首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent genome‐wide association scans (GWAS) for reading and language abilities have pin‐pointed promising new candidate loci. However, the potential contributions of these loci remain to be validated. In this study, we tested 17 of the most significantly associated single nucleotide polymorphisms (SNPs) from these GWAS studies (P < 10?6 in the original studies) in a new independent population dataset from the Netherlands: known as Familial Influences on Literacy Abilities. This dataset comprised 483 children from 307 nuclear families and 505 adults (including parents of participating children), and provided adequate statistical power to detect the effects that were previously reported. The following measures of reading and language performance were collected: word reading fluency, nonword reading fluency, phonological awareness and rapid automatized naming. Two SNPs (rs12636438 and rs7187223) were associated with performance in multivariate and univariate testing, but these did not remain significant after correction for multiple testing. Another SNP (rs482700) was only nominally associated in the multivariate test. For the rest of the SNPs, we did not find supportive evidence of association. The findings may reflect differences between our study and the previous investigations with respect to the language of testing, the exact tests used and the recruitment criteria. Alternatively, most of the prior reported associations may have been false positives. A larger scale GWAS meta‐analysis than those previously performed will likely be required to obtain robust insights into the genomic architecture underlying reading and language.  相似文献   

2.
The major histocompatibility complex (MHC) on chromosome 6p21 is a key contributor to the genetic basis of systemic lupus erythematosus (SLE). Although SLE affects African Americans disproportionately compared to European Americans, there has been no comprehensive analysis of the MHC region in relationship to SLE in African Americans. We conducted a screening of the MHC region for 1,536 single nucleotide polymorphisms (SNPs) and the deletion of the C4A gene in a SLE case–control study (380 cases, 765 age-matched controls) nested within the prospective Black Women’s Health Study. We also genotyped 1,509 ancestral informative markers throughout the genome to estimate European ancestry to control for population stratification due to population admixture. The most strongly associated SNP with SLE was the rs9271366 (odds ratio, OR = 1.70, p = 5.6 × 10−5) near the HLA-DRB1 gene. Conditional haplotype analysis revealed three other SNPs, rs204890 (OR = 1.86, p = 1.2 × 10−4), rs2071349 (OR = 1.53, p = 1.0 × 10−3), and rs2844580 (OR = 1.43, p = 1.3 × 10−3), to be associated with SLE independent of the rs9271366 SNP. In univariate analysis, the OR for the C4A deletion was 1.38, p = 0.075, but after simultaneous adjustment for the other four SNPs the odds ratio was 1.01, p = 0.98. A genotype score combining the four newly identified SNPs showed an additive risk according to the number of high-risk alleles (OR = 1.67 per high-risk allele, p < 0.0001). Our strongest signal, the rs9271366 SNP, was also associated with higher risk of SLE in a previous Chinese genome-wide association study (GWAS). In addition, two SNPs found in a GWAS of European ancestry women were confirmed in our study, indicating that African Americans share some genetic risk factors for SLE with European and Chinese subjects. In summary, we found four independent signals in the MHC region associated with risk of SLE in African American women.  相似文献   

3.
Recent genetic studies have identified physical activity (PA)-susceptible loci in European ancestry subjects; however, due to considerable genetic differences, these findings are not likely extendable to East Asian populations. Therefore, the present study aimed to identify significantly associated PA-susceptible loci using genome-wide association studies (GWASs) with East Asian (EAS) subjects and to generalize the findings to European (EUR) ancestries. The mRNA levels of genes located near the genome-wide significantly associated single-nucleotide polymorphisms (SNP) were compared under PA and control conditions. Rs74937256, located in ACSS3 (chromosome 12), which primarily functions in skeletal muscle tissues, was identified as a genome-wide significant variant (P = 6.06 × 10−9) in EAS. Additionally, the rs2525840, also in ACSS3 satisfied the Bonferroni corrected significance (P = 3.77 × 10−5) in EUR. We found that rs74937256 is an expressed trait locus of ACSS3 (P = 10−4), and ACSS3 mRNA expression significantly differs after PA, based on PrediXcan (P = 7 × 10−8) and the gene expression omnibus database (P = 0.043).  相似文献   

