首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dissolved organic carbon (DOC) and nitrogen (DON) concentrations were quantified in urban and rural watersheds located in central Texas, USA between 2007 and 2008. The proportion of urban land use ranged from 6 to 100% in our 12 study watersheds which included nine watersheds without waste water treatment plants (WWTP) and three watersheds sampled downstream of a WWTP. Annual mean DOC concentrations ranged 20.4–52.5 mg L?1. Annual mean DON concentrations ranged 0.6–1.9 mg L?1. Only the rural watersheds without a WWTP had significantly lower DOC concentrations compared to those watersheds with a WWTP but all the streams except two had significantly reduced DON compared to those with a WWTP. Analysis of the nine watersheds without a WWTP indicated that 68% of the variability in mean annual DOC concentration was explained by urban open areas such as golf courses, sports fields and neighborhood parks under turf grass. There was no relationship between annual mean DON concentration and any land use. Urban open area also explained a significant amount of the variance in stream sodium and stream sodium adsorption ratio (SAR). Ninety-four percent of the variance in annual mean DOC concentration was explained by SAR. Irrigation of urban turf grass with domestic tap water high in sodium (>181 mg Na+ L?1) may be inducing sodic soil conditions in watershed soils in this region resulting in elevated mean annual DOC concentrations in our streams.  相似文献   

2.
Biogeochemical processes in the groundwater discharge zone of urban streams   总被引:1,自引:0,他引:1  
The influence of biogeochemical processes on nitrogen and organic matter transformation and transport was investigated for two urban streams receiving groundwater discharge during the dry summer baseflow period. A multiple lines of evidence approach involving catchment-, and stream reach-scale investigations were undertaken to describe the factors that influence pore water biogeochemical processes. At the catchment-scale gaining stream reaches were identified from water table mapping and groundwater discharge estimated to be between 0.1 and 0.8 m3 m?2 d?1 from baseflow analysis. Sediment temperature profiles also suggested that the high groundwater discharge limited stream water infiltration into the sediments. At the stream reach-scale, dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) concentrations were higher in stream water than in groundwater. However, DOC and DON concentrations were greatest in sediment pore water. This suggests that biodegradation of sediment organic matter contributes dissolved organic matter (DOM) to the streams along with that delivered with groundwater flow. Pore water ammonium (NH4 +) was closely associated with areas of high pore water DOM concentrations and evidence of sulfate (SO4 2?) reduction (low concentration and SO4:Cl ratio). This indicates that anoxic DOM mineralization was occurring associated with SO4 2? reduction. However the distribution of anoxic mineralization was limited to the center of the streambed, and was not constrained by the distribution of sediment organic matter which was higher along the banks. Lower sediment temperatures measured along the banks compared to the center suggests, at least qualitatively, that groundwater discharge is higher along the banks. Based on this evidence anoxic mineralization is influenced by groundwater residence time, and is only measurable along the center of the stream where groundwater flux rates are lower. This study therefore shows that the distribution of biogeochemical processes in stream sediments, such as anoxic mineralization, is strongly influenced by both the biogeochemical conditions and pore water residence time.  相似文献   

3.
Senesced vegetation is exposed to a wide range of salt concentrations in surface waters resulting from human activities which include deicing salts and irrigation water chemistry. Both dissolved organic carbon (DOC) and salt concentrations are rising in northern hemisphere watersheds, yet there has been little investigation of sodium as a potential mechanism for DOC increases. The objective of this study was to investigate the impact of solution sodicity and salinity on DOC and dissolved organic nitrogen (DON) leaching from five types of senesced and cut vegetation. Vegetation was soaked for 24 h in a series of sodium chloride (NaCl)–calcium chloride (CaCl2) solutions with sodium adsorption ratios (SAR) of 2, 10, or 30 and electrical conductivities of 0.1 dS m?1 through 3.0 dS m?1. Vegetation was also soaked in a sodium bicarbonate (NaHCO3) solution at SAR = 30 and stream water from local watersheds with a range of sodicity and salinity. The mass of both DOC and DON released increased as SAR increased in the NaCl solutions, but the total salinity had inconsistent effects on DOC and DON release. NaHCO3 leached similar amounts of DOC and DON as NaCl. The SAR of the stream water solutions was able to explain 88 % of the variability in DOC leached from vegetation (p < 0.05). The results indicated that sodicity, quantified by SAR, had a significant impact on DOC and DON leaching from senesced vegetation and could be a potential mechanism to explain the observed increases in surface water DOC.  相似文献   

