首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term potentiation (LTP) is a cellular model for learning and memory and believed to be critical for plastic changes in the brain. Depending on the central nervous system region, LTP has been proposed to contribute to many key physiological functions and pathological conditions, such as learning/memory, chronic pain, and drug addiction. While the induction of LTP in general requires activation of postsynaptic glutamate receptors, the expression of LTP can be mediated by postsynaptic mechanisms and/or presynaptic enhancement of glutamate release. In this review, we will evaluate recent progress made in the mechanisms of LTP in the anterior cingulate cortex (ACC) and explore its functional significance in synaptic changes after peripheral injury. Recent findings suggest that while ACC LTP in brain slice preparations is postsynaptically induced and expressed, injury triggered synaptic potentiation in the ACC contains both presynaptic enhancement of glutamate release and postsynaptic potentiation of AMPA receptor-mediated responses. Understanding presynaptic and postsynaptic mechanisms for ACC potentiation may help us to treat chronic pain in near future.  相似文献   

2.
AMPA受体(α-amino-3-hydroxy-5-methyl-4-isoxa-zolep-propionate receptor,AMPAR)介导中枢神经系统快速兴奋性突触传递,其在突触后膜的动态表达与长时程增强、长时程抑制的诱发和维持有关,参与调节学习记忆活动。AMPAR在β-淀粉样蛋白作用下的过度胞吞和裂解致其在突触后膜缺失,可致突触损伤和功能障碍,与阿尔茨海默病早期认知障碍密切相关。AMPAR还参与谷氨酸介导的兴奋性损伤,Ca2+通透性AMPAR亚型的过度激活能导致阿尔茨海默病神经元的功能障碍甚至死亡。此外,AMPAR还参与tau蛋白的异常磷酸化,与神经原纤维缠结的形成有关。因而突触后膜AMPA受体数目和功能异常可能是导致阿尔兹海默病发生的重要环节。  相似文献   

3.
Activation of several subtypes of glutamate receptors contributes to changes in postsynaptic calcium concentration at hippocampal synapses, resulting in various types of changes in synaptic strength. Thus, while activation of NMDA receptors has been shown to be critical for long-term potentiation (LTP) and long term depression (LTD) of synaptic transmission, activation of metabotropic glutamate receptors (mGluRs) has been linked to either LTP or LTD. While it is generally admitted that dynamic changes in postsynaptic calcium concentration represent the critical elements to determine the direction and amplitude of the changes in synaptic strength, it has been difficult to quantitatively estimate the relative contribution of the different types of glutamate receptors to these changes under different experimental conditions. Here we present a detailed model of a postsynaptic glutamatergic synapse that incorporates ionotropic and mGluR type I receptors, and we use this model to determine the role of the different receptors to the dynamics of postsynaptic calcium with different patterns of presynaptic activation. Our modeling framework includes glutamate vesicular release and diffusion in the cleft and a glutamate transporter that modulates extracellular glutamate concentration. Our results indicate that the contribution of mGluRs to changes in postsynaptic calcium concentration is minimal under basal stimulation conditions and becomes apparent only at high frequency of stimulation. Furthermore, the location of mGluRs in the postsynaptic membrane is also a critical factor, as activation of distant receptors contributes significantly less to calcium dynamics than more centrally located ones. These results confirm the important role of glutamate transporters and of the localization of mGluRs in postsynaptic sites in their signaling properties, and further strengthen the notion that mGluR activation significantly contributes to postsynaptic calcium dynamics only following high-frequency stimulation. They also provide a new tool to analyze the interactions between metabotropic and ionotropic glutamate receptors.  相似文献   

4.
In the brain, most fast excitatory synaptic transmission is mediated through L-glutamate acting on postsynaptic ionotropic glutamate receptors. These receptors are of two kinds—the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate (non-NMDA) and theN-methyl-D-aspartate (NMDA) receptors, which are thought to be colocalized onto the same postsynaptic elements. This excitatory transmission can be modulated both upward and downward, long-term potentiation (LTP) and long-term depression (LTD), respectively. Whether the expression of LTP/LTD is pre-or postsynaptically located (or both) remains an enigma. This article will focus on what postsynaptic modifications of the ionotropic glutamate receptors may possibly underly long-term potentiation/depression. It will discuss the character of LTP/LTD with respect to the temporal characteristics and to the type of changes that appears in the non-NMDA and NMDA receptor-mediated synaptic currents, and what constraints these findings put on the possible expression mechanism(s) for LTP/LTD. It will be submitted that if a modification of the glutamate receptors does underly LTP/LTD, an increase/decrease in the number of functional receptors is the most plausible alternative. This change in receptor number will have to include a coordinated change of both the non-NMDA and the NMDA receptors.  相似文献   

