首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calreticulin (CRT), a Ca2+-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac apoptosis in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In the present study, the effect of overexpression of CRT on susceptibility to apoptosis under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. Under oxidative stress due to H2O2, the CRT-overexpressing cells were highly susceptible to apoptosis compared with controls. In the overexpressing cells, the levels of cytoplasmic free Ca2+ ([Ca2+]i) were significantly increased by H2O2, whereas in controls, only a slight increase was observed. The H2O2-induced apoptosis was enhanced by the increase in [Ca2+]i caused by thapsigargin in control cells but was suppressed by BAPTA-AM, a cell-permeable Ca2+ chelator in the CRT-overexpressing cells, indicating the importance of the level of [Ca2+]i in the sensitivity to H2O2-induced apoptosis. Suppression of CRT by the introduction of the antisense cDNA of CRT enhanced cytoprotection against oxidative stress compared with controls. Furthermore, we found that the levels of activity of calpain and caspase-12 were elevated through the regulation of [Ca2+]i in the CRT-overexpressing cells treated with H2O2 compared with controls. Thus we conclude that the level of CRT regulates the sensitivity to apoptosis under oxidative stress due to H2O2 through a change in Ca2+ homeostasis and the regulation of the Ca2+-calpain-caspase-12 pathway in myocardiac cells. apoptosis; calcium; endoplasmic reticulum  相似文献   

2.
利用焦锑酸盐和磷酸铅沉淀技术分别对NaHCO3胁迫条件下星星草(Puccinellia tenuiflora)根中Ca2+和Ca2+-ATPase 进行超微细胞化学定位研究, 旨在进一步探讨Ca2+在NaHCO3胁迫诱导胞内信号转导过程中的作用, 以及Ca2+-ATPase活性定位变化与NaHCO3胁迫下星星草抗盐碱能力的关系。结果表明: 在正常状态下, 根毛区细胞质内Ca2+较少, 主要位于质膜附近和液泡中, Ca2+-ATPase主要定位于质膜和液泡膜, 有一定活性。在0.448%NaHCO3胁迫下, 根毛区细胞质中Ca2+增多, 液泡中Ca2+减少, 且主要集中于液泡膜附近, 质膜和液泡膜Ca2+-ATPase活性明显升高。在1.054%NaHCO3胁迫下,细胞质中分布的Ca2+增多, 而液泡中Ca2+极少, Ca2+-ATPase活性也降低。以上结果表明, Ca2+亚细胞定位和Ca2+-ATPase活性变化在星星草响应NaHCO3胁迫的信号传递过程中具有重要作用。  相似文献   

3.
4.
5.
Synaptotagmin I (Syt I),a low-affinity Ca2+-binding protein, is thought to serve asthe Ca2+ sensor in the release of neurotransmitter.However, functional studies on the calyx of Held synapse revealed thatthe rapid release of neurotransmitter requires only approximatelymicromolar [Ca2+], suggesting that Syt I may play a morecomplex role in determining the high-affinity Ca2+dependence of exocytosis. Here we tested this hypothesis by studying pituitary cells, which possess high- and low-affinityCa2+-dependent exocytic pathways and express Syt I. Usingpatch-clamp capacitance measurements to monitor secretion and the acuteantisense deletion of Syt I from differentiated cells, we have shownthat the rapid and the most Ca2+-sensitive pathway ofexocytosis in rat melanotrophs requires Syt I. Furthermore, stimulationof the Ca2+-dependent exocytosis by cytosol dialysis withsolutions containing 1 µM [Ca2+] was completelyabolished in the absence of Syt I. Similar results were obtained by thepreinjection of antibodies against the CAPS (Ca2+-dependentactivator protein for secretion) protein. These results indicate thatsynaptotagmin I and CAPS proteins increase the probability of vesiclefusion at low cytosolic [Ca2+].

