首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Litter decomposition in running water sometimes proceeds faster in small, cool tributaries than in warm, wide rivers because stenothermal, leaf-shredding invertebrates are more abundant in the cool streams. Evidence from eastern Canada suggests that the cold-stenothermal stonefly Leuctra has a disproportionate influence on rapid mass loss in upstream reaches of soft-water river systems, but is not replaced by an effective, warm-water shredder downstream. To test the generality of this observation, we compared litter decomposition rates in upstream (second or third order) and downstream (fourth or fifth order) reaches of a medium-size river system in Nova Scotia (Canada) and three river systems in Nordland (Norway). In all river systems, mass loss of nitrogen-rich speckled alder (Alnus incana) leaves and nitrogen-poor red maple (Acer rubrum) leaves proceeded faster at the upstream site only if water temperature there was significantly cooler than downstream. Decomposition rates in all systems were strongly correlated with abundance of Leuctra, and to a lesser extent the caddisfly Lepidostoma. The distribution of Leuctra seems to be driven primarily by water temperature, with a strong peak of abundance at 14°C, but may also be influenced by competition from other shredding species.  相似文献   

2.
The damming of rivers and streams alters downstream habitat characteristics and biotic assemblages, and might thus alter stream functioning, although there is not much direct evidence of this impact. In this study we compared breakdown of alder leaves upstream and downstream from 4 small (<1 hm3) dams in 4 Mediterranean mountain streams with no appreciable impact on water temperature and nutrient concentrations. Despite no effect on water characteristics, dams decreased leaf litter breakdown rates. Abundance and biomass of invertebrates and shredders and hyphomycete sporulation rates did not differ between upstream and downstream bags. However, the structure of invertebrate and hyphomycete assemblages did. Especially evident was a drop in limnephilids, which might explain the slower breakdown of leaf litter below dams. These results may help to explain some of the variability found in the literature on the effects of dams on decomposition rates. If dams increase water temperature and nutrient concentrations they may promote faster decomposition, but if dams do not change water characteristics, their impact on detritivore communities may cause slower decomposition rates.  相似文献   

3.
We hypothesized that (i) the importance of shredders for leaf breakdown is more evident in terms of their biomass than their abundance, due to the large bodies and high-feeding efficiencies of some typical shredders; (ii) non-shredder invertebrates select more refractory leaves because these are a more stable substrate for colonization or to obtain other forms of food. To test these hypotheses, we performed a decomposition experiment with leaves of contrasting chemical composition in a tropical stream, and determined the changes in the ash-free dry mass (AFDM) of the litter, and the invertebrate abundance and biomass during a 44-day period. The biomass of shredders showed a positive relationship with AFDM remaining, whereas their abundance was unrelated to AFDM. While shredder abundance represented only 4–12% of total invertebrate abundance, shredder biomass constituted 19–36% of total invertebrate biomass. We conclude that (i) shredder biomass expresses better than abundance the role of this guild in the decomposition of leaf detritus, demonstrating that they are important for the functioning of tropical streams; (ii) incubation time rather than stability of leaf litter as a substrate influences colonization by non-shredder invertebrates.  相似文献   

4.
5.
1. The functioning of many aquatic ecosystems is controlled by surrounding terrestrial ecosystems. In a view of growing interest in linking biodiversity to ecosystem‐level processes, we examined whether and how leaf diversity influences litter decomposition and consumers in streams. 2. We tested experimentally the hypothesis that the effects of leaf diversity on decomposition are determined by the responses of leaf consumers to resource–habitat heterogeneity. Leaves from three common riparian trees, beech (Fagus sylvatica), hazel (Corylus avellana) and ash (Fraxinus excelsior), were exposed alone and in all possible mixtures of two and three species in a stream. We analysed individual leaf species for decomposition rate, microbial respiration and mycelial biomass, and we determined the species composition, abundance and biomass of shredders in leaf bags. 3. We found that the decomposition of the fastest decomposing leaves (hazel and ash) was substantially stimulated (up to twofold higher than single species leaf packs) in mixtures containing beech leaves, which are refractory. In contrast, the decomposition of beech leaves was not affected by leaf mixing. Such species‐specific behaviour of leaves in species mixtures has been overlooked in previous studies that examined the overall decomposition of litter mixtures. 4. The effects of leaf diversity on decomposition varied with the abundance and biomass of shredders but not with microbial parameters. Beech leaves alone were less attractive to shredders than leaf packs made of hazel, ash or any mixture of species. Moreover, the presence of beech leaves in mixtures led to higher shredder abundance and biomass than we had expected from data from single species exposed alone. Lastly, we found that early instars of the caddisfly Potamophylax (the dominant shredder in terms of biomass) almost exclusively used the toughest material (i.e. beech leaves) to construct their cases. 5. Leaf pack heterogeneity may have altered shredder‐mediated decomposition. Shredders colonising diverse leaf packs benefited from the stable substratum provided by beech leaves, whereas ash and hazel leaves were primarily used as food. Thus, our findings provide strong evidence for an intimate linkage between the diversity of riparian vegetation and aquatic communities.  相似文献   