4.
Leaf Litter as a Source of Dissolved Organic Carbon in Streams   总被引:5,自引:1,他引:4  
Dissolved organic carbon (DOC) is an abundant form of organic matter in stream ecosystems. Most research has focused on the watershed as the source of DOC in streams, but DOC also comes from leaching of organic matter stored in the stream channel. We used a whole-ecosystem experimental approach to assess the significance of leaching of organic matter in the channel as a source of DOC in a headwater stream. Inputs of leaf litter were excluded from a forested Appalachian headwater stream for 3 years. Stream-water concentration, export, and instream generation of DOC were reduced in the litter-excluded stream as compared with a nearby untreated reference stream. The proportion of high molecular weight (HMW) DOC (more than 10,000 daltons) in stream water was not altered by litter exclusion. Mean DOC concentration in stream water was directly related to benthic leaf-litter standing stock. Instream generation of DOC from leaf litter stored in the stream channel contributes approximately 30% of daily DOC exports in this forested headwater stream. This source of DOC is greatest during autumn and winter and least during spring and summer. It is higher during increasing discharge than during base flow. We conclude that elimination of litter inputs from a forested headwater stream has altered the biogeochemistry of DOC in this ecosystem. Received 2 September 1997; accepted 27 January 1998.  相似文献   

5.
Dissolved organic matter (DOM), produced through leaching from particulate organic matter (POM), is an essential component of the carbon cycle in streams. The present study investigated the instream DOM release from POM, varying in size and chemical quality. We produced large and medium sized fine particulate organic matter (L-FPOM, 250–500 μm; M-FPOM, 100–250 μm) of defined quality by feeding five types of coarse particulate organic matter (CPOM) to shredding amphipods (Gammarus spp.). Microscopic observations showed that L-FPOM and M-FPOM mainly consisted of the fecal pellets of amphipods, and incompletely eaten plant fragments, respectively. DOM release experiments were conducted by exposing CPOM and M- and L-FPOM fractions in natural stream water over a two week period. For CPOM, the release of dissolved organic carbon (DOC) by leaching was highest during the first 6 h (3.64–23.9 mg C g C?1 h?1) and decreased rapidly afterwards. For M- and L-FPOM, the DOC release remained low during the entire study period (range: 0.008–0.15 mg C g C?1 h?1). Two-way ANOVA revealed that the DOC release rate significantly differed with POM source and size fraction, both at day 1 and after a week of exposure. Multiple regression analyses revealed a significant correlation of elemental contents and lignin content to DOC release rate after a week of exposure. Overall, the results indicated that DOC release rate of FPOM, on a carbon basis, is comparable to that of CPOM after leaching, while size and source of POM significantly affect DOC release rate.  相似文献   

6.
Dissolved organic carbon (DOC) in streams draining hydrologically modified and intensively farmed watersheds has not been well examined, despite the importance of these watersheds to water quality issues and the potential of agricultural soils to sequester carbon. We investigated the dynamics of DOC for 14 months during 2006 and 2007 in 6 headwater streams in a heavily agricultural and tile-drained landscape in the midwestern US. We also monitored total dissolved nitrogen (TDN) in the streams and tile drains. The concentrations of DOC in the streams and tile drains ranged from approximately 1–6 mg L?1, while concentrations of TDN, the composition of which averaged >94% nitrate, ranged from <1 to >10 mg L?1. Tile drains transported both DOC and TDN to the streams, but tile inputs of dissolved N were diluted by stream water, whereas DOC concentrations were generally greater in the streams than in tile drains. Filamentous algae were dense during summer base flow periods, but did not appear to contribute to the bulk DOC pool in the streams, based on diel monitoring. Short-term laboratory assays indicated that DOC in the streams was of low bioavailability, although DOC from tile drains in summer had bioavailability of 27%. We suggest that these nutrient-rich agricultural streams are well-suited for examining how increased inputs of DOC, a potential result of carbon sequestration in agricultural soils, could influence ecosystem processes.  相似文献   

