共查询到20条相似文献,搜索用时 0 毫秒
1.
Bartoń KA Hovestadt T Phillips BL Travis JM 《Proceedings. Biological sciences / The Royal Society》2012,279(1731):1194-1202
The movement rules used by an individual determine both its survival and dispersal success. Here, we develop a simple model that links inter-patch movement behaviour with population dynamics in order to explore how individual dispersal behaviour influences not only its dispersal and survival, but also the population's rate of range expansion. Whereas dispersers are most likely to survive when they follow nearly straight lines and rapidly orient movement towards a non-natal patch, the most rapid rates of range expansion are obtained for trajectories in which individuals delay biasing their movement towards a non-natal patch. This result is robust to the spatial structure of the landscape. Importantly, in a set of evolutionary simulations, we also demonstrate that the movement strategy that evolves at an expanding front is much closer to that maximizing the rate of range expansion than that which maximizes the survival of dispersers. Our results suggest that if one of our conservation goals is the facilitation of range-shifting, then current indices of connectivity need to be complemented by the development and utilization of new indices providing a measure of the ease with which a species spreads across a landscape. 相似文献
2.
Solveig Plomer;Annika Meyer;Philipp Gebhardt;Theresa Ernst;Enrico Schleiff;Gaby Schneider; 《Ecology and evolution》2024,14(8):e70092
In movement analysis, correlated random walk (CRW) models often use so-called turning angles, which are measured relative to the previous movement direction. To segregate between different movement modes, hidden Markov models (HMMs) describe movements as piecewise stationary CRWs in which the distributions of turning angles and step sizes depend on the underlying state. This typically allows for the segregation of movement modes that show different movement speeds. We show that in some cases, it may be interesting to investigate absolute angles, that is, biased random walks (BRWs) instead of turning angles. In particular, while discrimination between states in the turning angle setting can only rely on movement speed, models with absolute angles can be used to discriminate between sections of different movement directions. A preprocessing algorithm is provided that enables the analysis of absolute angles in the existing R package moveHMM. In a data set of movements of cell organelles, models using not the turning angle but the absolute angle could capture interesting additional properties. Goodness-of-fit was increased for HMMs with absolute angles, and HMMs with absolute angles tended to choose a higher number of states, suggesting the existence and relevance of prominent directional changes in the present data set. These results suggest that models with absolute angles can provide important information in the analysis of movement patterns if the existence and frequency of directional changes is of biological importance. 相似文献
3.
Are there general mechanisms of animal home range behaviour? A review and prospects for future research 总被引:2,自引:0,他引:2
Home range behaviour is a common pattern of space use, having fundamental consequences for ecological processes. However, a general mechanistic explanation is still lacking. Research is split into three separate areas of inquiry - movement models based on random walks, individual-based models based on optimal foraging theory, and a statistical modelling approach - which have developed without much productive contact. Here we review recent advances in modelling home range behaviour, focusing particularly on the problem of identifying mechanisms that lead to the emergence of stable home ranges from unbounded movement paths. We discuss the issue of spatiotemporal scale, which is rarely considered in modelling studies, as well as highlighting the need to consider more closely the dynamical nature of home ranges. Recent methodological and theoretical advances may soon lead to a unified approach, however, conceptually unifying our understanding of linkages among home range behaviour and ecological or evolutionary processes. 相似文献
4.
社会-生态系统(SES)模拟模型是景观格局分析和决策的有效工具,能表征景观格局变化的社会-生态效应及景观决策的复杂反馈机制。文献综述了森林-农业景观格局的SES模型方法进展发现:(1)多数模型对景观过程与社会经济决策的反馈关系分析不足;(2)应集成多种情景模拟和景观效应分析方法,完善现有SES模型的理论方法基础;(3)通过集成格局优化模型和自主体模型会有效改进SES模型功能,具体途径包括:集成情景-生态效应的景观格局模拟方法、完善景观决策的理论基础、加强集成模型的不确定性分析、降低模型复杂性和综合定性-定量数据等。研究结果有助于理解多尺度森林-农业景观格局在社会-生态系统中的重要作用,能更好地支持跨学科集成模型开发与应用。 相似文献
5.
