首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Urbanization has resulted in the extensive burial and channelization of headwater streams, yet little is known about the impacts of stream burial on ecosystem functions critical for reducing downstream nitrogen (N) and carbon (C) exports. In order to characterize the biogeochemical effects of stream burial on N and C, we measured NO3 ? uptake (using 15N-NO3 ? isotope tracer releases) and gross primary productivity (GPP) and ecosystem respiration (ER) (using whole stream metabolism measurements). Experiments were carried out during four seasons, in three paired buried and open stream reaches, within the Baltimore Ecosystem Study Long-term Ecological Research site. Stream burial increased NO3 ? uptake lengths by a factor of 7.5 (p < 0.01) and decreased NO3 ? uptake velocity and areal NO3 ? uptake rate by factors of 8.2 (p < 0.05) and 9.6 (p < 0.001), respectively. Stream burial decreased GPP by a factor of 11.0 (p < 0.01) and decreased ER by a factor of 5.0 (p < 0.05). From fluorescence Excitation Emissions Matrices analysis, buried streams were found to have significantly altered C quality, showing less labile dissolved organic matter. Furthermore, buried streams had significantly lower transient storage (TS) and water temperatures. Differences in NO3 ? uptake, GPP, and ER in buried streams, were primarily explained by decreased TS, light availability, and C quality, respectively. At the watershed scale, we estimate that stream burial decreases NO3 ? uptake by 39 % and C production by 194 %. Overall, our results suggest that stream burial significantly impacts NO3 ? uptake, stream metabolism, and the quality of organic C exported from watersheds. Given the large impacts of stream burial on stream ecosystem processes, daylighting or de-channelization of streams, through hydrologic floodplain reconnection, may have the potential to alter ecosystem functions in urban watersheds, when used appropriately.  相似文献   

2.
Nitrate (NO3 ?) dynamics in urban streams differ from many natural streams due to stormwater runoff, sewage inputs, decreased groundwater discharge, often limited hyporheic exchange, increased primary productivity, and limited carbon input. We investigated NO3 ? dynamics in a first-order urban stream in Syracuse, NY, which has urbanized headwaters and a geomorphologically natural downstream section. Twice-monthly water sampling, NO3 ? injection tests, NO3 ? isotopic analysis, filamentous algae mat density, and riparian shading were used to identify processes regulating NO3 ? dynamics in the stream over a 12-month period. The urban headwater reach had low NO3 ? (0.006–0.2 mg N/L) in the spring through fall, with a minimum uptake length of 900 m, no canopy cover, and high algae mat density. The downstream natural reach (100% canopy cover during the summer and low algae mat density) had nitrate concentrations between 0.6 and 1.2 mg N/L from winter to summer, which decreased during autumn leaf-off. In the urban reach, autotrophic uptake by filamentous green algae is a major NO3 ? sink in summer. In the natural reach, the addition of organic matter to the stream at leaf-off led to a decrease in NO3 ? concentration followed by an increase in NO3 ? concentration in winter as gross primary productivity decreased. This study shows that the balance between autotrophy and heterotrophy in urban streams is variable and depends on an interplay of drivers such as temperature, light, and carbon inputs that are mediated by the riparian ecosystem.  相似文献   

3.
Ecosystem metabolism and nutrient uptake in an urban,piped headwater stream   总被引:1,自引:0,他引:1  
Piped streams, or streams that run underground, are often associated with urbanization. Despite the fact that they are ubiquitous in many urban watersheds, there is little empirical evidence regarding the ecological structure and function of piped stream reaches. This study measured ecosystem metabolism, nutrient uptake, and related characteristics of Pettee Brook—an urban stream that flows through several piped sections in Durham, New Hampshire, USA. Pettee Brook had high chloride and nutrient concentrations, low benthic biomass, and low rates of gross primary productivity (GPP), ecosystem respiration (ER), and nutrient uptake along its entire length during summer. Spring was a period of elevated biological activity, as increased light availability in the un-piped sections of the stream led to substantially higher GPP, ER, NH4 uptake, and PO4 uptake in these open reaches. Piped reaches of Pettee Brook were similar to open reaches in terms of water quality, dissolved O2 concentration, temperature, and discharge. Piped reaches did, however, have significantly less light, shallower sediments, and no debris dams. The absence of light inhibited autotrophic activity in piped reaches, resulting in the complete loss of GPP as well as a significant reduction in benthic AFDM and chlorophyll a biomass. Heterotrophic activity in piped reaches was not impaired to the same extent as autotrophic activity. Reduced ER was observed in piped reaches during the summer, but we failed to find significantly lower DOC or nutrient uptake rates in piped reaches than in open reaches. Carbon consumption in piped reaches, which do not have significant autochthonous or allochthonous carbon replenishment, must rely primarily on upstream inputs of organic matter. These results suggest that although ecological conditions in piped streams may be degraded beyond the extent of other urban stream reaches, piped reaches may still sustain some measurable ecosystem function.  相似文献   