4.
Noise-induced hearing loss (NIHL) seriously affects the life quality of humans and causes huge economic losses to society. To identify novel genetic loci involved in NIHL, we conducted a genome-wide association study (GWAS) for this symptom in Chinese populations. GWAS scan was performed in 89 NIHL subjects (cases) and 209 subjects with normal hearing who have been exposed to a similar noise environment (controls), followed by a replication study consisting of 53 cases and 360 controls. We identified that four candidate pathways were nominally significantly associated with NIHL, including the Erbb, Wnt, hedgehog and intraflagellar transport pathways. In addition, two novel index single-nucleotide polymorphisms, rs35075890 in the intron of AUTS2 gene at 7q11.22 (combined P = 1.3 × 10−6) and rs10081191 in the intron of PTPRN2 gene at 7q36.3 (combined P = 2.1 × 10−6), were significantly associated with NIHL. Furthermore, the expression quantitative trait loci analyses revealed that in brain tissues, the genotypes of rs35075890 are significantly associated with the expression levels of AUTS2, and the genotypes of rs10081191 are significantly associated with the expressions of PTPRN2 and WDR60. In conclusion, our findings highlight two novel loci at 7q11.22 and 7q36.3 conferring susceptibility to NIHL.  相似文献   

5.
Mathematical ability is moderately heritable, and it is a complex trait which can be evaluated in several different categories. A few genetic studies have been published on general mathematical ability. However, no genetic study focused on specific mathematical ability categories. In this study, we separately performed genome-wide association studies on 11 mathematical ability categories in 1146 students from Chinese elementary schools. We identified seven genome-wide significant single nucleotide polymorphisms (SNPs) with strong linkage disequilibrium among each other (all r2 > 0.8) associated with mathematical reasoning ability (top SNP: rs34034296, p = 2.01 × 10−8, nearest gene: CUB and Sushi multiple domains 3, CSMD3). We replicated one SNP (rs133885) from 585 SNPs previously reported to be associated with general mathematical ability associated with division ability in our data (p = 1.053 × 10−5). In the gene- and gene-set enrichment analysis by MAGMA, we found three significant enrichments of associations with three mathematical ability categories for three genes (LINGO2, OAS1 and HECTD1). We also observed four significant enrichments of associations with four mathematical ability categories for three gene sets. Our results suggest new candidate genetic loci for the genetics of mathematical ability.  相似文献   

6.
Equine recurrent uveitis (ERU) is characterized by intraocular inflammation that often leads to blindness in horses. Appaloosas are more likely than any other breed to develop insidious ERU, distinguished by low-grade chronic intraocular inflammation, suggesting a genetic predisposition. Appaloosas are known for their white coat spotting patterns caused by the leopard complex spotting allele (LP) and the modifier PATN1. A marker linked to LP on ECA1 and markers near MHC on ECA20 were previously associated with increased ERU risk. This study aims to further investigate these loci and identify additional genetic risk factors. A GWAS was performed using the Illumina Equine SNP70 BeadChip in 91 horses. Additive mixed model approaches were used to correct for relatedness. Although they do not reach a strict Bonferroni genome-wide significance threshold, two SNPs on ECA1 and one SNP each on ECA12 and ECA29 were among the highest ranking SNPs and thus warranted further analysis (P = 1.20 × 10−5, P = 5.91 × 10−6, = 4.91 × 10−5, P = 6.46 × 10−5). In a second cohort (n = 98), only an association with the LP allele on ECA1 was replicated (P = 5.33 × 10−5). Modeling disease risk with LP, age and additional depigmentation factors (PATN1 genotype and extent of roaning) supports an additive role for LP and suggests an additive role for PATN1. Genotyping for LP and PATN1 may help predict ERU risk (AUC = 0.83). The functional role of LP and PATN1 in ERU development requires further investigation. Testing samples across breeds with leopard complex spotting patterns and a denser set of markers is warranted to further refine the genetic components of ERU.  相似文献   

