首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The neural–epidermal boundary tissues include the neural crest and preplacodal ectoderm (PPE) as primordial constituents. The PPE region is essential for the development of various sensory and endocrine organs, such as the anterior lobe of the pituitary, olfactory epithelium, lens, trigeminal ganglion, and otic vesicles. During gastrulation, a neural region is induced in ectodermal cells that interacts with mesendodermal tissue and responds to several secreted factors. Among them, inhibition of bone morphogenetic protein (BMP) in the presumptive neuroectoderm is essential for the induction of neural regions, and formation of a Wnt and fibroblast growth factor (FGF) signaling gradient along the midline determines anterior–posterior patterning. In this study, we attempted to specifically induce PPE cells from undifferentiated Xenopus cells by regulating BMP, Wnt, and FGF signaling. We showed that the proper level of BMP inhibition with an injection of truncated BMP receptor or treatment with a chemical antagonist triggered the expression of PPE genes. In addition, by varying the amount of injected chordin, we optimized specific expression of the PPE genes. PPE gene expression is increased by adding an appropriate dose of an FGF receptor antagonist. Furthermore, co‐injection with either wnt8 or the Wnt inhibitor dkk‐1 altered the expression levels of several region‐specific genes according to the injected dose. We specifically induced PPE cell differentiation in animal cap cells from early‐stage Xenopus embryos by modulating BMP, Wnt, and FGF signaling. This is not the first research on placode induction, but our simple method could potentially be applied to mammalian stem cell systems. genesis 53:652–659, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
The neural crest is a stem cell-like population exclusive to vertebrates that gives rise to many different cell types including chondrocytes, neurons and melanocytes. Arising from the neural plate border at the intersection of Wnt and Bmp signaling pathways, the complexity of neural crest gene regulatory networks has made the earliest steps of induction difficult to elucidate. Here, we report that tfap2a and foxd3 participate in neural crest induction and are necessary and sufficient for this process to proceed. Double mutant tfap2a (mont blanc, mob) and foxd3 (mother superior, mos) mob;mos zebrafish embryos completely lack all neural crest-derived tissues. Moreover, tfap2a and foxd3 are expressed during gastrulation prior to neural crest induction in distinct, complementary, domains; tfap2a is expressed in the ventral non-neural ectoderm and foxd3 in the dorsal mesendoderm and ectoderm. We further show that Bmp signaling is expanded in mob;mos embryos while expression of dkk1, a Wnt signaling inhibitor, is increased and canonical Wnt targets are suppressed. These changes in Bmp and Wnt signaling result in specific perturbations of neural crest induction rather than general defects in neural plate border or dorso-ventral patterning. foxd3 overexpression, on the other hand, enhances the ability of tfap2a to ectopically induce neural crest around the neural plate, overriding the normal neural plate border limit of the early neural crest territory. Although loss of either Tfap2a or Foxd3 alters Bmp and Wnt signaling patterns, only their combined inactivation sufficiently alters these signaling gradients to abort neural crest induction. Collectively, our results indicate that tfap2a and foxd3, in addition to their respective roles in the differentiation of neural crest derivatives, also jointly maintain the balance of Bmp and Wnt signaling in order to delineate the neural crest induction domain.  相似文献   

3.
4.
It is known the interactions between the neural plate and epidermis generate neural crest (NC), but it is unknown why the NC develops only at the lateral border of the neural plate and not in the anterior fold. Using grafting experiments we show that there is a previously unidentified mechanism that precludes NC from the anterior region. We identify prechordal mesoderm as the tissue that inhibits NC in the anterior territory and show that the Wnt/beta-catenin antagonist Dkk1, secreted by this tissue, is sufficient to mimic this NC inhibition. We show that Dkk1 is required for preventing the formation of NC in the anterior neural folds as loss-of-function experiments using a Dkk1 blocking antibody in Xenopus as well as the analysis of Dkk1-null mouse embryos transform the anterior neural fold into NC. This can be mimicked by Wnt/beta-catenin signaling activation without affecting the anterior posterior patterning of the neural plate, or placodal specification. Finally, we show that the NC cells induced at the anterior neural fold are able to migrate and differentiate as normal NC. These results demonstrate that anterior regions of the embryo lack NC because of a mechanism, conserved from fish to mammals, that suppresses Wnt/beta-catenin signaling via Dkk1.  相似文献   