7.
Although dissolved organic matter (DOM) released from the forest floor plays a crucial role in transporting carbon and major nutrients through the soil profile, its formation and responses to changing litter inputs are only partially understood. To gain insights into the controlling mechanisms of DOM release from the forest floor, we investigated responses of the concentrations and fluxes of dissolved organic carbon (DOC) and nitrogen (DON) in forest floor leachates to manipulations of throughfall (TF) flow and aboveground litter inputs (litter removal, litter addition, and glucose addition) at a hardwood stand in Bavaria, Germany. Over the two-year study period, litter manipulations resulted in significant changes in C and N stocks of the uppermost organic horizon (Oi). DOC and DON losses via forest floor leaching represented 8 and 11% of annual litterfall C and N inputs at the control, respectively. The exclusion of aboveground litter inputs caused a slight decrease in DOC release from the Oi horizon but no change in the overall leaching losses of DOC and DON in forest floor leachates. In contrast, the addition of litter or glucose increased the release of DOC and DON either from the Oi or from the lower horizons (Oe + Oa). Net releases of DOC from the Oe + Oa horizons over the entire manipulation period were not related to changes in microbial activity (measured as rates of basal and substrate-induced respiration) but to the original forest floor depths prior to manipulation, pointing to the flux control by the size of source pools rather than a straightforward relationship between microbial activity and DOM production. In response to doubled TF fluxes, net increases in DOM fluxes occurred in the lower forest floor, indicating the presence of substantial pools of potentially soluble organic matter in the Oe + Oa horizons. In contrast to the general assumption of DOM as a leaching product from recent litter, our results suggest that DOM in forest floor leachates is derived from both newly added litter and older organic horizons through complex interactions between microbial production and consumption and hydrologic transport.  相似文献   

8.
We established a long-term field study in an old growth coniferous forest at the H.J. Andrews Experimental Forest, OR, USA, to address how detrital quality and quantity control soil organic matter accumulation and stabilization. The Detritus Input and Removal Treatments (DIRT) plots consist of treatments that double leaf litter, double woody debris inputs, exclude litter inputs, or remove root inputs via trenching. We measured changes in soil solution chemistry with depth, and conducted long-term incubations of bulk soils from different treatments in order to elucidate effects of detrital inputs on the relative amounts and lability of different soil C pools. In the field, the addition of woody debris increased dissolved organic carbon (DOC) concentrations in O-horizon leachate and at 30 cm, but not at 100 cm, compared to control plots, suggesting increased rates of DOC retention with added woody debris. DOC concentrations decreased through the soil profile in all plots to a greater degree than did dissolved organic nitrogen (DON), most likely due to preferential sorption of high C:N hydrophobic dissolved organic matter (DOM) in upper horizons; percent hydrophobic DOM decreased significantly with depth, and hydrophilic DOM had a much lower and less variable C:N ratio. Although laboratory extracts of different litter types showed differences in DOM chemistry, percent hydrophobic DOM did not differ among soil solutions from different detrital treatments in the field, suggesting that microbial processing of DOM leachate in the field consumed easily degradable components, thus equalizing leachate chemistry among treatments. Total dissolved N leaching from plots with intact roots was very low (0.17 g m−2 year−1), slightly less than measured deposition to this very unpolluted forest (~s 0.2 g m−2 year−1). Total dissolved N losses showed significant increases in the two treatments without roots whereas concentrations of DOC decreased. In these plots, N losses were less than half of estimated plant uptake, suggesting that other mechanisms, such as increased microbial immobilization of N, accounted for retention of N in deep soils. In long-term laboratory incubations, soils from plots that had both above- and below-ground litter inputs excluded for 5 years showed a trend towards lower DOC loss rates, but not lower respiration rates. Soils from plots with added wood had similar respiration and DOC loss rates as control soils, suggesting that the additional DOC sorption observed in the field in these soils was stabilized in the soil and not readily lost upon incubation.  相似文献   