6.
To construct a budget of carbon transformations occurring during leaf decomposition, alder leaves were placed in a woodland stream, later retrieved at weekly intervals, and rates of fungal and bacterial production, microbial respiration, and release of dissolved organic matter (DOM) and fine particulate organic matter (FPOM) were determined during short laboratory incubations. Carbon dioxide was the major decomposition product, explaining 17% of the microbially mediated leaf mass loss. DOM and FPOM were also important products (5 and 3% of total mass loss, respectively), whereas carbon flow to microbial biomass was low (2%). Fungal biomass in leaves always exceeded bacterial biomass (95–99% of total microbial biomass), but production of bacteria and fungi was similar, indicating that both types of microorganisms need to be considered when examining leaf decomposition in streams. Comparison of leaf mass loss in coarse and fine mesh bags revealed, in addition, that the shredder, Gammarus pulex, had a major impact on leaf decomposition in this study.  相似文献   

7.
Climate change may affect species diversity and, consequently, ecological processes such as leaf decomposition. We evaluated the effects of increased temperature and carbon dioxide (CO2) on fungal biomass, leaf breakdown, and on survival and growth of the shredder Phylloicus elektoros. We hypothesized that climatic changes would result in lower survival and growth of shredders and lower leaf consumption by these organisms. On the other hand, we predicted an increase in fungal biomass in response to climatic changes. We conducted an experiment in Manaus, Brazil, using four microcosms that simulate real-time air temperature and CO2 (control chamber), as well as three other chambers subjected to fixed increases in temperature and CO2 as compared to the control chamber. The “extreme” condition represented an increase of ~4.5°C in temperature and ~870 ppm in CO2 in relation to the control chamber. Total and shredder leaf-breakdown rates, fungal biomass, and shredder survival rates were significantly lower in warmer and CO2 concentrated atmospheres. Shredder growth rate and leaf breakdown by microorganisms were similar among all climatic conditions. With climatic changes, we found an increase in the relative importance of microorganisms on leaf-breakdown rates as compared to shredders. Thus, lower leaf breakdown and a change in the main decomposer due to future climatic conditions may result in major changes in the pathways of organic matter processing and, consequently, in aquatic food webs.  相似文献   

8.
Climate change models for Central Europe predict hydrological drought with fragmentation into pools during periods of high litter input in numerous lowland streams, presumably affecting in‐stream leaf decay processes. To investigate this assumption, we measured physicochemical parameters, macro‐invertebrate colonization, microbial activity, and decay rates of exposed leaves during and after a supra‐seasonal drought in a German lowland stream. Microbial activity, shredder colonization and leaf decay rates during fragmentation were low, presumably caused by drought‐related environmental conditions. Microbial activity and temperature‐corrected decay rates increased after the flow resumption but not leaf mass loss and shredder colonization. During both periods, exposed leaves appeared physically unaffected suggesting strongly reduced shredder‐mediated leaf decay despite shredder presence. Our results indicate that hydrological drought can affect organisms and processes in temperate lowland streams even after flow resumption, and should be considered in climate change scenarios. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
SUMMARY 1. The effects of chlorine on litter ( Potamogeton crispus L.) processing were examined using six outdoor experimental streams. Downstream portions of two streams were dosed at c . 10 μg l−1 Total Residual Chlorine (TRC), one stream at 64 μgl1, and one stream at 230μg l−1. Two control streams were not dosed; upstream riffles of each stream served as instream controls.
2. Two 35 day litter breakdown (per cent AFDW remaining) experiments indicated significantly lower decay rates in the high dose riffle. No other concentration of chlorine significantly affected decay rate.
3. A third experiment, conducted in medium and high dose streams, indicated that high dose chlorine exposure reduced litter decomposition rates significantly, and reduced microbial colonization, microbial electron transport system activity, and microbial litter decomposition after 4 days but not after 11 days of exposure. The number of amphipod shredders colonizing litter bags was also reduced significantly with high chlorine dose.
4. A fourth experiment, after dosing was terminated, provided direct evidence that amphipod shredders were important in facilitating litter decomposition: litter bags stocked with amphipods had significantly higher decomposition rates than bags which excluded shredders.
5. Overall results indicate that the high dose (c. 230 μgl−1 TRC) of chlorine reduced litter processing rates partly by reducing initial microbial conditioning, but primarily by reducing the colonization of amphipod shredders.  相似文献   