4.
We analyzed long-term organic and inorganic nitrogen inputs and outputs in precipitation and streamwater in six watersheds at the H.J. Andrews Experimental Forest in the central Cascade Mountains of Oregon. Total bulk N deposition, averaging 1.6 to 2.0 kg N ha–1 yr–1, is low compared to other sites in the United States and little influenced by anthropogenic N sources. Streamwater N export is also low, averaging <1 kg ha–1 yr–1. DON is the predominant form of N exported from all watersheds, followed by PON, NH4-N, and NO3-N. Total annual stream discharge was a positive predictor of annual DON output in all six watersheds, suggesting that DON export is related to regional precipitation. In contrast, annual discharge was a positive predictor of annual NO3-N output in one watershed, annual NH4-N output in three watersheds, and annual PON output in three watersheds. Of the four forms of N, only DON had consistent seasonal concentration patterns in all watersheds. Peak streamwater DON concentrations occurred in November-December after the onset of fall rains but before the peak in the hydrograph, probably due to flushing of products of decomposition that had built up during the dry summer. Multiple biotic controls on the more labile nitrate and ammonium concentrations in streams may obscure temporal DIN flux patterns from the terrestrial environment. Results from this study underscore the value of using several watersheds from a single climatic zone to make inferences about controls on stream N chemistry; analysis of a single watershed may preclude identification of geographically extensive mechanisms controlling N dynamics.  相似文献   

5.
Sources and sinks of aquatic carbon in a peatland stream continuum   总被引:2,自引:0,他引:2  
Streams draining peatland systems contain a number of different C-species, all of which are linked either directly or indirectly to the cycling of C in the terrestrial environment. Concentrations and fluxes of dissolved, particulate and gaseous forms of carbon were measured along a network of streams draining an acidic peatland catchment (46.3km2) in NE Scotland. The main aim was to identify sources and sinks of all the major forms of C in the drainage network and use this to develop a conceptual understanding of the evolution of streamwater chemistry along a peatland stream continuum. The investigation included a small-scale intra-catchment study of three contiguous sites in a 1.3km2 headwater catchment (Brocky Burn) and a larger scale integrated study of seven sites. Mean annual fluxes of the main carbon species varied from 115–215 (DOC), 8.15–97.0 (POC), 0.32–6.90 (HCO3--C) and 2.62–10.4 (free CO2-C)kgCha–1year–1; all contributed to the overall carbon flux to varying degrees. Methane-C was only measurable at sites within areas of deep peat (<0.01–0.09kgCha–1year–1). Downstream spatial changes in the intra-catchment study (Brocky Burn) were characterised by a decrease in DOC, CO2-C and CH4-C and an increase in POC fluxes over a distance of 1.1km from the Upper to the Lower sites. In the context of the integrated catchment study estimated losses and gains of carbon from the water column showed no net change in DOC, a large decrease in POC (–55%) and a slight increase in (HCO3--C) (+7.7%) and CO2-C (+4.5%). A significant decrease in the CO2-C flux: HCO3-C flux ratio with distance downstream from the stream source, illustrates the importance of outgassing of CO2 from streams draining peatland C reservoirs. These data are interpreted in the context of losses and gains of the various components of the aquatic C flux along the peatland stream continuum.  相似文献   

6.
Restoring urban infrastructure and managing the nitrogen cycle represent emerging challenges for urban water quality. We investigated whether stormwater control measures (SCMs), a form of green infrastructure, integrated into restored and degraded urban stream networks can influence watershed nitrogen loads. We hypothesized that hydrologically connected floodplains and SCMs are “hot spots” for nitrogen removal through denitrification because they have ample organic carbon, low dissolved oxygen levels, and extended hydrologic residence times. We tested this hypothesis by comparing nitrogen retention metrics in two urban stream networks (one restored and one urban degraded) that each contain SCMs, and a forested reference watershed at the Baltimore Long-Term Ecological Research site. We used an urban watershed continuum approach which included sampling over both space and time with a combination of: (1) longitudinal reach-scale mass balances of nitrogen and carbon conducted over 2 years during baseflow and storms (n = 24 sampling dates × 15 stream reaches = 360) and (2) 15N push–pull tracer experiments to measure in situ denitrification in SCMs and floodplain features (n = 72). The SCMs consisted of inline wetlands installed below a storm drain outfall at one urban site (restored Spring Branch) and a wetland/wet pond configured in an oxbow design to receive water during high flow events at another highly urbanized site (Gwynns Run). The SCMs significantly decreased total dissolved nitrogen (TDN) concentrations at both sites and significantly increased dissolved organic carbon concentrations at one site. At Spring Branch, TDN retention estimated by mass balance (g/day) was ~150 times higher within the stream network than the SCMs. There were no significant differences between mean in situ denitrification rates between SCMs and hydrologically connected floodplains. Longitudinal N budgets along the stream network showed that hydrologically connected floodplains were important sites for watershed nitrogen retention due to groundwater–surface water interactions. Overall, our results indicate that hydrologic variability can influence nitrogen source/sink dynamics along engineered stream networks. Our analysis also suggests that some major predictors for watershed N retention were: (1) streamwater and groundwater flux through stream restoration or stormwater management controls, (2) hydrologic residence times, and (3) surface area of hydrologically connected features.  相似文献   