  相似文献   

6.
Osteoblasts subjected to fluid shearincrease the expression of the early response gene, c-fos, andthe inducible isoform of cyclooxygenase, COX-2, two proteins linked tothe anabolic response of bone to mechanical stimulation, in vivo. Theseincreases in gene expression are dependent on shear-induced actinstress fiber formation. Here, we demonstrate that MC3T3-E1osteoblast-like cells respond to shear with a rapid increase inintracellular Ca2+ concentration([Ca2+]i) that wepostulate is important to subsequent cellular responses to shear. Totest this hypothesis, MC3T3-E1 cells were grown on glass slides coatedwith fibronectin and subjected to laminar fluid flow (12 dyn/cm2). Before application of shear, cells were treatedwith two Ca2+ channel inhibitors or various blockers ofintracellular Ca2+ release for 0.5-1 h. Althoughgadolinium, a mechanosensitive channel blocker, significantly reducedthe [Ca2+]i response, neithergadolinium nor nifedipine, an L-type channel Ca2+ channelblocker, were able to block shear-induced stress fiber formation andincrease in c-fos and COX-2 in MC3T3-E1 cells. However, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraaceticacid-AM, an intracellular Ca2+ chelator, or thapsigargin,which empties intracellular Ca2+ stores, completelyinhibited stress fiber formation and c-fos/COX-2 production in shearedosteoblasts. Neomycin or U-73122 inhibition of phospholipase C, whichmediates D-myo-inositol 1,4,5-trisphosphate (IP3)-induced intracellular Ca2+ release, alsocompletely suppressed actin reorganization and c-fos/COX-2 production.Pretreatment of MC3T3-E1 cells with U-73343, the inactive isoform ofU-73122, did not inhibit these shear-induced responses. These resultssuggest that IP3-mediated intracellular Ca2+release is required for modulating flow-induced responses in MC3T3-E1 cells.

  相似文献   

7.
Although the sarcoplasmic reticulum (SR) is known to regulatethe intracellular concentration ofCa2+ and the SR function has beenshown to become abnormal during ischemia-reperfusion in theheart, the mechanisms for this defect are not fully understood. Becausephosphorylation of SR proteins plays a crucial role in the regulationof SR function, we investigated the status of endogenousCa2+/calmodulin-dependent proteinkinase (CaMK) and exogenous cAMP-dependent protein kinase (PKA)phosphorylation of the SR proteins in control, ischemic (I), andischemia-reperfused (I/R) hearts treated or not treated withsuperoxide dismutase (SOD) plus catalase (CAT). SR and cytosolicfractions were isolated from control, I, and I/R hearts treated or nottreated with SOD plus CAT, and the SR protein phosphorylation by CaMKand PKA, the CaMK- and PKA-stimulated Ca2+ uptake, and the CaMK, PKA,and phosphatase activities were studied. The SR CaMK andCaMK-stimulated Ca2+ uptakeactivities, as well as CaMK phosphorylation ofCa2+ pump ATPase (SERCA2a) andphospholamban (PLB), were significantly decreased in both I and I/Rhearts. The PKA phosphorylation of PLB and PKA-stimulatedCa2+ uptake were reducedsignificantly in the I/R hearts only. Cytosolic CaMK and PKA activitieswere unaltered, whereas SR phosphatase activity in the I and I/R heartswas depressed. SOD plus CAT treatment prevented the observedalterations in SR CaMK and phosphatase activities, CaMK and PKAphosphorylations, and CaMK- and PKA-stimulated Ca2+ uptake. These resultsindicate that depressed CaMK phosphorylation and CaMK-stimulatedCa2+ uptake in I/R hearts may bedue to a depression in the SR CaMK activity. Furthermore, prevention ofthe I/R-induced alterations in SR protein phosphorylation by SOD plusCAT treatment is consistent with the role of oxidative stress duringischemia-reperfusion injury in the heart.