7.
Chow BW  Ho CS  Wong SW  Waye MM  Bishop DV 《PloS one》2011,6(2):e16640
This study investigated the etiology of individual differences in Chinese language and reading skills in 312 typically developing Chinese twin pairs aged from 3 to 11 years (228 pairs of monozygotic twins and 84 pairs of dizygotic twins; 166 male pairs and 146 female pairs). Children were individually given tasks of Chinese word reading, receptive vocabulary, phonological memory, tone awareness, syllable and rhyme awareness, rapid automatized naming, morphological awareness and orthographic skills, and Raven's Coloured Progressive Matrices. All analyses controlled for the effects of age. There were moderate to substantial genetic influences on word reading, tone awareness, phonological memory, morphological awareness and rapid automatized naming (estimates ranged from .42 to .73), while shared environment exerted moderate to strong effects on receptive vocabulary, syllable and rhyme awareness and orthographic skills (estimates ranged from .35 to .63). Results were largely unchanged when scores were adjusted for nonverbal reasoning as well as age. Findings of this study are mostly similar to those found for English, a language with very different characteristics, and suggest the universality of genetic and environmental influences across languages.  相似文献   

8.
Five genes have been identified that contribute to Mendelian forms of Parkinson disease (PD); however, mutations have been found in fewer than 5% of patients, suggesting that additional genes contribute to disease risk. Unlike previous studies that focused primarily on sporadic PD, we have performed the first genomewide association study (GWAS) in familial PD. Genotyping was performed with the Illumina HumanCNV370Duo array in 857 familial PD cases and 867 controls. A logistic model was employed to test for association under additive and recessive modes of inheritance after adjusting for gender and age. No result met genomewide significance based on a conservative Bonferroni correction. The strongest association result was with SNPs in the GAK/DGKQ region on chromosome 4 (additive model: p = 3.4 × 10−6; OR = 1.69). Consistent evidence of association was also observed to the chromosomal regions containing SNCA (additive model: p = 5.5 × 10−5; OR = 1.35) and MAPT (recessive model: p = 2.0 × 10−5; OR = 0.56). Both of these genes have been implicated previously in PD susceptibility; however, neither was identified in previous GWAS studies of PD. Meta-analysis was performed using data from a previous case–control GWAS, and yielded improved p values for several regions, including GAK/DGKQ (additive model: p = 2.5 × 10−7) and the MAPT region (recessive model: p = 9.8 × 10−6; additive model: p = 4.8 × 10−5). These data suggest the identification of new susceptibility alleles for PD in the GAK/DGKQ region, and also provide further support for the role of SNCA and MAPT in PD susceptibility. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. N. Pankratz and J. B. Wilk are joint first authors.  相似文献   

9.
It has been implied that there is a possible relationship between cyclin-dependent protein kinase inhibitors antisense RNA 1 (CDKN2B-AS1) gene rs4977574 A/G polymorphism and coronary heart disease (CHD) susceptibility. However, as the research results are discrepant, no distinct consensus on this issue has been reached so far. In order to further elaborate the latent association of the CDKN2B-AS1 gene rs4977574 A/G polymorphism and CHD, this present meta-analysis was conducted. There were 40,979 subjects of 17 individual studies in the present meta-analysis. The pooled odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) were estimated to determine the association strength. Considering the significant heterogeneity among the individual studies, the random-effect models were used. In the current meta-analysis, a significant association between CDKN2B-AS1 gene rs4977574 A/G polymorphism and CHD was found under allelic (OR: 1.18, 95% CI: 1.08–1.29, p = 4.83×10−4), recessive (OR: 1.36, 95% CI: 1.11–1.67, p = 0.003), dominant (OR: 0.71, 95% CI: 0.58–0.86, p = 6.26×10−4), heterozygous (OR:1.210, 95% CI: 1.076–1.360, p = 0.001), homozygous (OR: 1.394, 95% CI: 1.163–1.671, p = 3.31×10−4) and additive (OR: 1.180, 95% CI: 1.075–1.295, p = 4.83×10−4) genetic models. A more significant association between them was found in the Asian population than that in the whole population under these genetic models (p < 0.05). However, no significant association between them was found in the Caucasian population (p > 0.05). CDKN2B-AS1 gene rs4977574 A/G polymorphism was associated with CHD susceptibility, especially in the Asian population. G allele of CDKN2B-AS1 gene rs4977574 A/G polymorphism is the risk allele for CHD.  相似文献   