10.
The decomposition of plant litter plays a fundamental role in the cycling of carbon and nutrients and is driven by complex interactions of biological and physical controls, yet little is known about its variability and controls across spatial scales. Here we address the indirect effects of riparian canopy cover on litter decomposition and decomposers and their variability within a set of hierarchical scales (watershed, stream segments and reaches) controlling for confounding factors that could co-vary with canopy cover (for example, temperature and nutrients), in high-altitude subtropical streams. Total, microbial and invertebrate-driven decomposition rates were approximately 1.4–6.6 times higher in closed-canopy than in open-canopy watersheds. Riparian canopy cover accounted for 62–69% of total variability of decomposition rates and indirectly (via light availability and litter inputs) promoted fungal facilitation of shredders through leaf litter conditioning. In contrast to what we expected, much of the spatial variability in the decomposition occurred at smaller scale (4–20% of total variability among reaches versus <1% among watersheds) and coincided with the greatest variability in shredder abundance and fungal biomass (70 and 17% among reaches, respectively). We conclude that riparian canopy cover may be an important control of natural variability of litter decomposition at the watershed scale through its effects on fungal decomposers and shredder consumption. We also provide evidence of higher reach and minor watershed variability of litter decomposition in stream networks. Our results point to the importance of identifying the sources of natural variability of decomposition and how they interact within and among spatial scales.  相似文献   

11.
1. Using degree‐days to calculate ‘temperature‐corrected’ breakdown rates is a useful approach for comparing litter breakdown across sites with different thermal regimes. We used an alternative approach to investigate the importance of temperature by quantifying seasonal patterns in litter breakdown in an arctic spring‐fed stream (Ivishak Spring, North Slope, Alaska) that experiences extreme seasonality in light availability and energy inputs while fluctuations in water temperature are relatively small. 2. We incubated mesh bags of senesced Salix alaxensis litter in Ivishak Spring for successive c. 30‐day periods for 2 years. During our study, water temperature was very stable [5.7 ± 0.03 °C (daily mean ± 1 SE), range 3.7–7.8 °C]. Discharge was only slightly more variable (mean 112 ± 1 L s?1, range 66–206 L s?1), with lowest values occurring in late winter. Dissolved nutrient concentrations were low (52–133 μg L?1, <1–3 μg L?1, <1–6 μg L?1 soluble reactive phosphorus) and also showed evidence of seasonality (i.e. highest values in winter). 3. Litter breakdown rates were sharply seasonal, ranging from <0.01 day?1 in mid‐summer to >0.05 day?1 in mid‐winter. Invertebrate assemblage structure in litter bags showed pronounced seasonal cyclicity; total invertebrate biomass peaked in summer. Biomass of two dominant shredders (the nemourid stonefly Zapada haysi and the limnephilid caddisfly Ecclisomyia conspersa) showed the opposite trend, however, with mid‐winter peaks in both population biomass and cohort growth rates that closely matched those we observed in litter mass loss. 4. Water temperature appeared to have negligible influence on litter breakdown rates in our study. Seasonal shifts in nutrient uptake may have increased rates of microbial activity in winter. The processing of litter inputs in Ivishak Spring, however, appeared to be most tightly coupled to shredder phenology. Our results demonstrate that extreme seasonality in the processing of allochthonous detritus can occur even in the absence of substantial temperature variation, driven by the activity of shredder taxa that have evolved to take advantage of pulsed organic matter inputs.  相似文献   