Inon Scharf;Kimberley Hanna;Daphna Gottlieb; 《Insect Science》2024,31(1):271-284
Movement is an important animal behavior contributing to reproduction and survival. Animal movement is often examined in arenas or enclosures under laboratory conditions. We used the red flour beetle (Tribolium castaneum) to examine here the effect of the arena size, shape, number of barriers, access to the arena's center, and illumination on six movement properties. We demonstrate great differences among arenas. For example, the beetles moved over longer distances in clear arenas than in obstructed ones. Movement along the arena's perimeter was greater in smaller arenas than in larger ones. Movement was more directional in round arenas than in rectangular ones. In general, the beetles stopped moving closer to the perimeter and closer to corners (in the square and rectangular arenas) than expected by chance. In some cases, the arena properties interacted with the beetle sex to affect several movement properties. All these suggest that arena properties might also interact with experimental manipulations to affect the outcome of studies and lead to results specific to the arena used. In other words, instead of examining animal movement, we in fact examine the animal interaction with the arena structure. Caution is therefore advised in interpreting the results of studies on movement in arenas under laboratory conditions and we recommend paying attention also to barriers or obstacles in field experiments. For instance, movement along the arena's perimeter is often interpreted as centrophobism or thigmotaxis but the results here show that such movement is arena dependent. 相似文献
6.
Socially informed random walks: incorporating group dynamics into models of population spread and growth 总被引:2,自引:0,他引:2
Haydon DT Morales JM Yott A Jenkins DA Rosatte R Fryxell JM 《Proceedings. Biological sciences / The Royal Society》2008,275(1638):1101-1109
Simple correlated random walk (CRW) models are rarely sufficient to describe movement of animals over more than the shortest time scales. However, CRW approaches can be used to model more complex animal movement trajectories by assuming individuals move in one of several different behavioural or movement states, each characterized by a different CRW. The spatial and social context an individual experiences may influence the proportion of time spent in different movement states, with subsequent effects on its spatial distribution, survival and fecundity. While methods to study habitat influences on animal movement have been previously developed, social influences have been largely neglected. Here, we fit a 'socially informed' movement model to data from a population of over 100 elk (Cervus canadensis) reintroduced into a new environment, radio-collared and subsequently tracked over a 4-year period. The analysis shows how elk move further when they are solitary than when they are grouped and incur a higher rate of mortality the further they move away from the release area. We use the model to show how the spatial distribution and growth rate of the population depend on the balance of fission and fusion processes governing the group structure of the population. The results are briefly discussed with respect to the design of species reintroduction programmes. 相似文献
7.
8.
Although islands as natural laboratories have held the attention of scientists for centuries, they continue to offer new study questions, especially in the context of the current biodiversity crisis. To date, habitat diversity on islands and spatial configuration of archipelagos have received less attention than classical island area and isolation. Moreover, in the field where experiments are impossible, correlative methods have dominated, despite the call for more mechanistic approaches. We developed an agent‐based computer simulation to study the effect of habitat diversity and archipelago configuration on plant species richness and composition in five archipelagos worldwide (Hawaii, Galapagos, Canary Islands, Cape Verde and Azores) and compared simulated diversity patterns to the empirical data. Habitat diversity proved to be an important factor to achieve realistic simulation results in all five archipelagos, whereas spatial structure of archipelagos was important in more elongated archipelagos. In most cases, simulation results correlate stronger with spermatophyte than with pteridophyte data, which we suggest can be attributed to the different dispersal and evolution rates of the two species groups. Correlation strength between simulated and observed diversity also varied among archipelagos, suggesting that geological and biogeographic histories of archipelagos have affected the species richness and composition on the islands. Our study demonstrates that a relatively simple computer simulation involving just a few essential processes can largely emulate patterns of archipelagic species richness and composition and serve as a powerful additional method to complement empirical approaches. 相似文献
9.
Vilis O. Nams 《Ecology letters》2014,17(10):1228-1237
Animal movement paths show variation in space caused by qualitative shifts in behaviours. I present a method that (1) uses both movement path data and ancillary sensor data to detect natural breakpoints in animal behaviour and (2) groups these segments into different behavioural states. The method can also combine analyses of different path segments or paths from different individuals. It does not assume any underlying movement mechanism. I give an example with simulated data. I also show the effects of random variation, # of states and # of segments on this method. I present a case study of a fisher movement path spanning 8 days, which shows four distinct behavioural states divided into 28 path segments when only turning angles and speed were considered. When accelerometer data were added, the analysis shows seven distinct behavioural states divided into 41 path segments. 相似文献
10.