5.
Anterior-posterior neural patterning is determined during gastrulation when head structure is induced. Induction of anterior neural structures requires inhibition of Wnt signaling by several Wnt antagonists. We performed microarray analysis to isolate genes regulated by canonical Wnt signaling and abundantly expressed in the anterior neuroectoderm at the early neurula stage. We identified xCyp26c, a Cyp26 (RA-metabolizing protein)-family gene. In situ hybridization showed xCyp26c expression restricted to the anterior region of neurula, while xCyp26a was expressed in both anterior and posterior regions. At the tadpole stage, xCyp26c was also expressed in restricted sets of cranial nerves. Microarray, RT-PCR and in situ hybridization analyses revealed decreased xCyp26c expression with overexpression of beta-catenin, suggesting regulation by Wnt/beta-catenin signaling. We also assessed the effects of retinoic acid (RA) on xCyp26c expression. Embryos treated with 10(-7) M RA showed an anterior shift in the spatial expression of xCyp26c, reflecting a posteriorization effect. Conversely, expression patterns in embryos treated with more than 10(-6) M RA were less affected and remained restricted to the most anterior region. Moreover, injection of xCyp26c mRNA into animal poles caused head defects, and exogenous expression of xCyp26c rescued the posteriorizing effect of RA treatment. Taken together, these results implicated a role for xCyp26c in anterior patterning via RA signaling.  相似文献   

6.
Craniofacial development requires signals from epithelia to pattern skeletogenic neural crest (NC) cells, such as the subdivision of each pharyngeal arch into distinct dorsal (D) and ventral (V) elements. Wnt signaling has been implicated in many aspects of NC and craniofacial development, but its roles in D-V arch patterning remain unclear. To address this we blocked Wnt signaling in zebrafish embryos in a temporally-controlled manner, using transgenics to overexpress a dominant negative Tcf3, (dntcf3), (Tg(hsp70I:tcf3-GFP), or the canonical Wnt inhibitor dickkopf1 (dkk1), (Tg(hsp70i:dkk1-GFP) after NC migration. In dntcf3 transgenics, NC cells in the ventral arches of heat-shocked embryos show reduced proliferation, expression of ventral patterning genes (hand2, dlx3b, dlx5a, msxe), and ventral cartilage differentiation (e.g. lower jaws). These D-V patterning defects resemble the phenotypes of zebrafish embryos lacking Bmp or Edn1 signaling, and overexpression of dntcf3 dramatically reduces expression of a subset of Bmp receptors in the arches. Addition of ectopic BMP (or EDN1) protein partially rescues ventral development and expression of dlx3b, dlx5a, and msxe in Wnt signaling-deficient embryos, but surprisingly does not rescue hand2 expression. Thus Wnt signaling provides ventralizing patterning cues to arch NC cells, in part through regulation of Bmp and Edn1 signaling, but independently regulates hand2. Similarly, heat-shocked dkk1+ embryos exhibit ventral arch reductions, but also have mandibular clefts at the ventral midline not seen in dntcf3+ embryos. Dkk1 is expressed in pharyngeal endoderm, and cell transplantation experiments reveal that dntcf3 must be overexpressed in pharyngeal endoderm to disrupt D-V arch patterning, suggesting that distinct endodermal roles for Wnts and Wnt antagonists pattern the developing skeleton.  相似文献   

7.
Heparan sulfate (HS) proteoglycans are ubiquitous components of the extracellular matrix and plasma membrane of metazoans. The sulfation pattern of the HS glycosaminoglycan chain is characteristic for each tissue and changes during development. The glucosaminyl N-deacetylase/N-sulfotransferase (NDST) enzymes catalyze N-deacetylation and N-sulfation during HS biosynthesis and have a key role in designing the sulfation pattern. We here report on the presence of five NDST genes in zebrafish. Zebrafish ndst1a, ndst1b, ndst2a and ndst2b represent duplicated mammalian orthologues of NDST1 and NDST2 that arose through teleost specific genome duplication. Interestingly, the single zebrafish orthologue ndst3, is equally similar to tetrapod Ndst3 and Ndst4. It is likely that a local duplication in the common ancestor of lobe-finned fish and tetrapods gave rise to these two genes. All zebrafish Ndst genes showed distinct but partially overlapping expression patterns during embryonic development. Morpholino knockdown of ndst1b resulted in delayed development, craniofacial cartilage abnormalities, shortened body and pectoral fin length, resembling some of the features of the Ndst1 mouse knockout.  相似文献   