  相似文献   

8.
Sarco(endo)plasmic reticulum Ca2+ (SERCA) pumps are important for cell signaling. Three different genes, SERCA1, 2, and 3, encode these pumps. Most tissues, including vascular smooth muscle, express a splice variant of SERCA2 (SERCA2b), whereas SERCA3a is widely distributed in tissues such as vascular endothelium, tracheal epithelium, mast cells, and lymphoid cells. SERCA2b protein is readily inactivated by peroxynitrite that may be formed during cardiac ischemia reperfusion or during immune response after infection. Here, we compared the peroxynitrite sensitivity of SERCA2b and SERCA3a by using microsomes prepared from HEK-293T cells overexpressing the pumps. We incubated the microsomes with different concentrations of peroxynitrite and determined Ca2+ uptake, Ca2+-Mg2+-ATPase, Ca2+-dependent formation of acylphosphate intermediate, and protein mobility in Western blots. Ca2+ uptake, Ca2+-Mg2+-ATPase, and Ca2+-dependent formation of acylphosphate intermediate were inactivated for both SERCA2b and SERCA3a, but the latter was more resistant to the inactivation. Western blots showed that SERCA2b and SERCA3a proteins oligomerized after treatment with peroxynitrite, but each with a slightly different pattern. Compared with monomers, the oligomers may be less efficient in forming the acylphosphate intermediate and in conducting the remainder of the steps in the reaction cycle. We conclude that the resistance of SERCA3a to peroxynitrite may aid the cells expressing them in functioning during exposure to oxidative stress. free radicals; Ca2+-Mg2+-ATPase; ischemia; coronary artery; vascular smooth muscle; sarco(endo)plasmic reticulum Ca2+ pumps  相似文献   

9.
Although mistranslation is commonly believed to be deleterious, recent evidence indicates that mistranslation can be actively regulated and be beneficial in stress response. Methionine mistranslation in mammalian cells is regulated by reactive oxygen species where cells deliberately alter the proteome through incorporating Met at non-Met positions to enhance oxidative stress response. However, it was not known whether specific, mistranslated mutant proteins have distinct activities from the wild-type protein whose sequence is restrained by the genetic code. Here, we show that Met mistranslation with and without Ca2+ overload generates specific mutant Ca2+/calmodulin-dependent protein kinase II (CaMKII) proteins substituting non-Met with Met at multiple locations. Compared to the genetically encoded wild-type CaMKII, specific mutant CaMKIIs can have distinct activation profiles, intracellular localization and enhanced phenotypes. Our results demonstrate that Met-mistranslation, or “Met-scan” can indeed generate mutant proteins in cells that expand the activity profile of the wild-type protein, and provide a molecular mechanism for the role of regulated mistranslation.  相似文献   

10.
The rat dorsal root ganglion (DRG) Ca2+-sensing receptor (CaR) was stably expressed in-frame as an enhanced green fluorescent protein (EGFP) fusion protein in human embryonic kidney (HEK)293 cells, and is functionally linked to changes in intracellular Ca2+ concentration ([Ca2+]i). RT-PCR analysis indicated the presence of the message for the DRG CaR cDNA. Western blot analysis of membrane proteins showed a doublet of 168–175 and 185 kDa, consistent with immature and mature forms of the CaR.EGFP fusion protein, respectively. Increasing extracellular [Ca2+] ([Ca2+]e) from 0.5 to 1 mM resulted in increases in [Ca2+]i levels, which were blocked by 30 µM 2-aminoethyldiphenyl borate. [Ca2+]e-response studies indicate a Ca2+ sensitivity with an EC50 of 1.75 ± 0.10 mM. NPS R-467 and Gd3+ activated the CaR. When [Ca2+]e was successively raised from 0.25 to 4 mM, peak [Ca2+]i, attained with 0.5 mM, was reduced by 50%. Similar reductions were observed with repeated applications of 10 mM Ca2+, 1 and 10 µM NPS R-467, or 50 and 100 µM Gd3+, indicating desensitization of the response. Furthermore, Ca2+ mobilization increased phosphorylated protein kinase C (PKC) levels in the cells. However, the PKC activator, phorbol myristate acetate did not inhibit CaR-mediated Ca2+ signaling. Rather, a spectrum of PKC inhibitors partially reduced peak responses to Cae2+. Treatment of cells with 100 nM PMA for 24 h, to downregulate PKC, reduced [Ca2+]i transients by 49.9 ± 5.2% (at 1 mM Ca2+) and 40.5 ± 6.5% (at 2 mM Ca2+), compared with controls. The findings suggest involvement of PKC in the pathway for Ca2+ mobilization following CaR activation. desensitization; protein kinase C  相似文献   