10.
The online photoreaction of the rose bengal photosensitized luminol–copper (II) chemiluminescence (CL) system was used for the determination of β-nicotinamide adenine dinucleotide (NADH) and ethanol (EtOH) in pharmaceutical formulations combined with a flow injection technique. NADH can significantly enhance the CL emission of the reaction. For EtOH, alcohol dehydrogenase in soluble form was utilized in the presence of nicotinamide adenine dinucleotide resulting in NADH production. The limit of detection (3σ blank, 𝑛 = 3) of 4.0 × 10−8 and 2.17 × 10−5 M, and linear range 1.3 × 10−7 to 2.5 × 10−5 M (R2 = 0.9998, n = 6) and 0.11–2.17 × 10−3 M (R2 = 0.9996, n = 6) were obtained for NADH and EtOH respectively. The injection rate was 100 h−1 with a relative standard deviation (n = 3) of 1.5–4.8% in the range studied for both analytes. The procedure was satisfactorily applied to pharmaceutical formulations with recoveries in the range 91.6 ± 3.0% to 110 ± 2.0% for NADH and 88 ± 3.0% to 95.4 ± 4.0% for EtOH. The results obtained were very consistent and did not differ considerably from the reported approaches at a 95% confidence limit. The possible mechanism of the CL reaction is also explained briefly.  相似文献   

11.
Maximum number of alcoholic drinks consumed in a 24-h period (maxdrinks) is a heritable (>50 %) trait and is strongly correlated with vulnerability to excessive alcohol consumption and subsequent alcohol dependence (AD). Several genome-wide association studies (GWAS) have studied alcohol dependence, but few have concentrated on excessive alcohol consumption. We performed two GWAS using maxdrinks as an excessive alcohol consumption phenotype: one in 118 extended families (N = 2,322) selected from the Collaborative Study on the Genetics of Alcoholism (COGA), and the other in a case–control sample (N = 2,593) derived from the Study of Addiction: Genes and Environment (SAGE). The strongest association in the COGA families was detected with rs9523562 (p = 2.1 × 10?6) located in an intergenic region on chromosome 13q31.1; the strongest association in the SAGE dataset was with rs67666182 (p = 7.1 × 10?7), located in an intergenic region on chromosome 8. We also performed a meta-analysis with these two GWAS and demonstrated evidence of association in both datasets for the LMO1 (p = 7.2 × 10?7) and PLCL1 genes (p = 4.1 × 10?6) with maxdrinks. A variant in AUTS2 and variants in INADL, C15orf32 and HIP1 that were associated with measures of alcohol consumption in a meta-analysis of GWAS studies and a GWAS of alcohol consumption factor score also showed nominal association in the current meta-analysis. The present study has identified several loci that warrant further examination in independent samples. Among the top SNPs in each of the dataset (p ≤ 10?4) far more showed the same direction of effect in the other dataset than would be expected by chance (p = 2 × 10?3, 3 × 10?6), suggesting that there are true signals among these top SNPs, even though no SNP reached genome-wide levels of significance.  相似文献   