5.
Learning‐correlated plasticity at CA1 hippocampal excitatory synapses is dependent on neuronal activity and NMDA receptor (NMDAR) activation. However, the molecular mechanisms that transduce plasticity stimuli to postsynaptic potentiation are poorly understood. Here, we report that neurogranin (Ng), a neuron‐specific and postsynaptic protein, enhances postsynaptic sensitivity and increases synaptic strength in an activity‐ and NMDAR‐dependent manner. In addition, Ng‐mediated potentiation of synaptic transmission mimics and occludes long‐term potentiation (LTP). Expression of Ng mutants that lack the ability to bind to, or dissociate from, calmodulin (CaM) fails to potentiate synaptic transmission, strongly suggesting that regulated Ng–CaM binding is necessary for Ng‐mediated potentiation. Moreover, knocking‐down Ng blocked LTP induction. Thus, Ng–CaM interaction can provide a mechanistic link between induction and expression of postsynaptic potentiation.  相似文献   

6.
Maren S 《Neuron》2005,47(6):783-786
Do associative learning and synaptic long-term potentiation (LTP) depend on the same cellular mechanisms? Recent work in the amygdala reveals that LTP and Pavlovian fear conditioning induce similar changes in postsynaptic AMPA-type glutamate receptors and that occluding these changes by viral-mediated overexpression of a dominant-negative GluR1 construct attenuates both LTP and fear memory in rats. Novel forms of presynaptic plasticity in the lateral nucleus may also contribute to fear memory formation, bolstering the connection between synaptic plasticity mechanisms and associative learning and memory.  相似文献   

7.
Long-term potentiation (LTP) of excitatory synaptic transmission in the hippocampus has been investigated in great detail over the past 40 years. Where and how LTP is actually expressed, however, remain controversial issues. Considerable evidence has been offered to support both pre- and postsynaptic contributions to LTP expression. Though it is widely held that postsynaptic expression mechanisms are the primary contributors to LTP expression, evidence for that conclusion is amenable to alternative explanations. Here, we briefly review some key contributions to the ‘locus’ debate and describe data that support a dominant role for presynaptic mechanisms. Recognition of the state-dependency of expression mechanisms, and consideration of the consequences of the spatial relationship between postsynaptic glutamate receptors and presynaptic vesicular release sites, lead to a model that may reconcile views from both sides of the synapse.  相似文献   

8.
J A Kauer  R C Malenka  R A Nicoll 《Neuron》1988,1(10):911-917
Long-term potentiation (LTP) is a long-lasting enhancement of synaptic transmission that can be induced by brief repetitive stimulation of excitatory pathways in the hippocampus. One of the most controversial points is whether the process underlying the enhanced synaptic transmission occurs pre- or postsynaptically. To examine this question, we have taken advantage of the novel physiological properties of excitatory synaptic transmission in the CA1 region of the hippocampus. Synaptically released glutamate activates both NMDA and non-NMDA receptors on pyramidal cells, resulting in an excitatory postsynaptic potential (EPSP) with two distinct components. A selective increase in the non-NMDA component of the EPSP was observed with LTP. This result suggests that the enhancement of synaptic transmission during LTP is caused by an increased sensitivity of the postsynaptic neuron to synaptically released glutamate.  相似文献   

9.
Shen Y  Linden DJ 《Neuron》2005,46(5):715-722
Persistent, use-dependent modulation of synaptic strength has been demonstrated for fast synaptic transmission mediated by glutamate and has been hypothesized to underlie persistent behavioral changes ranging from memory to addiction. Glutamate released at synapses is sequestered by the action of excitatory amino acid transporters (EAATs) in glia and postsynaptic neurons. So, the efficacy of glutamate transporter function is crucial for regulating glutamate spillover to adjacent presynaptic and postsynaptic receptors and the consequent induction of plastic or excitotoxic processes. Here, we report that tetanic stimulation of cerebellar climbing fiber-Purkinje cell synapses results in long-term potentiation (LTP) of a climbing fiber-evoked glutamate transporter current recorded in Purkinje cells. This LTP is postsynaptically expressed and requires activation of an mGluR1/PKC cascade. Together with a simultaneously induced long-term depression (LTD) of postsynaptic AMPA receptors, this might reflect an integrated antiexcitotoxic cellular response to strong climbing fiber synaptic activation, as occurs following an ischemic episode.  相似文献   