9.
Coarse woody debris (CWD) may play a role in nutrient cycling in temperate forests through the leaching of solutes, including dissolved organic carbon (DOC) and dissolved organic nitrogen (DON), to the underlying soil. These fluxes need to be considered in element budget calculations, and have the potential to influence microbial activity, soil development, and other processes in the underlying soil, but studies on leaching from CWD are rare. In this study, we collected throughfall, litter leachate, and CWD leachate in situ at a young mixed lowland forest in NY State, USA over one year. We measured the concentrations of DOC, DON, NH4+, NO3, dissolved organic sulfur, SO42−, Cl, Al, Ca, K, Mg, Na, and P, estimated the flux of these solutes in throughfall, and measured the cover of CWD to gain some insight into possible fluxes from CWD. Concentrations of DOC were much higher in CWD leachate than in throughfall or litter leachate (15 vs. 0.7 and 1.6 mM, respectively), and greater than reported values for other leachates from within forested ecosystems. Other solutes showed a similar pattern, with inorganic N being an exception. Our results suggest that microsite scale fluxes of DOC from CWD may be An high relative to throughfall and litter leaching fluxes, but since CWD covered a relatively small fraction (2%) of the forest floor in our study, ecosystem scale fluxes from CWD may be negligible for this site. Soil directly beneath CWD may be influenced by CWD leaching, in terms of soil organic matter, microbial activity, and N availability. Concentrations of some metals showed correlations to DOC concentrations, highlighting the possibility of complexation by DOM. Several solute concentrations in throughfall, including DOC, showed positive correlations to mean air temperature, and fewer showed positive correlations in litter leachate, while negative correlations were observed to precipitation, suggesting both biological and hydrologic control of solute concentrations.  相似文献   

10.
土壤可溶性有机质(DOM)及其组分淋失特征研究对深入理解干扰作用下土壤碳氮养分损失机制具有重要意义,本研究基于翻耕模拟试验,分析喀斯特石灰土可溶性有机碳(DOC)、可溶性有机氮(DON)、及DOM官能团组分的淋失动态特征及其对不同耕作频率的响应,并探讨其影响因子。结果表明:(1)土壤DOC与DON的淋失量均随翻耕频率的增加而增加,但4个官能团特征参数对翻耕频率响应均不显著;DOC/DON淋失比随翻耕频率的增大而减少,DON占淋溶水可溶性总氮(TDN)比例随翻耕频率增加而增加。(2)DOC和DON月淋失量同时受翻耕处理与季节变化及其交互作用的影响,4个官能团特征参数仅受季节变化的影响;翻耕处理实施后,DOC月淋失量表现为初期大、后期小,各处理间差异性逐渐降低;但DON月淋失量初期小、后期大,各处理间差异性逐渐增大。(3)DOC淋失量与4个官能团特征参数呈显著负相关(P0.05),与Ca~(2+)、NH_4~+-N的淋失量呈显著正相关;DON淋失量与4个官能团参数无显著相关关系,与Mg~(2+)淋失量呈显著正相关关系。以上结果表明耕作扰动会加剧土壤DOM淋失,但淋失组分中稳定性组分没有变化,意味着耕作干扰将导致土壤有机质的持续损失,且由于其淋失组分碳氮比(DOC/DON)随扰动频率增加而降低,DON/TDN比随扰动频率增加而增加,持续的耕作干扰将大大增加水体氮素污染风险。  相似文献   