12.
1. Animals play a major role in nutrient cycling via excretory processes. Although the positive indirect effects of grazers on periphytic algae are well understood, little is known about top‐down effects on decomposers of shredders living on leaf litter. 2. Nutrient cycling by shredders in oligotrophic forest streams may be important for the microbial‐detritus compartment at very small spatial scales (i.e. within the leaf packs in which shredders feed). We hypothesised that insect excretion may cause local nutrient enrichment, so that microorganism growth on leaves is stimulated. 3. We first tested the effect of increasing concentration of ammonium (+10, +20 and +40 μg NH4+ L?1) on fungal and bacterial biomass on leaf litter in a laboratory experiment. Then we performed two experiments to test the effect of the presence and feeding activity of shredder larvae. We used two species belonging to the trichopteran family Sericostomatidae: the Palaearctic Sericostoma vittatum and the Neotropical Myothrichia murina, to test the effect of these shredders on fungal and bacterial biomass and decomposition on leaves of Quercus robur and Nothofagus pumilio, respectively. All experiments were run in water with low ammonium concentrations (2.4 ± 0.34 to 14.47 ± 0.95 μg NH4+ L?1). 4. After 5 days of incubation, NH4 concentrations were reduced to near‐ambient streamwater concentrations in all treatments with leaves. Fungal biomass was positively affected by increased ammonium concentration. On the other hand, bacteria abundance was similar in all treatments, both in terms of abundance (bacteria cells mg?1 leaf DW) and biomass. However, there was a tendency towards larger mean cell size in treatments with 20 μg NH4 L?1. 5. In the experiment with S. vittatum, fungal biomass in the treatment with insects was more than twice that in the control after 15 days. Bacteria were not detected in treatments with insects, where hyphae were abundant, but they were abundant in treatments without larvae. In the decomposition experiment run with M. murina, leaf‐mass loss was significantly higher in treatments with larvae than in controls. 6. Our hypothesis of a positive effect of shredders on fungal biomass and decomposition was demonstrated. Insect excretion caused ammonium concentration to increase in the microcosms, contributing to microbial N uptake in leaf substrata, which resulted in structural and functional changes in community attributes. The positive effect of detritivores on microbes has been mostly neglected in stream nutrient‐cycling models; our findings suggest that this phenomenon may be of greater importance than expected in stream nutrient budgets.  相似文献   

13.
1. We investigated the effects of two features of leaf‐pack habitat structure (i.e. mass of a leaf pack and surface area of leaves comprising a leaf pack) and fish predation on colonisation of shredders and leaf breakdown rates in a coldwater stream. Packs were constructed of red maple (Acer rubrum) leaves. 2. A 2 × 3 × 3 factorial experiment was used to manipulate fish predation (exclusion and control cage), leaf‐pack mass (1, 3 and 5 g dry mass) and leaf surface area (small: approx. 17.9 cm2, medium: approx. 34.6 cm2, large: approx. 65.6 cm2). Exclusion cages had mesh on all sides, whereas control cages lacked mesh on two sides to provide access to fish. 3. Common shredders were Gammarus pseudolimnaeus, Pycnopsyche and Lepidostoma. Shredder biomass per leaf pack increased with the mass of a leaf pack (P < 0.001), but biomass per unit mass of leaf pack did not differ with leaf‐pack mass (P = 0.506). Shredder densities did not respond to the exclusion of fish (P > 0.7) or leaf surface area (P > 0.7), and interactions among treatment factors were not significant (P > 0.2). 4. Breakdown rates were lower for leaf packs comprised of small leaves (P < 0.001) and leaf packs with high mass (P = 0.001). Excluding fish did not significantly affect leaf breakdown rates (P = 0.293), and interactions among treatment factors were not significant (P > 0.3). Breakdown rates were highest when packs consisted of few leaves (i.e. leaf packs with large leaves and low mass) and were colonised by many shredders. 5. Fish predation was not an important factor controlling shredder densities in leaf packs over the spatiotemporal scale of our experiment. Nevertheless, we found shredder colonisation was proportional to leaf‐pack mass and breakdown rates were affected by leaf‐pack size (i.e. number of leaves in a pack). We suspect that fragmentation is the primary mechanism causing the breakdown rates to be dependent on leaf‐pack size.  相似文献   