12.
Solar energy, which is essential for the origin and evolution of all life forms on Earth, can be objectively recorded through attributes such as climatic ambient temperature (CAT), ultraviolet radiation (UVR), and sunlight duration (SD). These attributes have specific geographical variations and may cause different adaptation traits. However, the adaptation profile of each attribute and the selective role of solar energy as a whole during human evolution remain elusive. Here, we performed a genome-wide adaptation study with respect to CAT, UVR, and SD using the Human Genome Diversity Project-Centre Etude Polymorphism Humain (HGDP-CEPH) panel data. We singled out CAT as the most important driving force with the highest number of adaptive loci (6 SNPs at the genome-wide 1 × 10−7 level; 401 at the suggestive 1 × 10−5 level). Five of the six genome-wide significant adaptation SNPs were successfully replicated in an independent Chinese population (N = 1395). The corresponding 316 CAT adaptation genes were mostly involved in development and immunity. In addition, 265 (84%) genes were related to at least one genome-wide association study (GWAS)-mapped human trait, being significantly enriched in anthropometric loci such as those associated with body mass index (χ2; P < 0.005), immunity, metabolic syndrome, and cancer (χ2; P < 0.05). For these adaptive SNPs, balancing selection was evident in Euro-Asians, whereas obvious positive and/or purifying selection was observed in Africans. Taken together, our study indicates that CAT is the most important attribute of solar energy that has driven genetic adaptation in development and immunity among global human populations. It also supports the non-neutral hypothesis for the origin of disease-predisposition alleles in common diseases.  相似文献   

13.
P. Xu  L. Ni  Y. Tao  Z. Ma  T. Hu  X. Zhao  Z. Yu  C. Lu  X. Zhao  J. Ren 《Animal genetics》2020,51(2):314-318
Growth and fatness traits are complex and economically important traits in the pig industry. The molecular basis underlying porcine growth and fatness traits remains largely unknown. To uncover genetic loci and candidate genes for these traits, we explored the GeneSeek GGP Porcine 80K SNP chip to perform a GWAS for seven growth and fatness traits in 365 individuals from the Sujiang pig, a recently developed breed in China. We identified two, 17, one and 11 SNPs surpassing the suggestively significant threshold (P < 1.86 × 10−5) for body weight, chest circumference, chest width and backfat thickness respectively. Of these SNPs, 20 represent novel genetic loci, and five and four SNPs were respectively associated with chest circumference and backfat thickness at a genome-wide significant threshold (P < 9.31 × 10−7). Eight SNPs had a pleiotropic effect on both chest circumference and backfat thickness. The most remarkable locus resided in a region between 72.95 and 76.27 Mb on pig chromosome 4, harboring a number of previously reported quantitative trait loci related to backfat deposition. In addition to two reported genes (PLAG1 and TAS2R38), we identified four genes including GABRB3, ZNF106, XKR4 and MGAM as novel candidates for body weight and backfat thickness at the mapped loci. Our findings provide insights into the genetic architecture of porcine growth and fatness traits and potential markers for selective breeding of Chinese Sujiang pigs.  相似文献   

14.
A flow injection (FI) methodology using the acidic potassium permanganate (KMnO4)–rhodamine-B (Rh-B) reaction with chemiluminescence (CL) detection was established to determine acetochlor and cartap-HCl pesticides in freshwater samples. Experimental parameters were optimized, and Chelex-100 cationic exchanger mini column and solid-phase extraction (SPE) were used as phase separation techniques. Linear calibration curves were observed for the standard solutions of acetochlor and cartap-HCl over the ranges 0.005–2.0 mg L−1 [y = 1155.8x + 57.551, R2 = 0.9999 (n = 8)] and 0.005–1.0 mg L−1 [y = 979.76x + 14.491, R2 = 0.9998 (n = 8)] with LODs and LOQs of 7.5 × 10−4 and 8.0 × 10−4 mg L−1 (3σ blank) and 2.5 × 10−3 and 2.7 × 10−3 mg L−1 (10σ blank), respectively, with an injection throughput of 140 h−1. These methods were used to estimate acetochlor and cartap-HCl with or without the SPE procedure, respectively, in spiked freshwater samples. Results obtained were not significantly different at a 95% confidence level to those of other reported methods. Recoveries for acetochlor and cartap-HCl were obtained over the ranges 93–112% (RSD = 1.9–3.6%) and 98–109% (RSD = 1.7–3.8%), respectively. The most probable CL reaction mechanism was explored.  相似文献   