8.
Heparan sulfate proteoglycans (HSPGs) are constituents of the cell surface and extracellular matrix and are vital for various activities within the cell. The N-deacetylase/N-sulfotransferase (heparin glucosaminyl) family of enzymes, or NDST, modifies heparan sulfate (HS) by catalyzing both the N-deacetylation and the N-sulfation of N-acetylglucosamine residues. In zebrafish, a single ndst3 gene is an orthologue of both mammalian NDST3 and NDST4 genes. The role of ndst3 in zebrafish development has not been investigated and such study may provide insight into the role(s) of both mammalian orthologues. Here, we characterized expression of ndst3 during early development in zebrafish and found it to be predominately neuronal. We found that expression of ndst3 is sensitive to Wnt signaling manipulation, with stimulation of the Wnt pathway resulting in robust expansion of ndst3 expression domains. Finally, using CRISPR/Cas9 genome editing, we mutagenized the ndst3 gene and isolated an allele, ndst3nu20, resulting in a frameshift and premature protein truncation. We discovered Ndst3 is not essential for zebrafish survival as ndst3nu20 homozygous mutants are viable and fertile.  相似文献   

9.
10.
During early vertebrate embryogenesis, bone morphogenetic proteins (BMPs) belonging to the transforming growth factor‐β (TGF‐β) family of growth factors play a central role in dorsal–ventral (DV) patterning of embryos, while other growth factors such as Wnt and fibroblast growth factor (FGF) family members regulate formation of the anterior–posterior (AP) axis. Although the establishment of body plan is thought to require coordinated formation of the DV and AP axes, the mechanistic details underlying this coordination are not well understood. Here, we show that a Xenopus homologue of zbtb14 plays an essential role in the regulation of both DV and AP patterning during early Xenopus development. We show that overexpression of Zbtb14 promotes neural induction and inhibits epidermal differentiation, thereby regulating DV patterning. In addition, Zbtb14 promotes the formation of posterior neural tissue and suppresses anterior neural development. Consistent with this, knock‐down experiments show that Zbtb14 is required for neural development, especially for the formation of posterior neural tissues. Mechanistically, Zbtb14 reduces the levels of phosphorylated Smad1/5/8 to suppress BMP signaling and induces an accumulation of β‐Catenin to promote Wnt signaling. Collectively, these results suggest that Zbtb14 plays a crucial role in the formation of DV and AP axes by regulating both the BMP and Wnt signaling pathways during early Xenopus embryogenesis.  相似文献   

11.
Hedgehog (Hh) and Wnt proteins are important signals implicated in several aspects of embryonic development, including the early development of the central nervous system. We found that Xenopus Suppressor-of-fused (XSufu) affects neural induction and patterning by regulating the Hh/Gli and Wnt/β-catenin pathways. Microinjection of XSufu mRNA induced expansion of the epidermis at the expense of neural plate tissue and caused enlargement of the eyes. An antisense morpholino oligonucleotide against XSufu had the opposite effect. Interestingly, both gain- and loss-of-function experiments resulted in a posterior shift of brain markers, suggesting a biphasic effect of XSufu on anteroposterior patterning. XSufu blocked early Wnt/β-catenin signaling, as indicated by the suppression of XWnt8-induced secondary axis formation in mRNA-injected embryos, and activation of Wnt target genes in XSufu-MO-injected ectodermal explants. We show that XSufu binds to XGli1 and Xβ-catenin. In Xenopus embryos and mouse embryonic fibroblasts, Gli1 inhibits Wnt signaling under overexpression of β-catenin, whereas β-catenin stimulates Hh signaling under overexpression of Gli1. Notably, endogenous Sufu is critically involved in this crosstalk. The results suggest that XSufu may act as a common regulator of Hh and Wnt signaling and contribute to intertwining the two pathways.  相似文献   

12.
mRNA injection into the ventral blastomeres of Xenopus embryos of mRNA encoding Wnt pathway genes induces a secondary axis with complete head structures. To identify target genes of the pre-MBT dorsalization pathway that might be responsible for head formation in zebrafish, we have cloned zebrafish dickkopf1 (dkk1), which is expressed in tissues implicated in head patterning. We found that dkk1 blocks the post-MBT Wnt signaling and dkk1 is a target of the pre-MBT Wnt signaling. Dkk1 overexpression in the prechordal plate suggests that Dkk1, secreted from the prechordal plate, expands the forebrain at the expense of the midbrain in the anterior neural plate. Furthermore, dkk1 acts in parallel to the homeobox gene bozozok and bozozok is required for the maintenance of dkk1 expression. The nodal gene squint is also required for the maintenance of dkk1 expression. Among the mutually dependent target genes of the pre-MBT Wnt signaling, dkk1 plays an important role in patterning the anterior head of zebrafish.  相似文献   