7.
8.
Estuaries and coastal lagoons are included within the transitional waters category, according to the Water Framework Directive. However, criteria for their differentiation and characterisation are still under discussion and require more research. In particular, detailed observations of biodiversity in more complex transitional and coastal waters are lacking. Microscopic and molecular analyses were therefore used to investigate phytoplankton diversity and spatial community structure, in early spring, along the freshwater-to-marine continuum of the Segura River (Spain), an intensively regulated semiarid basin discharging into the Mediterranean Sea. In addition to the salinity gradient as the major factor determining taxa distribution, influence of multiple anthropogenic and climatic impacting factors (drought, confined waters, irrigation canal) leads to a significant spatial heterogeneity of the aquatic habitat types associated with variations in community composition. Several shifts within the phytoplankton distribution pattern along the continuum are revealed using multivariate analyses. An impressive bloom of the cryptophyte Plagioselmis prolonga occurred in the mixing zone, associated with a typical euryhaline community indicative of eutrophication. The 18S rDNA diversity revealed a microeukaryotic richness including several little-known groups, heterotrophic representatives, and potential parasites. By combining morphological and molecular approaches we revealed the presence of a ‘hidden’ diversity often neglected in traditional surveys.  相似文献   

9.
There is limited information regarding biogeochemical pools and fluxes in maritime tundra ecosystems along the Antarctic Peninsula. To collect baseline information on biogeochemical processes in a tundra ecosystem dominated by two vascular plant species (Colobanthus quitensis and Deschampsia antarctica) at Biscoe Point off the coast of Anvers Island, we measured pools and fluxes of C and N in transplanted tundra microcosm cores, complemented with sampling of precipitation and surface runoff. Snow and snowmelt from the tundra collection site and soil leachates from the cores were enriched with N and dissolved organic carbon compared to precipitation and snowmelt samples collected at Palmer Station, indicating high loading of N and organic matter from the penguin colonies adjacent to the tundra site. Relatively high values of δ15N in the live and dead biomass of D. antarctica and C. quitensis (5.6–25.1‰) indicated an enrichment of N in this tundra ecosystem, possibly through N inputs from adjacent penguin colonies. Stepwise multiple linear regressions found that ecosystem respiration and gross primary production were best predicted by live biomass of D. antarctica, suggesting a disproportionately high contribution of D. antarctica to CO2 fluxes. The cores with higher δ15N and lower δ13C in the soil organic horizon exhibited higher CO2 fluxes. The results suggest that abundant N inputs from penguin colonies and the competitive balance between plant species might play a critical role in the response of tundra ecosystems along the Antarctic Peninsula to projected climate change.  相似文献   

10.
Cumulative effects of atmospheric N deposition mayincrease N export from watersheds and contribute tothe acidification of surface waters, but naturalfactors (such as forest productivity and soildrainage) that affect forest N cycling can alsocontrol watershed N export. To identify factors thatare related to stream-water export of N, elevationalgradients in atmospheric deposition and naturalprocesses were evaluated in a steep, first-orderwatershed in the Catskill Mountains of New York, from1991 to 1994.Atmospheric deposition of SO 4 2– , andprobably N, increased with increasing elevation withinthis watershed. Stream-water concentrations ofSO 4 2– increased with increasing elevationthroughout the year, whereas stream-waterconcentrations of NO 3 decreased withincreasing elevation during the winter and springsnowmelt period, and showed no relation with elevationduring the growing season or the fall. Annual exportof N in stream water for the overall watershed equaled12% to 17% of the total atmospheric input on thebasis of two methods of estimation. This percentagedecreased with increasing elevation, from about 25%in the lowest subwatershed to 7% in the highestsubwatershed; a probable result of an upslope increasein the thickness of the surface organic horizon,attributable to an elevational gradient in temperaturethat slows decomposition rates at upper elevations. Balsam fir stands, more prevalent at upper elevationsthan lower elevations, may also affect the gradient ofsubwatershed N export by altering nitrification ratesin the soil. Variations in climate and vegetationmust be considered to determine how future trends inatmospheric deposition will effect watershed export ofnitrogen.  相似文献   