11.
Synaptotagmin (syt) I is a Ca2+-binding protein that is well accepted as a major sensor for Ca2+-regulated release of transmitter. However, controversy remains as to whether syt I is the only protein that can function in this role and whether the remaining syt family members also function as Ca2+ sensors. In this study, we generated a PC12 cell line that continuously expresses a short hairpin RNA (shRNA) to silence expression of syt I by RNA interference. Immunoblot and immunocytochemistry experiments demonstrate that expression of syt I was specifically silenced in cells that stably integrate the shRNA-syt I compared with control cells stably transfected with the empty shRNA vector. The other predominantly expressed syt isoform, syt IX, was not affected, nor was the expression of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins when syt I levels were knocked down. Resting Ca2+ and stimulated Ca2+ influx imaged with fura-2 were not altered in syt I knockdown cells. However, evoked release of catecholamine detected by carbon fiber amperometry and HPLC was significantly reduced, although not abolished. Human syt I rescued the release events in the syt I knockdown cells. The reduction of stimulated catecholamine release in the syt I knockdown cells strongly suggests that although syt I is clearly involved in catecholamine release, it is not the only protein to regulate stimulated release in PC12 cells, and another protein likely has a role as a Ca2+ sensor for regulated release of transmitter. RNA interference; amperometry; exocytosis  相似文献   

12.
Ca2+ uptakeand release from endoplasmic reticulum (ER) and mitochondrialCa2+ stores play important physiological and pathologicalroles, and these processes are shaped by interactions that depend onthe structural intimacy between these organelles. Here we investigate the morphological and functional relationships between mitochondria, ER, and the sites of intracellular Ca2+ release inXenopus laevis oocytes by combining confocal imaging oflocal Ca2+ release events ("Ca2+ puffs")with mitochondrial localization visualized using vital dyes andsubcellularly targeted fluorescent proteins. Mitochondria and ER arelocalized in cortical bands ~6-8 µm wide, with the mitochondria arranged as densely packed "islands" interconnected bydiscrete strands. The ER is concentrated more superficially thanmitochondria, and the mean separation between Ca2+ puffsites and mitochondria is ~2.3 µm. However, a subpopulation ofCa2+ puff sites is intimately associated with mitochondria(~28% within <600 nm), a greater number than expected ifCa2+ puff sites were randomly distributed. Ca2+release sites close to mitochondria exhibit lower Ca2+ puffactivity than Ca2+ puff sites in regions with lowermitochondrial density. Furthermore, Ca2+ puff sites inclose association with mitochondria rarely serve as the sites forCa2+ wave initiation. We conclude that mitochondria playimportant roles in regulating local ER excitability, Ca2+wave initiation, and, thereby, spatial patterning of globalCa2+ signals.