An examination of movement paths, foraging patterns and habitat use of an endangered mycophagous marsupial, the northern bettong (Bettongia tropica), was undertaken in fire‐prone forest in north‐eastern Australia before and after experimentally induced fires. Fungal biomass remaining at bettong foraging points was similar across the study area prior to burning, but increased significantly on burnt ground during the period after fire. After burning, significantly more bettongs chose to forage in burnt habitat and those that did experienced higher probabilities of truffle recovery. Using data from spool‐and‐line tracking, observed movement patterns of bettongs were compared with those expected from a simple null model of animal movement (a correlated random walk). Analysis of mean‐squared displacement revealed that 22% of observations fell beyond the model’s 95% prediction interval. Further analysis revealed the reasons for the model’s inadequacy: bettongs exhibited area‐restricted search behaviour by taking significantly more frequent and more acute turns immediately prior to and following recovery of hypogeous fungi (truffles), and by taking significantly more frequent and more acute turns following any other foraging activity. In general ecological terms, the results indicate a flexible response by the northern bettong to habitat alteration and increased food availability brought about by low intensity fires. 相似文献
11.
Quantitative analysis of bottlenose dolphin movement patterns and their relationship with foraging 总被引:4,自引:1,他引:4
1. Broad-scale telemetry studies have greatly improved our understanding of the ranging patterns and habitat-use of many large vertebrates. However, there often remains considerable uncertainty over the function of different areas or the factors influencing habitat selection. Further insights into these processes can be obtained through analyses of finer scale movement patterns. For example, search behaviour may be modified in response to prey distribution and abundance. 2. In this study, quantitative analysis techniques are applied to the movements of bottlenose dolphins, recorded from land using a theodolite, to increase our understanding of their foraging strategies. Movements were modelled as a correlated random walk (CRW) and a biased random walk (BRW) to identify movement types and using a first-passage time (FPT) approach, which quantifies the time allocated to different areas and identifies the location and spatial scale of intensive search effort. 3. Only a quarter of the tracks were classed as CRW movement. Turning angle and directionality appeared to be key factors in determining the type of movement adopted. A high degree of overlap in search effort between separate movement paths indicated that there were small key sites (0.3 km radius) within the study area (4 km(2)). Foraging behaviour occurred mainly within these intensive search areas, indicating that they were feeding sites. 4. This approach provides a quantitative method of identifying important foraging areas and their spatial scale. Such techniques could be applied to movement paths for a variety of species derived from telemetry studies and increase our understanding of their foraging strategies. 相似文献
12.
R. P. Wilson I. W. Griffiths P. A. Legg M. I. Friswell O. R. Bidder L. G. Halsey S. A. Lambertucci E. L. C. Shepard 《Ecology letters》2013,16(9):1145-1150
The tortuosity of the track taken by an animal searching for food profoundly affects search efficiency, which should be optimised to maximise net energy gain. Models examining this generally describe movement as a series of straight steps interspaced by turns, and implicitly assume no turn costs. We used both empirical‐ and modelling‐based approaches to show that the energetic costs for turns in both terrestrial and aerial locomotion are substantial, which calls into question the value of conventional movement models such as correlated random walk or Lévy walk for assessing optimum path types. We show how, because straight‐line travel is energetically most efficient, search strategies should favour constrained turn angles, with uninformed foragers continuing in straight lines unless the potential benefits of turning offset the cost. 相似文献
13.