11.
We present the results of a full year of high-resolution monitoring of hydrologic event-driven export of stream dissolved organic matter (DOM) from the forested Bigelow Brook watershed in Harvard Forest, Massachusetts, USA. A combination of in situ fluorescent dissolved organic matter (FDOM) measurement, grab samples, and bioassays was utilized. FDOM was identified as a strong indicator of concentration for dissolved organic carbon (DOC, r 2 = 0.96), dissolved organic nitrogen (DON, r 2 = 0.81), and bioavailable DOC (BDOC, r 2 = 0.81). Relationships between FDOM and concentration were utilized to improve characterization of patterns of hydrological event-driven export and the quantification of annual export. This characterization was possible because DOM composition remained relatively consistent seasonally; however, a subtle shift to increased fluorescence per unit absorbance was observed for summer and fall seasons and percent BDOC did increase slightly with increasing concentrations. The majority of export occurred during pulsed hydrological events, so the greatest impact of bioavailable exports may be on downstream aquatic ecosystems. Export from individual events was highly seasonal in nature with the highest flow weighted mean concentrations (DOCFW) being observed in late summer and fall months, but the highest total export being observed for larger winter storms. Seasonal trends in DOC export coincide with weather driven changes in surface and subsurface flow paths, potential for depletion and rebuilding of a flushable soil organic matter pool, and the availability of terrestrial carbon sources such as leaf litter. Our approach and findings demonstrate the utility of high frequency FDOM measurement to improve estimates of intra-annual temporal trends of DOM export.  相似文献   

12.
An urban watershed continuum framework hypothesizes that there are coupled changes in (1) carbon and nitrogen cycling, (2) groundwater-surface water interactions, and (3) ecosystem metabolism along broader hydrologic flowpaths. It expands our understanding of urban streams beyond a reach scale. We evaluated this framework by analyzing longitudinal patterns in: C and N concentrations and mass balances, groundwater-surface interactions, and stream metabolism and carbon quality from headwaters to larger order streams. 52 monitoring sites were sampled seasonally and monthly along the Gwynns Falls watershed, which drains 170 km2 of the Baltimore Long-Term Ecological Research site. Regarding our first hypothesis of coupled C and N cycles, there were significant inverse linear relationships between nitrate and dissolved organic carbon (DOC) and nitrogen longitudinally (P < 0.05). Regarding our second hypothesis of coupled groundwater-surface water interactions, groundwater seepage and leaky piped infrastructure contributed significant inputs of water and N to stream reaches based on mass balance and chloride/fluoride tracer data. Regarding our third hypothesis of coupled ecosystem metabolism and carbon quality, stream metabolism increased downstream and showed potential to enhance DOC lability (e.g., ~4 times higher mean monthly primary production in urban streams than forest streams). DOC lability also increased with distance downstream and watershed urbanization based on protein and humic-like fractions, with major implications for ecosystem metabolism, biological oxygen demand, and CO2 production and alkalinity. Overall, our results showed significant in-stream retention and release (0–100 %) of watershed C and N loads over the scale of kilometers, seldom considered when evaluating monitoring, management, and restoration effectiveness. Given dynamic transport and retention across evolving spatial scales, there is a strong need to longitudinally and synoptically expand studies of hydrologic and biogeochemical processes beyond a stream reach scale along the urban watershed continuum.  相似文献   