  相似文献   

13.
To study the effects of flow on in situendothelial intracellular calcium concentration([Ca2+]i) signaling, rat aortic rings wereloaded with fura 2, mounted on a tissue flow chamber, and divided intocontrol and flow-pretreated groups. The latter was perfused with bufferat a shear stress of 50 dyns/cm2 for 1 h. Endothelial[Ca2+]i responses to ACh or shear stresseswere determined by ratio image analysis. Moreover, ACh-induced[Ca2+]i elevation responses were measured ina calcium-free buffer, or in the presence of SKF-96365, to elucidatethe role of calcium influx in the flow effects. Our results showed that1) ACh increased endothelial[Ca2+]i in a dose-dependent manner, and theseresponses were incremented by flow-pretreatment; 2) thedifferences in ACh-induced [Ca2+]i elevationbetween control and flow-pretreated groups were abolished by SKF-96365or by Ca2+-free buffer; and 3) in the presenceof 105 M ATP, shear stress induced dose-dependent[Ca2+]i elevation responses that were notaltered by flow-pretreatment. In conclusion, flow-pretreatment augmentsthe ACh-induced endothelial calcium influx in rat aortas ex vivo.

  相似文献   

14.
AlF4-is known to generate oscillations in intracellular Ca2+ concentration ([Ca2+]i) by activating G proteins in many cell types. However, in rat pancreatic acinar cells, AlF4--evoked [Ca2+]i oscillations were reported to be dependent on extracellular Ca2+, which contrasts with the [Ca2+]i oscillations induced by cholecystokinin (CCK). Therefore, we investigated the mechanisms by which AlF4- generates extracellular Ca2+-dependent [Ca2+]i oscillations in rat pancreatic acinar cells. AlF4--induced [Ca2+]i oscillations were stopped rapidly by the removal of extracellular Ca2+ and were abolished on the addition of 20 mM caffeine and 2 µM thapsigargin, indicating that Ca2+ influx plays a crucial role in maintenance of the oscillations and that an inositol 1,4,5-trisphosphate-sensitive Ca2+ store is also required. The amount of Ca2+ in the intracellular Ca2+ store was decreased as the AlF4--induced [Ca2+]i oscillations continued. Measurement of 45Ca2+ influx into isolated microsomes revealed that AlF4-directly inhibited sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). The activity of plasma membrane Ca2+-ATPase during AlF4- stimulation was not significantly different from that during CCK stimulation. After partial inhibition of SERCA with 1 nM thapsigargin, 20 pM CCK-evoked [Ca2+]i oscillations were dependent on extracellular Ca2+. This study shows that AlF4- induces [Ca2+]i oscillations, probably by inositol 1,4,5-trisphosphate production via G protein activation but that these oscillations are strongly dependent on extracellular Ca2+ as a result of the partial inhibition of SERCA. cholecystokinin; plasma membrane adenosine 5'-triphosphatase; G proteins; caffeine  相似文献   

15.
We recently reported that store-operated Ca2+ entry (SOCE) in nonexcitable cells is likely to be mediated by a reversible interaction between Ca2+ channels in the plasma membrane and the endoplasmic reticulum, a mechanism known as "secretion-like coupling." As for secretion, in this model the actin cytoskeleton plays a key regulatory role. In the present study we have explored the involvement of the secretory proteins synaptosome-associated protein (SNAP-25) and vesicle-associated membrane protein (VAMP) in SOCE in pancreatic acinar cells. Cleavage of SNAP-25 and VAMPs by treatment with botulinum toxin A (BoNT A) and tetanus toxin (TeTx), respectively, effectively inhibited amylase secretion stimulated by the physiological agonist CCK-8. BoNT A significantly reduced Ca2+ entry induced by store depletion using thapsigargin or CCK-8. In addition, treatment with BoNT A once SOCE had been activated reduced Ca2+ influx, indicating that SNAP-25 is needed for both the activation and maintenance of SOCE in pancreatic acinar cells. VAMP-2 and VAMP-3 are expressed in mouse pancreatic acinar cells. Both proteins associate with the cytoskeleton upon Ca2+ store depletion, although only VAMP-2 seems to be sensitive to TeTx. Treatment of pancreatic acinar cells with TeTx reduced the activation of SOCE without affecting its maintenance. These findings support a role for SNAP-25 and VAMP-2 in the activation of SOCE in pancreatic acinar cells and show parallels between this process and secretion in a specialized secretory cell type. synaptosome-associated protein; vesicle-associated membrane protein; pancreatic acinar cells; cytoskeleton; calcium entry  相似文献   

