also show that after reactivation with BME, recombinant ALDH7A1 is capable of metabolizing the reactive aldehyde 4HNE. In conclusion, ALDH7A1 mechanistically appears to provide cells protection through multiple pathways including the removal of toxic LPO-derived aldehydes in addition to osmolyte generation. 相似文献
14.
S. -J. Yin T. -C. Cheng C. -P. Chang Y. -J. Chen Y. -C. Chao H. -S. Tang T. -M. Chang C. -W. Wu 《Biochemical genetics》1988,26(5-6):343-360
Isozyme phenotypes of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) from human gastroendoscopic as well as surgical gastric biopsies were determined by starch gel electrophoresis and agarose isoelectric focusing. γγ ADH isozymes were expressed predominantly in the mucosal layer of the stomach, whereas ββ isozymes were in the muscular layer. In the 56 gastroendoscopic mucosal biopsies examined, the homozygous ADH3 1-1 phenotype was found in 75% of the samples, and the heterozygous ADH3 2-1 phenotype in 25%. Accordingly, the gene frequencies of the allelesADH 3 1 andADH 3 2 were calculated to be 0.88 and 0.12, respectively. Using a modified agarose isoelectric focusing procedure, gastric ALDH I, ALDH II, and up to five ALDH III forms could be clearly resolved. The ALDH III isozymes accounted for more than 80% of the total ALDH activities in gastric mucosa and exhibitedK m values in the millimolar range for propionaldehyde atpH 9.0. Forty-five percent of the 55 gastroendoscopic biopsies studied lacked ALDH I isozyme. The complex gastric ALDH III isozyme phenotypes seen in these biopsies fall into three patterns. They can be interpreted by a genetic hypothesis, based on a dimeric molecule, in which there are two separate genes,ALDH 3a andALDH 3b, with theALDH 3b locus exhibiting polymorphism. The homozygous phenotypes ALDH3b 1-1 and ALDH3b 2-2 were found to be 4 and 76%, respectively, and the heterozygous ALDH3b 2-1 phenotype 20%, of the total. Therefore, the allele frequencies forALDH 3b 1 andALDH 3b 2 were calculated to be 0.14 and 0.86, respectively. Several lines of biochemical evidence consistent with this genetic model are discussed. This work was supported by grants from the National Science Council, Republic of China, and the Institute of Biomedical Sciences, Academia Sinica. 相似文献
15.
Aldehyde dehydrogenases (ALDHs) catalyze the transfer to NAD(P) of a hydride ion from a thiohemiacetal derivative of the aldehyde coupled with a cysteine residue in the active site. In Vibrio harveyi aldehyde dehydrogenase (Vh-ALDH), a histidine residue (H450) is in proximity (3.8 A) to the cysteine nucleophile (C289) and is thus capable of increasing its reactivity in sharp contrast to other ALDHs in which more distantly located glutamic acid residues are proposed to act as the general base. Mutation of H450 in Vh-ALDH to Gln and Asn resulted in loss of dehydrogenase, (thio)esterase, and acyl-CoA reductase activities; the residual activity of H450Q was higher than that of the H450N mutant in agreement with the capability of Gln but not Asn to partially replace the epsilon-imino group of H450. Coupled with a change in the rate-limiting step, these results indicate that H450 increases the reactivity of C289. Moreover, for the first time, the acylated enzyme intermediate could be directly monitored after reaction with [(3)H]tetradecanoyl-CoA showing that the H450Q mutant was acylated more rapidly than the H450N mutant. Inactivation of the wild-type enzyme with N-ethylmaleimide was much more rapid than the H450Q mutant which in turn was faster than the H450N mutant, demonstrating directly that the nucleophilicity of C289 was affected by H450. As the glutamic acid residue implicated as the general base in promoting cysteine nucleophilicity in other ALDHs is conserved in Vh-ALDH, elucidation of why a histidine residue has evolved to assist in this function in Vh-ALDH will be important to understand the mechanism of ALDHs in general, as well as help delineate the specific roles of the active site glutamic acid residues. 相似文献
16.
Recent studies have suggested that mitochondrial aldehyde dehydrogenase (aldehyde:NAD(P)(+) oxidoreductase, EC 1.2.1.3) (ALDH2) plays essential roles in pollen development in plants. Rice (Oryza sativa L.) ALDH2 is encoded by at least two ALDH2 genes, one of which (ALDH2a) was previously identified. In this study, to understand the roles of ALDH2 in rice, we isolated and characterized a cDNA clone encoding another rice ALDH2 (ALDH2b). An in vitro ALDH assay indicated that ALDH2b possesses an NAD(+)-linked activity for oxidation of acetaldehyde, glycolaldehyde and propionaldehyde. Northern blot and immunoblot analyses revealed that ALDH2b was constitutively present in all the organs examined, whereas ALDH2a was expressed in leaves of dark-grown seedlings and panicles. By RFLP linkage mapping, the ALDH2a and ALDH2b genes were mapped to the long arm of chromosome 2 and the short arm of chromosome 6, respectively. We suggest that the rice ALDH2a and ALDH2b genes are orthologues of maize mitochondrial ALDH genes, rf2b and rf2a, respectively. 相似文献
17.
Diverse polymorphism within a short coding region of the human aldehyde dehydrogenase-5 (ALDH5) gene
David Sherman Vibha Davé Lily C. Hsu Timothy J. Peters Akira Yoshida 《Human genetics》1993,92(5):477-480
Human aldehyde dehydrogenase-5 gene (originally named as ALDHX) is expressed in liver and testis. The ALDH5 does not contain introns in the coding sequence for 517 amino acid residues. Within a short nucleotide region of the gene, the following three nucleotide changes were found in high frequencies, i.e., a silent CT at nucleotide (nt) 183, CT at nt 257 associated with a ValAla substitution, and TG at nt 320 associated with a ArgLeu substitution. The frequency of C at nt 183 is 81% in Caucasians and 65% in Japanese, and the difference is statistically not significant. The frequency of C at nt 257 is 76% in Caucasians and 55% in Japanese, and the difference is statistically significant (P = 0.02). The frequency of T at nt 320 is 71% in Caucasians, while it is only 27% in Japanese. The racial difference at nt 320 is highly significant (P < 0.001). No significant difference was found in the genotypes of the three nucleotide positions between alcoholic and nonalcoholic Caucasians within the limited numbers of subjects examined. 相似文献
18.
Regulation of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldDH) in Aspergillus nidulans 总被引:12,自引:0,他引:12
J A Pateman C H Doy J E Olsen U Norris E H Creaser M Hynes 《Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain)》1983,217(1208):243-264
19.
20.
Genome-wide identification of the expansin gene family in tobacco (Nicotiana tabacum) 总被引:1,自引:0,他引:1
Anming Ding Prince Marowa Yingzhen Kong 《Molecular genetics and genomics : MGG》2016,291(5):1891-1907