13.
1. The leaching rates of filterable reactive phosphorus (FRP) and dissolved organic carbon (DOC) from five leaf litter types commonly occurring in urban environments in Mediterranean regions of Southern Australia were compared. The relative composition, bioavailability and oxygen demand of this DOC were also assessed. Four tree species were assessed, including the native river red gum (Eucalyptus camaldulensis) and three introduced deciduous species, the English elm (Ulmus procera), London plane (Platanus acerifolia) and white poplar (Populus alba). Grass cuttings (mixed species) were selected as a common garden waste. 2. Except for English elm, the majority of FRP and DOC was released within the first 48 h. Grass cuttings released the highest amount of FRP with white poplar releasing the most DOC. Species that released relatively high amounts of DOC (white poplar, English elm, river red gum) released relatively low amounts of FRP. Conversely, species that released relatively low amounts of DOC (grass cuttings and London plane) tended to release relatively high amounts of FRP. 3. Analysis of DOC composition, combined with the differing oxygen demand and DOC depletion curves, demonstrated that there were substantial differences in the DOC leached from the leaf litter of the different species. Biochemical oxygen demand and the biodegradability of the DOC was positively correlated with the proportion of hydrophilic and hydrophobic acids present in the leachate. 4. These results demonstrate that simple measurements of nutrient release per gram of leaf litter would be insufficient to predict the ecological impact on receiving waters resulting from changes in dominant vegetation. Furthermore, the use of traps to prevent particulate leaf material from entering streams may have limited potential for reducing the load of dissolved nutrients. We conclude that any changes to vegetation type which substantially alter the timing of leaf fall or the composition of leaf leachates should be avoided.  相似文献   

14.
Dissolved organic carbon (DOC) and nitrogen (DON) are important energy and nutrient sources for aquatic ecosystems. In many northern temperate, freshwater systems DOC has increased in the past 50 years. Less is known about how changes in DOC may vary across latitudes, and whether changes in DON track those of DOC. Here, we present long-term DOC and DON data from 74 streams distributed across seven sites in biomes ranging from the tropics to northern boreal forests with varying histories of atmospheric acid deposition. For each stream, we examined the temporal trends of DOC and DON concentrations and DOC:DON molar ratios. While some sites displayed consistent positive or negative trends in stream DOC and DON concentrations, changes in direction or magnitude were inconsistent at regional or local scales. DON trends did not always track those of DOC, though DOC:DON ratios increased over time for ~30% of streams. Our results indicate that the dissolved organic matter (DOM) pool is experiencing fundamental changes due to the recovery from atmospheric acid deposition. Changes in DOC:DON stoichiometry point to a shifting energy-nutrient balance in many aquatic ecosystems. Sustained changes in the character of DOM can have major implications for stream metabolism, biogeochemical processes, food webs, and drinking water quality (including disinfection by-products). Understanding regional and global variation in DOC and DON concentrations is important for developing realistic models and watershed management protocols to effectively target mitigation efforts aimed at bringing DOM flux and nutrient enrichment under control.  相似文献   

15.
Freeze-dried aqueous extracts of autumn-shed maple leaves, birch leaves, and spruce needles were added to a third-order reach of Bear Brook, New Hampshire at concentrations similar to those predicted to occur during peak leaf fall. Leachate from each species was rapidly removed from solution. With initial concentrations of added leachate of approximately 5 mgl–1, dissolved organics (DOC) uptake ranged from 73 to 130 mg m–2 h–1 for the first five hours of travel downstream from the point of addition. There was no preferential removal of DOC of low molecular weight, or of monomeric carbohydrates relative to phenolics or unidentified DOC.Stream sediments and organic debris rapidly removed DOC from solution in laboratory experiments. No significant flocculation or microbial assimilation of sugar maple leachate occurred in stream water alone. Stream sediments showed small increases in respiration with addition of leaf leachate, but no increase in respiration occurred upon addition of leachate to organic debris. Abiotic adsorption due to the high concentrations of exchangeable iron and aluminium in stream sediments may be responsible for much of the rapid removal of leaf leachate observed in field experiments. Abiotic processes appear to retain DOC within the stream, thereby allowing subsequent metabolism of dissolved organic carbon by stream microflora.  相似文献   