14.
15.
Climate change leads to summer low flow conditions and premature litter input in lowland streams in Central Europe. This may cause a sudden reduction of flow and fragmentation into isolated pools of permanently flowing streams, with a simultaneous increase in the food supply for detrivores during summer months. We performed a mesocosm study to investigate shredder and microbial mediated litter decomposition under these conditions. Leaf litter was placed in a lowland stream with a natural flow regime (reference) and in a stream mesocosm with significant flow reduction (FR) and a representative density of macroinvertebrates and detritus. Physicochemical parameters, leaf mass loss, macroinvertebrate abundance and biomass, leaf-associated respiration, fungal sporulation, and biomass were measured at regular intervals for 6 weeks. Coarse and fine-mesh bags were used to include or exclude macroinvertebrate shredders. In the coarse-mesh bags, leaf mass loss was significantly lower in the FR system than in the reference regime. In the fine-mesh bags, leaf respiration, fungal sporulation, and biomass but not leaf mass losses were substantially lower with flow reduction. Chironomid larvae (Micropsectra spp.) appeared to effectively fragment leaf litter in fine-mesh bags. In the FR system, leaf respiration was higher in the coarse-than in the fine-mesh bags. Our results suggest that, in temperate lowland streams, premature litter input during or after a sudden fragmentation into isolated pools and a reduction of stream flow reduces direct shredder-mediated litter decomposition, but shredders may indirectly influence the decomposition process. Handling editor: B. Oertli  相似文献   

16.
Abstract We investigated the effects of biodiversity loss across trophic levels and across ecosystems (terrestrial to aquatic) on ecosystem function, in a detritus‐based tropical food web. Diversities of consumers (stream shredders) and resources (leaf litter) were experimentally manipulated by varying the number of species from 3 to 1, using different species combinations, and the effects on leaf breakdown rates were examined. In single‐species shredder treatments, leaf diversity loss affected breakdown rates, but the effect depended on the identity of the leaves remaining in the system: they increased when the most preferred leaf species remained, but decreased when this species was lost (leaf preferences were the same for all shredders). In multi‐species shredder assemblages, breakdown rates were lower than expected from single‐species treatments, suggesting an important role of interspecific competition. This pattern was also evident when oneleaf species was available but not with higher leaf diversity, suggesting that lowered leaf diversity promotes competitive interactions among shredders. The influence of diversity and identity of species across trophic levels and ecosystems on stream functioning points to complex interactions that may well be reflected in other types of ecosystem.  相似文献   

17.
1. The functional feeding group approach has been widely used to describe the community structure of benthic invertebrates in relation to organic matter resources. Based on this functional framework, positive interactions between feeding groups (especially shredders and collector‐gatherers) were postulated in the River Continuum Concept. However, relationships with organic matter have been poorly documented for invertebrates living in the hyporheic zone. 2. We hypothesised that the common subterranean amphipod Niphargus rhenorhodanensis would feed on fine particulate organic matter (FPOM), which is more abundant than coarse particulate organic matter (CPOM) in hyporheic habitats, and should be favoured by the occurrence of shredders that produce FPOM from CPOM. 3. We used laboratory experiments to quantify leaf litter processing by N. rhenorhodanensis and a common shredder, the surface amphipod Gammarus roeselii. We estimated rates of feeding and assimilation (using nitrogen stable isotopes) of the two species separately and together to reveal any potential shredder–collector facilitation between them. 4. Measured leaf litter mass loss showed that N. rhenorhodanensis did not act as a shredder, unlike G. roeselii. Organic matter dynamics and 15N/14N ratios in tissues of niphargids indicated that N. rhenorhodanensis was a collector‐gatherer feeding preferentially on FPOM. We also found a positive influence of the gammarid shredders on the assimilation rate of N. rhenorhodanensis, which fed on FPOM produced by the shredders, supporting the hypothesis of a positive interaction between surface shredders and hyporheic collector‐gatherers.  相似文献   