16.
Calcium (Ca2+) plays essential roles in generative reproduction of angiosperms, but the sites and mechanisms of Ca2+ storage and mobilization during pollen-pistil interactions have not been fully defined. Both external and internal Ca2+ stores are likely important during male gametophyte communication with the sporophytic and gametophytic cells within the pistil. Given that calreticulin (CRT), a Ca2+-buffering protein, is able to bind Ca2+ reversibly, it can serve as a mobile store of easily releasable Ca2+ (so called an exchangeable Ca2+) in eukaryotic cells. CRT has typical endoplasmic reticulum (ER) targeting and retention signals and resides primarily in the ER. However, localization of this protein outside the ER has also been revealed in both animal and plant cells, including Golgi/dictyosomes, nucleus, plasma membrane/cell surface, plasmodesmata, and even extracellular matrix. These findings indicate that CRT may function in a variety of different cell compartments and specialized structures. We have recently shown that CRT is highly expressed and accumulated in the ER of plant cells involved in pollen-pistil interactions in Petunia, and we proposed an essential role for CRT in intracellular Ca2+ storage and mobilization during the key reproductive events. Here, we demonstrate that both CRT and exchangeable Ca2+ are localized in the intra/extracellular peripheries of highly specialized plant cells, such as the pistil transmitting tract cells, pollen tubes, nucellus cells surrounding the embryo sac, and synergids. Based on our present results, we propose that extracellularly located CRT is also involved in Ca2+ storage and mobilization during sexual reproduction of angiosperms.  相似文献   

17.

Key message

The calreticulin triple knockout mutant shows growth defects in response to abiotic stress.

Abstract

The endoplasmic reticulum (ER) is an essential organelle that is responsible for the folding and maturation of proteins. During ER stress, unfolded protein aggregates accumulate in the cell, leading to the unfolded protein response (UPR). The UPR up-regulates the expression of ER-stress-responsive genes encoding calreticulin (CRT), an ER-localized Ca2+-binding protein. To understand the function of plant CRTs, we generated a triple knockout mutant, t123, which lacks CRT1, CRT2 and CRT3 and examined the roles of calreticulins in abiotic stress tolerance. A triple knockout mutant increased sensitivity to water stress which implies that calreticulins are involved in the Arabidopsis response to water stress. We identified that the cyclophilin AtCYP21-2, which is located in the ER, was specifically enhanced in the t123 mutants. Seed germination of the atcyp21-1 mutant was retarded by water stress. Taken together, these results suggest that regulatory proteins that serve to protect plants from water stress are folded properly in part with the help of calreticulins. The AtCYP21-2 may also participate in this protein-folding process in association with calreticulins.  相似文献   

18.
The effects of epidermal growth factor(EGF) on intracellular calcium ([Ca2+]i)responses to the muscarinic agonist carbachol were studied in a humansalivary cell line (HSY). Carbachol (104 M)-stimulated[Ca2+]i mobilization was inhibited by 40%after 48-h treatment with 5 × 1010 M EGF. EGF alsoreduced carbachol-induced [Ca2+]i inCa2+-free medium and Ca2+ influx followingrepletion of extracellular Ca2+. UnderCa2+-free conditions, thapsigargin, an inhibitor ofCa2+ uptake to internal stores, induced similar[Ca2+]i signals in control and EGF-treatedcells, indicating that internal Ca2+ stores were unaffectedby EGF; however, in cells exposed to thapsigargin, Ca2+influx following Ca2+ repletion was reduced by EGF.Muscarinic receptor density, assessed by binding of the muscarinicreceptor antagonistL-[benzilic-4,4'-3HCN]quinuclidinyl benzilate([3H]QNB), was decreased by 20% after EGF treatment.Inhibition of the carbachol response by EGF was not altered by phorbolester-induced downregulation of protein kinase C (PKC) but was enhancedupon PKC activation by a diacylglycerol analog. Phosphorylation of mitogen-activated protein kinase (MAP kinase) and inhibition of thecarbachol response by EGF were both blocked by the MAP kinase pathwayinhibitor PD-98059. The results suggest that EGF decreases carbachol-induced Ca2+ release from internal stores andalso exerts a direct inhibitory action on Ca2+ influx. Adecline in muscarinic receptor density may contribute to EGF inhibitionof carbachol responsiveness. The inhibitory effect of EGF is mediatedby the MAP kinase pathway and is potentiated by a distinct modulatorycascade involving activation of PKC. EGF may play a physiological rolein regulating muscarinic receptor-stimulated salivary secretion.