10.
This review summarizes the various experiments that have been carried out to determine if the expression of long-term potentiation (LTP), in particular N-methyl-D-aspartate (NMDA) receptor-dependent LTP, is presynaptic or postsynaptic. Evidence for a presynaptic expression mechanism comes primarily from experiments reporting that glutamate overflow is increased during LTP and from experiments showing that the failure rate decreases during LTP. However, other experimental approaches, such as monitoring synaptic glutamate release by recording astrocytic glutamate transporter currents, have failed to detect any change in glutamate release during LTP. In addition, the discovery of silent synapses, in which LTP rapidly switches on alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor function at NMDA-receptor-only synapses, provides a postsynaptic mechanism for the decrease in failures during LTP. It is argued that the preponderance of evidence favours a postsynaptic expression mechanism, whereby NMDA receptor activation results in the rapid recruitment of AMPA receptors as well as a covalent modification of synaptic AMPA receptors.  相似文献   

11.
Ca2+ influx via GluR2-lacking Ca2+-permeable AMPA glutamate receptors (CP-AMPARs) can trigger changes in synaptic efficacy in both interneurons and principle neurons, but the underlying mechanisms remain unknown. We took advantage of genetically altered mice with no or reduced GluR2, thus allowing the expression of synaptic CP-AMPARs, to investigate the molecular signaling process during CP-AMPAR-induced synaptic plasticity at CA1 synapses in the hippocampus. Utilizing electrophysiological techniques, we demonstrated that these receptors were capable of inducing numerous forms of long-term potentiation (referred to as CP-AMPAR dependent LTP) through a number of different induction protocols, including high-frequency stimulation (HFS) and theta-burst stimulation (TBS). This included a previously undemonstrated form of protein-synthesis dependent late-LTP (L-LTP) at CA1 synapses that is NMDA-receptor independent. This form of plasticity was completely blocked by the selective CP-AMPAR inhibitor IEM-1460, and found to be dependent on postsynaptic Ca2+ ions through calcium chelator (BAPTA) studies. Surprisingly, Ca/CaM-dependent kinase II (CaMKII), the key protein kinase that is indispensable for NMDA-receptor dependent LTP at CA1 synapses appeared to be not required for the induction of CP-AMPAR dependent LTP due to the lack of effect of two separate pharmacological inhibitors (KN-62 and staurosporine) on this form of potentiation. Both KN-62 and staurosporine strongly inhibited NMDA-receptor dependent LTP in control studies. In contrast, inhibitors for PI3-kinase (LY294002 and wortmannin) or the MAPK cascade (PD98059 and U0126) significantly attenuated this CP-AMPAR-dependent LTP. Similarly, postsynaptic infusion of tetanus toxin (TeTx) light chain, an inhibitor of exocytosis, also had a significant inhibitory effect on this form of LTP. These results suggest that distinct synaptic signaling underlies GluR2-lacking CP-AMPAR-dependent LTP, and reinforces the recent notions that CP-AMPARs are important facilitators of synaptic plasticity in the brain.  相似文献   

12.
Working on the idea that postsynaptic and presynaptic mechanisms of long-term potentiation (LTP) expression are not inherently mutually exclusive, we have looked for the existence and functionality of presynaptic mechanisms for augmenting transmitter release in hippocampal slices. Specifically, we asked if changes in glutamate release might contribute to the conversion of 'silent synapses' that show N-methyl-D-aspartate (NMDA) responses but no detectable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) responses, to ones that exhibit both. Here, we review experiments where NMDA receptor responses provided a bioassay of cleft glutamate concentration, using opposition between peak [glu](cleft )and a rapidly reversible antagonist, L-AP5. We discuss findings of a dramatic increase in peak [glu](cleft) upon expression of pairing-induced LTP (Choi). We present simulations with a quantitative model of glutamatergic synaptic transmission that includes modulation of the presynaptic fusion pore, realistic cleft geometry and a distributed array of postsynaptic receptors and glutamate transporters. The modelling supports the idea that changes in the dynamics of glutamate release can contribute to synaptic unsilencing. We review direct evidence from Renger et al., in accord with the modelling, that trading off the strength and duration of the glutamate transient can markedly alter AMPA receptor responses with little effect on NMDA receptor responses. An array of additional findings relevant to fusion pore modulation and its proposed contribution to LTP expression are considered.  相似文献   