18.
Contrary to streams, decomposition processes of terrestrial leaf litter are still poorly understood in lakes. Here, we examined the decomposition of two leaf species, beech (Fagus sylvatica) and poplar (Populus nigraitalica’) in the littoral zone of a large pre-alpine lake at a wave exposed site. We focussed on the shredding impact of benthic invertebrates in a field experiment and on the effects of wave-induced disturbances under field and mesocosm conditions. In contrast to our expectations, benthic shredders did not reveal an important role in leaf processing under the conditions of the field experiment (early spring time, wave impact zone). Strong wave turbulence during storm events significantly reduced leaf mass, FPOM and invertebrate densities at field conditions. Several reasons can explain the low importance of shredders in our field study: (a) phenology of the shredder species, (b) feeding preferences and alternative food sources for gammarids, (c) generally low abundance of the native gammarid species due to the recent occurrence of an invasive predator, (d) disturbance of shredder activity due to high wave impact and (e) relatively low food value of the offered leaves. We suggest that leaf litter decomposition in lakes occurs in specific process domains, which largely depend on the hydraulic characteristics and on water-level fluctuations.  相似文献   

19.
The diversity and abundance of macroinvertebrate shredders were investigated in 52 forested streams (local scale) from nine catchments (regional scale) covering a large area of peninsular Malaysia. A total of 10,642 individuals of aquatic macroinvertebrates were collected, of which 18.22 % were shredders. Biodiversity of shredders was described by alpha (αaverage ), beta (β) and gamma diversity (γ) measures. We found high diversity and abundance of shredders in all catchments, represented by 1,939 individuals (range 6–115 and average per site of 37.29?±?3.48 SE) from 31 taxa with 2–13 taxa per site (αaverage?=?6.98?±?0.33 SE) and 10–15 taxa per catchment (γ?=?13.33?±?0.55 SE). At the local scale, water temperature, stream width, depth and altitude were correlated significantly with diversity (Adj-R 2?=?0.205). Meanwhile, dissolved oxygen, stream velocity, water temperature, stream width and altitude were correlated to shredder abundance (Adj-R 2?=?0.242). At regional scale, however, water temperature was correlated negatively with β and γ diversity (r 2?=?0.161 and 0.237, respectively) as well as abundance of shredders (r 2?=?0.235). Canopy cover was correlated positively with β diversity (r 2?=?0.378) and abundance (r 2?=?0.266), meanwhile altitude was correlated positively with β (quadratic: r 2?=?0.175), γ diversity (quadratic: r 2?=?0.848) as well as abundance (quadratic: r 2?=?0.299). The present study is considered as the first report describing the biodiversity and abundance of shredders in forested headwater streams across a large spatial scale in peninsular Malaysia. We concluded that water temperature has a negative effect while altitude showed a positive relationship with diversity and abundance of shredders. However, it was difficult to detect an influence of canopy cover on shredder diversity.  相似文献   

20.
The processing of leaves in temperate streams has been the subject of numerous studies but equivalent tropical ecosystems have received little attention. We investigated leaf breakdown of a tropical tree species (Hura crepitans, Euphorbiaceae), in a tropical stream using leaf bags (0.5 mm mesh) over a period of 24 days. We followed the loss of mass and the changes in adenosine triphosphate (ATP) concentrations and respiration rates associated with the decomposing leaves. The breakdown rate was fast (k=?0.0672/d, kd=?0.0031/degree‐day), with 81 percent loss of the initial mass within 24 days. This high rate was probably related to the stable and high water temperature (22°C) favoring strong biological activity. Respiration rates increased until day 16 (1.1 mg O2/h/g AFDM), but maximum ATP concentrations were attained at day 9 (725 nmol ATP/g AFDM) when leaf mass remaining was 52 percent. To determine the relative importance of fungi and bacteria during leaf decomposition, ATP concentrations, and respiration rates were determined in samples treated with antibiotics, after incubation in the stream. The results of the samples treated with the antifungal or the bacterial antibiotic suggest a higher contribution of the fungal community for total microbial biomass and a higher contribution of the bacterial community for microbial respiration rates, especially during the later stages of leaf decomposition. However, these results should be analyzed with caution since both antibacterial and antifungal agents did not totally eliminate microbial activity and biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号