  相似文献   

19.
Extrusion of protons as a response to high-NaCl stress in intactmung bean roots was investigated at different external concentrationsof Ca2+ ions ([Ca2+]ex). The extrusion of protons was graduallyenhanced in the roots exposed to 100 mM NaCl, and high [Ca2+]exdiminished this enhancement of the extrusion. Vesicles of plasmalemmaand tonoplast were prepared from the roots and the H+-translocatingATPase (H+-ATPase) activities associated with the two typesof membrane and the H+-pyrophosphatase (H+-PPase) activity ofthe tonoplast were assayed. The plasmalemma ATPase was stimulatedin parallel with dramatic increases in the intracellular concentrationof Na+([Na+]in). High [Ca2+]ex prevented the increase in [Na+]inand diminished the stimulation of ATPase activity. The tonoplastATPase showed a rapid response to salt stress and was similarlystimulated even at high [Ca2+]M. The activities of both ATPaseswere, however, insensitive to concentrations of Na+ ions upto 100 HIM. By contrast, H+-PPase activity of the tonoplastwas severely inhibited with increasing [Na+]in under salt stressand recovered with high [Ca2+]ex. These findings suggest thathigh-NaCl stress increases the intracellular concentration ofNa+ ions in mung bean roots, which inhibits the tonoplast H+-PPase,and the activity of the plasmalemma H+-ATPase is thereby stimulatedand regulates the cytoplasmic pH. (Received March 26, 1991; Accepted December 13, 1991)  相似文献   

20.
The Ca2+-sensing receptor (CaR) is a pleiotropic, type III G protein-coupled receptor (GPCR) that associates functionally with the cytoskeletal protein filamin. To investigate the effect of CaR signaling on the cytoskeleton, human embryonic kidney (HEK)-293 cells stably transfected with CaR (CaR-HEK) were incubated with CaR agonists in serum-free medium for up to 3 h. Addition of the calcimimetic NPS R-467 or exposure to high extracellular Ca2+ or Mg2+ levels elicited actin stress fiber assembly and process retraction in otherwise stellate cells. These responses were ablated by cotreatment with the calcilytic NPS 89636 and were absent in vector-transfected HEK-293 cells. Cotreatment with the Rho kinase inhibitors Y-27632 and H1152 attenuated the CaR-induced morphological change but not intracellular Ca2+ (Cai2+) mobilization or ERK activation, although transfection with a dominant-negative RhoA-binding protein also inhibited calcimimetic-induced actin stress fiber assembly. CaR effects on morphology were unaffected by inhibition of Gq/11 or Gi/o signaling, epidermal growth factor receptor, or the metalloproteinases. In contrast, CaR-induced cytoskeletal changes were not induced by the aromatic amino acids, treatments that also failed to potentiate CaR-induced ERK activation despite inducing Cai2+ mobilization. Together, these data establish that CaR can elicit Rho-mediated changes in stress fiber assembly and cell morphology, which could contribute to the receptor's physiological actions. In addition, this study provides further evidence that aromatic amino acids elicit differential signaling from other CaR agonists. cytoskeleton; signaling  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号