11.
Eutrophication of urban surface waters from excess nitrogen (N) and phosphorus (P) inputs remains a major issue in water quality management. Although much research has focused on understanding loading of nutrients from storm events, there has been little research to understand the contribution of baseflow, the water moving through storm drains between rainfall events. We investigated the relative contributions of baseflow versus stormflow for loading of water and nutrients (various forms of N and P) by the storm drain network in six urban sub-watersheds in St. Paul, MN, USA. Across sites, baseflow made substantial contributions to warm season (May–October) water yields (27–66 % across sites), total N yields (31–68 %), and total P yields (7–32 %). These results show that while P was predominantly delivered by stormflow, N loading was similar between baseflow and stormflow. We found that baseflow was dominated by groundwater inputs, likely caused by interception of shallow groundwater by storm drains, but also that variability in N and P among sites was related in part to the connectivity of the storm drains to upstream lakes and wetlands in some watersheds. The substantial loading by groundwater-dominated baseflow, especially for N, implies that N management may require a broader focus on N source reduction, perhaps through improved land management, in order to prevent contamination of shallow groundwater via infiltration.  相似文献   

12.
Here, soil CO(2) efflux, minirhizotron fine root production (FRP), and estimated total below-ground carbon allocation (TBCA) were examined along an elevation and hybridization gradient between two cottonwood species. FRP was 72% greater under high-elevation Populus angustifolia, but soil CO(2) efflux and TBCA were 62% and 94% greater, respectively, under low-elevation stands dominated by Populus fremontii, with a hybrid stand showing intermediate values. Differences between the responses of FRP, soil CO(2) efflux and TBCA may potentially be explained in terms of genetic controls; while plant species and hybridization explained variance in carbon flux, we found only weak correlations of FRP and TBCA with soil moisture, and no correlations with soil temperature or nitrogen availability. Soil CO(2) efflux and TBCA were uncorrelated with FRP, suggesting that, although below-ground carbon fluxes may change along environmental and genetic gradients, major components of below-ground carbon flux may be decoupled.  相似文献   

13.
We examined seasonal and spatial linkages between N cycling and organic matter for a suburban stream in Maryland and addressed the question: How do longitudinal NH4 + uptake patterns vary seasonally and what is the effect of organic matter, stream size, transient storage and debris dams? We applied a longitudinal (stream channel corridor) approach in a forested stream section and conducted short-term nutrient addition experiments (adapted to account for the effect of nutrient saturation) covering 14–16 reaches, and compared two distinct seasons (late fall 2003 and late summer 2004). Longitudinal NH4 + uptake rate patterns had a distinct seasonal reversal; fall had the highest uptake rates in the upper reaches, while summer had the highest uptake rates in the lower reaches. This seasonal reversal was attributed to organic matter and evidenced by DON patterns. Transient storage did not have an expected effect on uptake rates in fall because it was confounded by leaf litter; litter produced higher uptakes, but also may have reduced transient storage. In summer however, uptake rates had a positive correlation with transient storage. Debris dams had no distinct effect on uptake in fall because of their recent formation. In summer however, the debris dam effect was significant; although the debris dams were hydraulically inactive then, the upstream reaches had 2–5 fold higher uptake rates. The seasonal and longitudinal differences in NH4 + uptake reflect interactions between flow conditions and the role of organic matter. Urbanization can alter both of these characteristics, hence affect stream N processing.  相似文献   

14.
The foliar content of nitrogen and the relative abundances of 13C and 15N were analysed in vascular epiphytes collected from six sites along an altitudinal gradient from tropical dry forests to humid montane forests in eastern Mexico. The proportion of epiphyte species showing crassulacean acid metabolism (CAM) (atmospheric bromeliads, thick-leaved orchids, Cactaceae, and Crassulaceae) decreased with increasing elevation and precipitation from 58 to 6%. Atmospheric bromeliads, almost all of which had δ 13C values indicating CAM, were more depleted in 15N (x = ? 10·9‰ ± 2·11) than the C3 bromeliads which form water-storing tanks ( ? 6·05‰ ± 2·26). As there was no difference in δ 15N values between C3 and CAM orchids, the difference in bromeliads was not related to photosynthetic pathways but to different nitrogen sources. While epiphytes with strong 15N depletion appear to obtain their nitrogen mainly from direct atmospheric deposition, others have access to nitrogen in intercepted water and from organic matter decomposing on branches and in their phytotelmata. Bromeliads and succulent orchids had a lower foliar nitrogen content than thin-leaved orchids, ferns and Piperaceae. Ground-rooted hemi-epiphytes exhibited the highest nitrogen contents and δ 15N values.  相似文献   