13.
谷氨酸受体可逆磷酸化及其功能   总被引:2,自引:0,他引:2  
谷氨酸受体(GluRs)C端区存在被多种蛋白激酶磷酸化的位点,同时又能被多种蛋白磷酸酶去磷酸化,磷酸化的结果可使Ca2+内流增加,增强GluRs功能;去磷酸化作用则相反.正常情况下GluRs可逆磷酸化处于一种动态平衡状态,在突触可塑性机制如长时程增强(LTP)中起重要作用,而在病理状态如缺血性脑损伤中,这种平衡失衡加重兴奋性神经元损伤.  相似文献   

14.
Huang CS  Shi SH  Ule J  Ruggiu M  Barker LA  Darnell RB  Jan YN  Jan LY 《Cell》2005,123(1):105-118
Synaptic plasticity, the cellular correlate for learning and memory, involves signaling cascades in the dendritic spine. Extensive studies have shown that long-term potentiation (LTP) of the excitatory postsynaptic current (EPSC) through glutamate receptors is induced by activation of N-methyl-D-asparate receptor (NMDA-R)--the coincidence detector--and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Here we report that the same signaling pathway in the postsynaptic CA1 pyramidal neuron also causes LTP of the slow inhibitory postsynaptic current (sIPSC) mediated by metabotropic GABA(B) receptors (GABA(B)-Rs) and G protein-activated inwardly rectifying K(+) (GIRK) channels, both residing in dendritic spines as well as shafts. Indicative of intriguing differences in the regulatory mechanisms for excitatory and inhibitory synaptic plasticity, LTP of sIPSC but not EPSC was abolished in mice lacking Nova-2, a neuronal-specific RNA binding protein that is an autoimmune target in paraneoplastic opsoclonus myoclonus ataxia (POMA) patients with latent cancer, reduced inhibitory control of movements, and dementia.  相似文献   

15.
Tsvetkov E  Shin RM  Bolshakov VY 《Neuron》2004,41(1):139-151
Long-term synaptic modifications in afferent inputs to the amygdala underlie fear conditioning in animals. Fear conditioning to a single sensory modality does not generalize to other cues, implying that synaptic modifications in fear conditioning pathways are input specific. The mechanisms of pathway specificity of long-term potentiation (LTP) are poorly understood. Here we show that inhibition of glutamate transporters leads to the loss of input specificity of LTP in the amygdala slices, as assessed by monitoring synaptic responses at two independent inputs converging on a single postsynaptic neuron. Diffusion of glutamate ("spillover") from stimulated synapses, paired with postsynaptic depolarization, is sufficient to induce LTP in the heterosynaptic pathway, whereas an enzymatic glutamate scavenger abolishes this effect. These results establish active glutamate uptake as a crucial mechanism maintaining the pathway specificity of LTP in the neural circuitry of fear conditioning.  相似文献   

16.
At several cortical synapses glutamate release events can be mediated exclusively by NMDA receptors, with no detectable contribution from AMPA receptors. This observation was originally made by comparing the trial-to-trial variability of the two components of synaptic signals evoked in hippocampal neurons, and was subsequently confirmed by recording apparently pure NMDA receptor-mediated EPSCs with stimulation of small numbers of axons. It has come to be known as the 'silent synapse' phenomenon, and is widely assumed to be caused by the absence of functional AMPA receptors, which can, however, be recruited into the postsynaptic density by long-term potentiation (LTP) induction. Thus, it provides an important impetus for relating AMPA receptor trafficking mechanisms to the expression of LTP, a theme that is taken up elsewhere in this issue. This article draws attention to several findings that call for caution in identifying silent synapses exclusively with synapses without AMPA receptors. In addition, it attempts to identify several missing pieces of evidence that are required to show that unsilencing of such synapses is entirely accounted for by insertion of AMPA receptors into the postsynaptic density. Some aspects of the early stages of LTP expression remain open to alternative explanations.  相似文献   

17.
Synaptic strength is modified by the temporal coincidence of synaptic inputs without back-propagating action potentials (BPAPs) in CA1 pyramidal neurons. In order to clarify the interactive mechanisms of associative long-term potentiation (LTP) without BPAPs, local paired stimuli were applied to the dendrites using high-speed laser uncaging stimulation equipment. When the spatial distance between the paired stimuli was <10 micrometer, nonlinear amplification in excitatory postsynaptic potential summation was observed. In the time window from −20 to 20 ms, supralinear amplification was observed. Supralinear amplification was modulated by antagonist of voltage-gated Na+/Ca2+ channels and NMDA-type glutamate receptors. These results are closely related to the spatiotemporal-characteristics of associative LTP without BPAPs. This study proposes an essential aspect of dendritic information processing.  相似文献   