16.
1. We investigated the effect of trophic status on the organic matter budget in freshwater ecosystems. During leaf litter breakdown, the relative contribution of the functional groups and the quantity/quality of organic matter available to higher trophic levels are expected to be modified by the anthropogenic release of nutrients. 2. Carbon budgets were established during the breakdown of alder leaves enclosed in coarse mesh bags and submerged in six streams: two oligotrophic, one mesotrophic, two eutrophic and one hypertrophic streams. Nitrate concentrations were 4.5–6.7 mg L−1 and the trophic status of each stream was defined by the soluble reactive phosphorus concentration ranging from 3.4 (oligotrophic) to 89 μg L−1 (hypertrophic). An ammonium gradient paralleled the phosphate gradient with mean concentrations ranging from 1.4 to 560 μg L−1 NH4‐N. The corresponding unionised ammonia concentrations ranged from 0.08 to 19 μg L−1 NH3‐N over the six streams. 3. The dominant shredder taxa were different in the oligo‐, meso‐ and eutrophic streams. No shredders were observed in the hypertrophic stream. These changes may be accounted for by the gradual increase in the concentration of ammonia over the six streams. The shredder biomass dramatically decreased in eu‐ and hypertrophic streams compared with oligo‐ and mesotrophic. 4. Fungal biomass increased threefold from the most oligotrophic to the less eutrophic stream and decreased in the most eutrophic and the hypertrophic. Bacterial biomass increased twofold from the most oligotrophic to the hypertrophic stream. Along the trophic gradient, the microbial CO2 production followed that of microbial biomass whereas the microbial fine particulate organic matter and net dissolved organic carbon (DOC) did not consistently vary. These results indicate that the microorganisms utilised the substrate and the DOC differently in streams of various trophic statuses. 5. In streams receiving various anthropogenic inputs, the relative contribution of the functional groups to leaf mass loss varied extensively as a result of stimulation and the deleterious effects of dissolved inorganic compounds. The quality/quantity of the organic matter produced by microorganisms slightly varied, as they use DOC from stream water instead of the substrate they decompose in streams of higher trophic status.  相似文献   

17.
Evans  Lucas R.  Pierson  Derek  Lajtha  Kate 《Biogeochemistry》2020,149(1):75-86

Dissolved organic carbon (DOC) flux is an important mechanism to convey soil carbon (C) from aboveground organic debris (litter) to deeper soil horizons and can influence the formation of stable soil organic C compounds. The magnitude of this flux depends on both infiltration and DOC production rates which are functions of the climatic, soil, topographic and ecological characteristics of a region. Aboveground litter quantity and quality was manipulated for 20 years in an old-growth Douglas fir forest under six treatments to study relationships among litter inputs, DOC production and flux, and soil C dynamics. DOC concentrations were measured at two depths using tension lysimeters, and a hydrologic model was created to quantify water and DOC flux through the soil profile. DOC concentrations ranged from 3.0–8.0 and 1.5–2.5 mg C/L among treatments at 30 and 100 cm below the soil surface, respectively. Aboveground detrital inputs did not have a consistent positive effect on soil solution DOC; the addition of coarse woody debris increased soil solution DOC by 58% 30 cm belowground, while doubling the mass of aboveground leaf litter decreased DOC concentrations by 30%. We suggest that high-quality leaf litter accelerated microbial processing, resulting in a “priming” effect that led to the lower concentrations. Annual DOC flux into groundwater was small (2.7–3.7 g C/m2/year) and accounts for < 0.1% of estimated litter C at the site. Therefore, direct DOC loss from surface litter to groundwater is relatively negligible to the soil C budget. However, DOC flux into the soil surface was much greater (73–210 g C/m2/year), equivalent to 1.4–2.4% of aboveground litter C. Therefore, DOC transport is an important source of C to shallow soil horizons.