15.
Dynamics of gaseous nitrogen and carbon fluxes in riparian alder forests   总被引:2,自引:0,他引:2  
We studied greenhouse gas (GHG) fluxes in two differently loaded riparian Alnus incana-dominated forests in agricultural landscapes of southern Estonia: a 33-year-old stand in Porijõgi, in which the uphill agricultural activities had been abandoned since the middle of the 1990s, and a 50-year-old stand in Viiratsi, which still receives polluted lateral flow from uphill fields fertilized with pig slurry. In Porijõgi, closed-chamber based sampling lasted from October 2001 to October 2009, whereas in Viiratsi the sampling period was from November 2003 to October 2009. Both temporal and spatial variations in all GHG gas fluxes were remarkable. Local differences in GHG fluxes between micro-sites (“Edge”, “Dry” and “Wet” in Porijõgi, and “Wet”, “Slope” and “Dry” in Viiratsi) were sometimes greater than those between sites. Median values of GHG fluxes from both sites over the whole study period and all microsites did not differ significantly, being 45 and 42 mg CO2-C m−2 h−1, 8 and 0.5 μg CH4-C m−2 h−1, 1.0 and 2.1 mg N2-N m−2 h−1, and 5 and 9 μg N2O-N m−2 h−1, in Porijõgi and Viiratsi, respectively. The N2:N2O ratio in Viiratsi (40-1200) was lower than in Porijõgi (10-7600). The median values-based estimation of the Global Warming Potential of CH4 and N2O was 19 and 185 kg CO2 equivalents (eq) ha−1 yr−1 in Porijõgi and −14 and 336 kg CO2 eq ha−1 yr−1 in Viiratsi, respectively. A significant Spearman rank correlation was found between the mean monthly air temperature and CO2, CH4 and N2 fluxes in Porijõgi, and N2O flux in Viiratsi, and between the monthly precipitation and CH4 fluxes in both study sites. Higher groundwater level significantly increases CH4 emission and decreases CO2 and N2O emission, whereas higher soil temperature significantly increases N2O, CH4 and N2 emission values. In Porijõgi, GHG emissions did not display any discernable trend, whereas in Viiratsi a significant increase in CO2, N2, and N2O emissions has been found. This may be a result of the age of the grey alder stand, but may also be caused by the long-term nutrient load of this riparian alder stand, which indicates a need for the management of similar heavily loaded riparian alder stands.  相似文献   

16.
17.
18.
19.
1. Invertebrate stream drift was sampled bimonthly in the Acheron River, Victoria, Australia, over a period of 18 months. Replicated hourly samples were collected over a 25-h period on each sampling date. A total of 194 taxa were identified in the drift. However, total drift density was dominated by few taxa. 2. Some evidence was obtained for a seasonal pattern in drift: this was most pronounced in relative abundances of individual taxa and the composition of the drift, rather than in total drift densities. Most of the commonly collected taxa reflected the seasonal pattern of total drift. However, some of the common taxa did not. 3. A small number of taxa showed behavioral drift, with a nocturnal increase in drift densities. One species of ‘Baetis’ drifted in high densities over short periods of time around dusk and dawn. It did not drift in higher densities during the night than during the day. The results emphasize the need for drift studies to be more rigorously designed than is typically the case.  相似文献   

20.
SUMMARY. 1. The main stream and tributaries of a 145 km reach of the Moisie River, Quebec, were examined for temperature, conductivity, pH, dissolved organic carbon (DOC),%DOC>100,000 nominal molecular weight (NMW), optical density (OD350), and the ratio of OD400 to OD600 (E4:E6).
2. Dissolved organic carbon concentrations correlated closely with OD350 ( r 2=0.92, P <0.001). However,%DOC>100,000 NMW did not correlate with the E4:E6 ratio.
3. Except for a slight increase in%DOC> 100,000 NMW ( r 2=0.37, P <0.05), no change in any characteristic occurred down the length of the Moisie River, despite consistently higher levels of DOC in the tributaries.
4. Results suggest that high concentrations of DOC in tributary waters are rapidly removed within the main river channel. These results are discussed in terms of both biotic and abiotic models of in-strcam processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号