In populations of colony‐breeding marine animals, foraging around colonies can lead to intraspecific competition. This competition affects individual foraging behavior and can cause density‐dependent population growth. Where behavioral data are available, it may be possible to infer the mechanism of intraspecific competition. If these mechanics are understood, they can be used to predict the population‐level functional response resulting from the competition. Using satellite relocation and dive data, we studied the use of space and foraging behavior of juvenile and adult gray seals (Halichoerus grypus) from a large (over 200,000) and growing population breeding at Sable Island, Nova Scotia (44.0 oN 60.0 oW). These data were first analyzed using a behaviorally switching state‐space model to infer foraging areas followed by randomization analysis of foraging region overlap of competing age classes. Patterns of habitat use and behavioral time budgets indicate that young‐of‐year juveniles (YOY) were likely displaced from foraging areas near (<10 km) the breeding colony by adult females. This displacement was most pronounced in the summer. Additionally, our data suggest that YOY are less capable divers than adults and this limits the habitat available to them. However, other segregating mechanisms cannot be ruled out, and we discuss several alternate hypotheses. Mark–resight data indicate juveniles born between 1998 and 2002 have much reduced survivorship compared with cohorts born in the late 1980s, while adult survivorship has remained steady. Combined with behavioral observations, our data suggest YOY are losing an intraspecific competition between adults and juveniles, resulting in the currently observed decelerating logistic population growth. Competition theory predicts that intraspecific competition resulting in a clear losing competitor should cause compensatory population regulation. This functional response produces a smooth logistic growth curve as carrying capacity is approached, and is consistent with census data collected from this population over the past 50 years. The competitive mechanism causing compensatory regulation likely stems from the capital‐breeding life‐history strategy employed by gray seals. This strategy decouples reproductive success from resources available around breeding colonies and prevents females from competing with each other while young are dependent. 相似文献
14.
景观生态学在其发展之初的20世纪80年代, 提出了关于景观网络研究(包括景观网络概念、网络结构指数和景观连接度)的基本构想, 这些构想需要在景观过程的研究中逐渐被落实和发展。动物移动过程因动物在斑块或廊道上有着独特丰富的属性特征、与周围资源环境之间存在复杂反馈而区别于无机物运移的景观过程, 则动物移动网络研究在实现关于景观网络研究的基本构想、推动景观生态学发展中贡献独特。因此, 总结动物移动网络研究的来源脉络及其对景观生态学的理论贡献对于景观网络领域和景观生态学学科的发展都具有重要意义。本文抓住景观生态学发展之初提出的关于景观网络研究的基本构想, 寻找和剖析其中所蕴含的景观生态学思想, 追踪这些思想如何被落实、发展、并形成目前的三个热点方向: 动物移动网络模拟、重要值评价和景观连接度分析; 总结这三个方向的研究进展, 指出整合动物的空间行为特征是必然发展趋势; 揭示出动物移动网络研究始终都以发掘斑块或廊道的动物有机体的属性特征(如种群数量)、以及描述这种属性在不同斑块或廊道之间的差异和联系为方向, 正是这种属性的发掘有效地落实、发展和丰富了关于景观网络研究的最初构想, 对景观生态学的贡献比其他过程更为独特。文章还总结了我国动物移动网络研究与国际研究相比较为滞后的现状, 指出其暂时尚未显示出对我国景观生态学的独特贡献; 强调发展源于跟踪定位数据的动物空间行为生态学研究是减小差距的重要、必要前提。期望本文能引发关于景观网络乃至景观生态学理论发展的方向性思考, 为研究者提供参考。 相似文献
15.
We counted nocturnal fishes both day and night, and monitored the position of tagged individuals on temperate reefs in New South Wales, Australia. Pempheris affinis and P. multiradiata were the most abundant nocturnal planktivores on Sydneys rocky reefs and showed great differences in diel migration behaviour. Both species were observed in deep shelter sites during the day (5–10m), and most emerged into the water column at night. P. multiradiata was found to undergo extensive vertical and horizontal migrations. In contrast, P. affinis remained within daytime depth strata, with tagged individuals often moving less than 20m at night. Tagged adult P. affinis returned to tagging sites for up to 7weeks, indicating high site fidelity. Dietary analysis demonstrated that small and large pempherids differed in diet and the timing of foraging, suggesting a size-based transition from diurnal to nocturnal foraging. Stratified sampling of planktonic assemblages at different depths during the day and night showed spatial variation in the availability of prey items at different times of the day. Amphipods, the main prey of large fish, were only available during the night, and concentrated in shallow water, whereas decapod larvae, consumed mainly by small fish, were abundant day and night. Large P. affinis also fed on polychaetes, which were never found in the stomachs of P. multiradiata, suggesting that these species may have different prey requirements, or that these polychaetes are only found in deep water where foraging P. affinis were abundant. We found no general model for the Pempheridae. The movements and behaviour of nocturnal fishes varied greatly by species, and this may be due to differences in body size, and/or physiological (e.g. visual ability) and ecological constraints. 相似文献
16.