18.
This review focuses on the research that has occurred over the past decade which has solidified a postsynaptic expression mechanism for long-term potentiation (LTP). However, experiments that have suggested a presynaptic component are also summarized. It is argued that the pairing of glutamate uncaging onto single spines with postsynaptic depolarization provides the final and most elegant demonstration of a postsynaptic expression mechanism for NMDA receptor-dependent LTP. The fact that the magnitude of this LTP is similar to that evoked by pairing synaptic stimulation and depolarization leaves little room for a substantial presynaptic component. Finally, recent data also require a revision in our thinking about the way AMPA receptors (AMPARs) are recruited to the postsynaptic density during LTP. This recruitment is independent of subunit type, but does require an adequate reserve pool of extrasynaptic receptors.  相似文献   

19.
Stress dramatically affects the induction of hippocampal synaptic plasticity; however, the molecular details of how it does so remain unclear. Phosphatidylinositol 3-kinase (PI3K) signaling plays a crucial role in promoting neuronal survival and neuroplasticity, but its role, if any, in stress-induced alterations of long term potentiation (LTP) and long term depression (LTD) is unknown. We found here that inhibitors of PI3K signaling blocked the effects of acute restraint-tail shock stress protocol on LTP and LTD. Therefore, the purpose of the present study is to explore the signaling events involving PI3K in terms of its role in mediating stress protocol-induced alterations of LTP and LTD. We found that stress protocol-induced PI3K activation can be blocked by various inhibitors, including RU38486 for glucocorticoid receptors, LY294002 for PI3K, and dl-2-amino-5-phosphonopentanoic acid for N-methyl-D-aspartate receptors or brain-derived neurotrophic factor antisense oligonucleotides. Also, immunoblotting analyses revealed that stress protocol induced a profound and prolonged phosphorylation of numbers of PI3K downstream effectors, including 3-phosphoinositide-dependent protein kinase-1, protein kinase B, mammalian target of rapamycin (mTOR), p70 S6 kinase, and eukaryotic initiation factor 4B in hippocampal CA1 homogenate, which was prevented by the PI3K inhibitor pretreatment. More importantly, we found that stress protocol significantly increased the protein expression of dendritic scaffolding protein PSD-95 (postsynaptic density-95), which is known to be involved in LTP and LTD, in an mTOR-dependent manner. These results identify a key role of PI3K signaling in mediating the stress protocol-induced modification of hippocampal synaptic plasticity and further suggest that PI3K may do so by invoking the protein expression of PSD-95.  相似文献   

20.
Long-term potentiation (LTP) of synaptic transmission represents the cellular basis of learning and memory. Astrocytes have been shown to regulate synaptic transmission and plasticity. However, their involvement in specific physiological processes that induce LTP in vivo remains unknown. Here we show that in vivo cholinergic activity evoked by sensory stimulation or electrical stimulation of the septal nucleus increases Ca2+ in hippocampal astrocytes and induces LTP of CA3-CA1 synapses, which requires cholinergic muscarinic (mAChR) and metabotropic glutamate receptor (mGluR) activation. Stimulation of cholinergic pathways in hippocampal slices evokes astrocyte Ca2+ elevations, postsynaptic depolarizations of CA1 pyramidal neurons, and LTP of transmitter release at single CA3-CA1 synapses. Like in vivo, these effects are mediated by mAChRs, and this cholinergic-induced LTP (c-LTP) also involves mGluR activation. Astrocyte Ca2+ elevations and LTP are absent in IP3R2 knock-out mice. Downregulating astrocyte Ca2+ signal by loading astrocytes with BAPTA or GDPβS also prevents LTP, which is restored by simultaneous astrocyte Ca2+ uncaging and postsynaptic depolarization. Therefore, cholinergic-induced LTP requires astrocyte Ca2+ elevations, which stimulate astrocyte glutamate release that activates mGluRs. The cholinergic-induced LTP results from the temporal coincidence of the postsynaptic activity and the astrocyte Ca2+ signal simultaneously evoked by cholinergic activity. Therefore, the astrocyte Ca2+ signal is necessary for cholinergic-induced synaptic plasticity, indicating that astrocytes are directly involved in brain storage information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号