15.
Reading disabilities (RD) are the most common neurocognitive disorder, affecting 5% to 17% of children in North America. These children often have comorbid neurodevelopmental/psychiatric disorders, such as attention deficit/hyperactivity disorder (ADHD). The genetics of RD and their overlap with other disorders is incompletely understood. To contribute to this, we performed a genome‐wide association study (GWAS) for word reading. Then, using summary statistics from neurodevelopmental/psychiatric disorders, we computed polygenic risk scores (PRS) and used them to predict reading ability in our samples. This enabled us to test the shared aetiology between RD and other disorders. The GWAS consisted of 5.3 million single nucleotide polymorphisms (SNPs) and two samples; a family‐based sample recruited for reading difficulties in Toronto (n = 624) and a population‐based sample recruited in Philadelphia [Philadelphia Neurodevelopmental Cohort (PNC)] (n = 4430). The Toronto sample SNP‐based analysis identified suggestive SNPs (P ~ 5 × 10?7) in the ARHGAP23 gene, which is implicated in neuronal migration/axon pathfinding. The PNC gene‐based analysis identified significant associations (P < 2.72 × 10?6) for LINC00935 and CCNT1, located in the region of the KANSL2/CCNT1/LINC00935/SNORA2B/SNORA34/MIR4701/ADCY6 genes on chromosome 12q, with near significant SNP‐based analysis. PRS identified significant overlap between word reading and intelligence (R2 = 0.18, P = 7.25 × 10?181), word reading and educational attainment (R2 = 0.07, P = 4.91 × 10?48) and word reading and ADHD (R2 = 0.02, P = 8.70 × 10?6; threshold for significance = 7.14 × 10?3). Overlap was also found between RD and autism spectrum disorder (ASD) as top‐ranked genes were previously implicated in autism by rare and copy number variant analyses. These findings support shared risk between word reading, cognitive measures, educational outcomes and neurodevelopmental disorders, including ASD.  相似文献   

16.
17.
Li MX  Yeung JM  Cherny SS  Sham PC 《Human genetics》2012,131(5):747-756
Current genome-wide association studies (GWAS) use commercial genotyping microarrays that can assay over a million single nucleotide polymorphisms (SNPs). The number of SNPs is further boosted by advanced statistical genotype-imputation algorithms and large SNP databases for reference human populations. The testing of a huge number of SNPs needs to be taken into account in the interpretation of statistical significance in such genome-wide studies, but this is complicated by the non-independence of SNPs because of linkage disequilibrium (LD). Several previous groups have proposed the use of the effective number of independent markers (M e) for the adjustment of multiple testing, but current methods of calculation for M e are limited in accuracy or computational speed. Here, we report a more robust and fast method to calculate M e. Applying this efficient method [implemented in a free software tool named Genetic type 1 error calculator (GEC)], we systematically examined the M e, and the corresponding p-value thresholds required to control the genome-wide type 1 error rate at 0.05, for 13 Illumina or Affymetrix genotyping arrays, as well as for HapMap Project and 1000 Genomes Project datasets which are widely used in genotype imputation as reference panels. Our results suggested the use of a p-value threshold of ~10−7 as the criterion for genome-wide significance for early commercial genotyping arrays, but slightly more stringent p-value thresholds ~5 × 10−8 for current or merged commercial genotyping arrays, ~10−8 for all common SNPs in the 1000 Genomes Project dataset and ~5 × 10−8 for the common SNPs only within genes.  相似文献   