  相似文献   

18.
We examined the impact of permafrost on dissolved organic matter (DOM) composition in Caribou-Poker Creeks Research Watershed (CPCRW), a watershed underlain with discontinuous permafrost, in interior Alaska. We analyzed long term data from watersheds underlain with varying degrees of permafrost, sampled springs and thermokarsts, used fluorescence spectroscopy, and measured the bioavailabity of dissolved organic carbon (DOC). Permafrost driven patterns in hydrology and vegetation influenced DOM patterns in streams, with the stream draining the high permafrost watershed having higher DOC and dissolved organic nitrogen (DON) concentrations, higher DOC:DON and greater specific ultraviolet absorbance (SUVA) than the streams draining the low and medium permafrost watersheds. Streams, springs and thermokarsts exhibited a wide range of DOC and DON concentrations (1.5–37.5 mgC/L and 0.14–1.26 mgN/L, respectively), DOC:DON (7.1–42.8) and SUVA (1.5–4.7 L mgC−1 m−1). All sites had a high proportion of humic components, a low proportion of protein components, and a low fluorescence index value (1.3–1.4), generally consistent with terrestrially derived DOM. Principal component analysis revealed distinct groups in our fluorescence data determined by diagenetic processing and DOM source. The proportion of bioavailable DOC ranged from 2 to 35%, with the proportion of tyrosine- and tryptophan-like fluorophores in the DOM being a major predictor of DOC loss (p < 0.05, R 2 = 0.99). Our results indicate that the degradation of permafrost in CPCRW will result in a decrease in DOC and DON concentrations, a decline in DOC:DON, and a reduction in SUVA, possibly accompanied by a change in the proportion of bioavailable DOC.  相似文献   

19.

Aims

We characterized dissolved organic matter (DOM) leached during decomposition of deciduous silver birch litter (Betula pendula Roth.), coniferous Norway spruce litter (Picea abies (L.) Karst.) and a mixture of these litters in order to find out whether the properties of DOM would explain the earlier observed signs for higher microbial activity in soil under birch than spruce.

Methods

DOM leached from decomposing litters was collected in a litter-column experiment in the laboratory. Adsorption properties (XAD-8 resin fractionation) and molecular weight as well as the degradability of dissolved organic carbon (DOC) and nitrogen (DON) were measured three times during decomposition: 1) in the early stages, 2) after the mass loss reached 20–30 % and 3) when the mass loss reached 30–40 %.

Results

The leaching of DOC hydrophilic neutrals and bases, regarded easily degradable, decreased during decomposition. The leaching of DOC in hydrophobic acids, regarded refractory, increased from spruce and especially from the mixture litter during decomposition and may be connected to the degree of litter decomposition that was highest for the mixture. Unexpectedly, the degradability of DOC differed only slightly between the litters but the degradability of DON was substantially higher for spruce than birch. Spruce DOM seemed to be more N-rich than birch DOM in the early stages of decomposition and it seemed that labile DON was mobilized earlier from spruce than birch litter.

Conclusions

We conclude that the decomposition degree of litter determines largely the properties of DOM. The observed differences in the properties of DOM sampled during the litter decomposition cannot explain differences in C and N cycling between birch and spruce.  相似文献   

20.
Surface and subsurface litter fulfil many functions in the biogeochemical cycling of C and N in terrestrial ecosystems. These were explored using a microcosm study by monitoring dissolved inorganic nitrogen (DIN) (NH4 +–N?+?NO3 ?–N), dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) concentrations and fluxes in drainage water under ambient outdoor temperatures. Subsurface litter remarkably reduced the DIN concentrations in winter, probably by microbial N uptake associated with higher C:N ratio of added litter compared with soil at 10–25?cm depth. Fluxes of DIN were generally dominated by NO3 ?–N; but NH4 +–N strongly dominated DIN fluxes during freeze–thaw events. Appreciable concentrations of NH4 +–N were observed in the drainage from the acid grassland soils throughout the experiment, indicating NH4 +–N mobility and export in drainage water especially during freeze–thaw. Litter contributed substantially to DOC and DON production and they were correlated positively (p?<?0.01) for all treatments. DOC and DON concentrations correlated with temperature for the control (p?<?0.01) and surface litter (p?<?0.001) treatments and they were higher in late summer. The subsurface litter treatment, however, moderated the effect of temperature on DOC and DON dynamics. Cumulative N species fluxes confirmed the dominance of litter as the source of DON and DOC in the drainage water. DON constituted 42, 46 and 62% of cumulative TDN flux for control, surface litter and subsurface litter treatments respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号