17.
R. H. Defran David W. Weller Dennis L. Kelly Miriam A. Espinosa 《Marine Mammal Science》1999,15(2):381-393
Boat-based photoidentification surveys of bottlenose dolphins (Tursiops truncatus) were conducted from 1982 to 1989 in three discrete coastal study areas within the Southern California Bight: (1) Santa Barbara, California; (2) Orange County, California; (3) Ensenada, Baja California, Mexico. A total of 207 recognizable dolphins were identified in these three “secondary” study areas. These individuals were compared to 404 dolphins identified from 1981 to 1989 in our “primary” study area, San Diego, California, to examine the coastal movement patterns of bottlenose dolphins within the Southern California Bight. A high proportion of dolphins photographed in Santa Barbara (88%), Orange County (92%), and Ensenada (88%) were also photographed in San Diego. Fifty-eight percent (n= 120) of these 207 dolphins exhibited back-and-forth movements between study areas, with no evidence of site fidelity to any particular region. Minimum range estimates were 50 and 470 km. Minimum travel-speed estimates were 11-47 km/d, and all dolphin schools sighted during the study were within 1 km of the shore. These data suggest that bottlenose dolphins within the Southern California Bight are highly mobile within a relatively narrow coastal zone. Home-range dimensions and movement patterns for many vettebrate species are influenced, in part, by variation in food resources. The unique range characteristics documented during this study may reflect the highly dynamic nature of this coastal ecosystem and the associated patchy distribution of food resources available to these bottlenose dolphins. 相似文献
18.
Biologically based control methods offer many advantages for the control of invasive plant species; however, these methods are not without risks to native species. Thus, there is a need for more effective and efficient methods of risk analysis for biological control agents. We show how the process of ecological risk assessment established by the United States’ Environmental Protection Agency may be adapted to improve assessment of the risks of proposed biological control agents. We discuss the risks posed by weed biological control agents, and present a simple individual-based model of herbivorous insect movement and oviposition on two species of host plant, a target invasive plant species and a non-target native species, in simulated landscapes. The model shows that risks of non-target impacts may be influenced by the details of the movement behavior of biological control agents in heterogeneous landscapes. The specific details of insect movement that appear to be relevant are readily measured in field trials and the general modeling approach is readily adapted to real landscapes. Current biological control risk assessments typically emphasize effects analysis at the expense of exposure analysis; the modeling approach presented here provides a simple and feasible way to incorporate exposure analyses. We conclude that models such as ours should be given serious consideration as part of a comprehensive strategy of risk assessment for proposed weed biological control agents. 相似文献
19.
Manuela Fischer Julian Di Stefano Pierre Gras Stephanie Kramer‐Schadt Duncan R. Sutherland Graeme Coulson Milena Stillfried 《Ecology and evolution》2019,9(13):7509-7527
Animals access resources such as food and shelter, and acquiring these resources has varying risks and benefits, depending on the suitability of the landscape. Some animals change their patterns of resource selection in space and time to optimize the trade‐off between risks and benefits. We examine the circadian variation in resource selection of swamp wallabies (Wallabia bicolor) within a human‐modified landscape, an environment of varying suitability. We used GPS data from 48 swamp wallabies to compare the use of landscape features such as woodland and scrub, housing estates, farmland, coastal areas, wetlands, waterbodies, and roads to their availability using generalized linear mixed models. We investigated which features were selected by wallabies and determined whether the distance to different landscape features changed, depending on the time of the day. During the day, wallabies were more likely to be found within or near natural landscape features such as woodlands and scrub, wetlands, and coastal vegetation, while avoiding landscape features that may be perceived as more risky (roads, housing, waterbodies, and farmland), but those features were selected more at night. Finally, we mapped our results to predict habitat suitability for swamp wallabies in human‐modified landscapes. We showed that wallabies living in a human‐modified landscape selected different landscape features during day or night. Changing circadian patterns of resource selection might enhance the persistence of species in landscapes where resources are fragmented and disturbed. 相似文献