18.
CpG‐related single nucleotide polymorphisms (CGS) have the potential to perturb DNA methylation; however, their effects on Alzheimer disease (AD) risk have not been evaluated systematically. We conducted a genome‐wide association study using a sliding‐window approach to measure the combined effects of CGSes on AD risk in a discovery sample of 24 European ancestry cohorts (12,181 cases, 12,601 controls) from the Alzheimer's Disease Genetics Consortium (ADGC) and replication sample of seven European ancestry cohorts (7,554 cases, 27,382 controls) from the International Genomics of Alzheimer's Project (IGAP). The potential functional relevance of significant associations was evaluated by analysis of methylation and expression levels in brain tissue of the Religious Orders Study and the Rush Memory and Aging Project (ROSMAP), and in whole blood of Framingham Heart Study participants (FHS). Genome‐wide significant (p < 5 × 10?8) associations were identified with 171 1.0 kb‐length windows spanning 932 kb in the APOE region (top p < 2.2 × 10?308), five windows at BIN1 (top p = 1.3 × 10?13), two windows at MS4A6A (top p = 2.7 × 10?10), two windows near MS4A4A (top p = 6.4 × 10?10), and one window at PICALM (p = 6.3 × 10‐9). The total number of CGS‐derived CpG dinucleotides in the window near MS4A4A was associated with AD risk (p = 2.67 × 10?10), brain DNA methylation (p = 2.15 × 10?10), and gene expression in brain (p = 0.03) and blood (p = 2.53 × 10?4). Pathway analysis of the genes responsive to changes in the methylation quantitative trait locus signal at MS4A4A (cg14750746) showed an enrichment of methyltransferase functions. We confirm the importance of CGS in AD and the potential for creating a functional CpG dosage‐derived genetic score to predict AD risk.  相似文献   

19.
Human height is a complex genetic trait with high heritability but discovery efforts in Asian populations are limited. We carried out a meta-analysis of genome-wide association studies (GWAS) for height in 6,534 subjects with in silico replication of 1,881 subjects in Han Chinese. We identified three novel loci reaching the genome-wide significance threshold (P < 5 × 10?8), which mapped in or near ZNF638 (rs12612930, P = 2.02 × 10?10), MAML2 (rs11021504, P = 7.81 × 10?9), and C18orf12 (rs11082671, P = 1.87 × 10?8). We also confirmed two loci previously reported in European populations including CS (rs3816804, P = 2.63 × 10?9) and CYP19A1 (rs3751599, P = 4.80 × 10?10). In addition, we provided evidence supporting 35 SNPs identified by previous GWAS (P < 0.05). Our study provides new insights into the genetic determination of biological regulation of human height.  相似文献   

20.
A novel flow injection-chemiluminescence (FI–CL) approach is proposed for the assay of pioglitazone hydrochloride (PG-HCl) based on its enhancing influence on the tris(2,2′-bipyridyl)ruthenium(II)–silver(III) complex (Ru(bipy)32+-DPA) CL system in sulfuric acid medium. The possible CL reaction mechanism is discussed with CL and ultraviolet (UV) spectra. The optimum experimental conditions were found as: Ru(bipy)32+, 5.0 × 10−5 M; sulfuric acid, 1.0 × 10−3 M; diperiodatoargentate(III) (DPA), 1.0 × 10−4 M; potassium hydroxide, 1.0 × 10−3 M; flow rate 4.0 ml min−1 for each flow stream and sample loop volume, 180 μl. The CL intensity of PG-HCl was linear in the range of 1.0 × 10−3 to 5.0 mg L−1 (R2 = 0.9998, n = 10) with limit of detection [LOD, signal-to-noise ratio (S/N= 3] of 2.2 × 10−4 mg L−1, limit of quantification (LOQ, S/N = 10) of 6.7 × 10−4 mg L−1, relative standard deviation (RSD) of 1.0 to 3.3% and sampling rate of 106 h−1. The methodology was satisfactorily used to quantify PG-HCl in pharmaceutical tablets with recoveries ranging from 93.17 to 102.77 and RSD from 1.9 to 2.8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号