13.
Patterning of neural crest (NC) for the formation of specific structures along the anterio-posterior (A-P) body axis is governed by a combinatorial action of Hox genes, which are expressed in the neuroepithelium at the time of NC induction. Hoxb5 was expressed in NC at both induction and migratory stages, and our previous data suggested that Hoxb5 played a role in the NC development. However, the underlying mechanisms by which Hoxb5 regulates the early NC development are largely unknown. Current study showed that both the human and mouse Foxd3 promoters were bound and trans-activated by Hoxb5 in NC-derived neuroblastoma cells. The binding of Hoxb5 to Foxd3 promoter in vivo was further confirmed in the brain and neural tube of mouse embryos. Moreover, Wnt1-Cre mediated perturbation of Hoxb5 signaling at the dorsal neural tube in mouse embryos resulted in Foxd3 down-regulation. In ovo, Foxd3 alleviated the apoptosis of neural cells induced by perturbed Hoxb5 signaling, and Hoxb5 induced ectopic Foxd3 expression in the chick neural tube. This study demonstrated that Hoxb5 (an A-P patterning gene) regulated the NC development by directly inducing Foxd3 (a NC specifier and survival gene).  相似文献   

14.
Neural crest specification by noncanonical Wnt signaling and PAR-1   总被引:1,自引:0,他引:1  
Neural crest (NC) cells are multipotent progenitors that form at the neural plate border, undergo epithelial-mesenchymal transition and migrate to diverse locations in vertebrate embryos to give rise to many cell types. Multiple signaling factors, including Wnt proteins, operate during early embryonic development to induce the NC cell fate. Whereas the requirement for the Wnt/β-catenin pathway in NC specification has been well established, a similar role for Wnt proteins that do not stabilize β-catenin has remained unclear. Our gain- and loss-of-function experiments implicate Wnt11-like proteins in NC specification in Xenopus embryos. In support of this conclusion, modulation of β-catenin-independent signaling through Dishevelled and Ror2 causes predictable changes in premigratory NC. Morpholino-mediated depletion experiments suggest that Wnt11R, a Wnt protein that is expressed in neuroectoderm adjacent to the NC territory, is required for NC formation. Wnt11-like signals might specify NC by altering the localization and activity of the serine/threonine polarity kinase PAR-1 (also known as microtubule-associated regulatory kinase or MARK), which itself plays an essential role in NC formation. Consistent with this model, PAR-1 RNA rescues NC markers in embryos in which noncanonical Wnt signaling has been blocked. These experiments identify novel roles for Wnt11R and PAR-1 in NC specification and reveal an unexpected connection between morphogenesis and cell fate.  相似文献   

15.
Neural crest (NC) induction is a long process that continues through gastrula and neurula stages. In order to reveal additional stages of NC induction we performed a series of explants where different known inducing tissues were taken along with the prospective NC. Interestingly the dorso-lateral marginal zone (DLMZ) is only able to promote the expression of a subset of neural plate border (NPB) makers without the presence of specific NC markers. We then analysed the temporal requirement for BMP and Wnt signals for the NPB genes Hairy2a and Dlx5, compared to the expression of neural plate (NP) and NC genes. Although the NP is sensitive to BMP levels at early gastrula stages, Hairy2a/Dlx5 expression is unaffected. Later, the NP becomes insensitive to BMP levels at late gastrulation when NC markers require an inhibition. The NP requires an inhibition of Wnt signals prior to gastrulation, but becomes insensitive during early gastrula stages when Hairy2a/Dlx5 requires an inhibition of Wnt signalling. An increase in Wnt signalling is then important for the switch from NPB to NC at late gastrula stages. In addition to revealing an additional distinct signalling event in NC induction, this work emphasizes the importance of integrating both timing and levels of signalling activity during the patterning of complex tissues such as the vertebrate ectoderm.  相似文献   

16.
At the border of the neural plate, the induction of the neural crest can be achieved by interactions with the epidermis, or with the underlying mesoderm. Wnt signals are required for the inducing activity of the epidermis in chick and amphibian embryos. Here, we analyze the molecular mechanisms of neural crest induction by the mesoderm in Xenopus embryos. Using a recombination assay, we show that prospective paraxial mesoderm induces a panel of neural crest markers (Slug, FoxD3, Zic5 and Sox9), whereas the future axial mesoderm only induces a subset of these genes. This induction is blocked by a dominant negative (dn) form of FGFR1. However, neither dnFGFR4a nor inhibition of Wnt signaling prevents neural crest induction in this system. Among the FGFs, FGF8 is strongly expressed by the paraxial mesoderm. FGF8 is sufficient to induce the neural crest markers FoxD3, Sox9 and Zic5 transiently in the animal cap assay. In vivo, FGF8 injections also expand the Slug expression domain. This suggests that FGF8 can initiate neural crest formation and cooperates with other DLMZ-derived factors to maintain and complete neural crest induction. In contrast to Wnts, eFGF or bFGF, FGF8 elicits neural crest induction in the absence of mesoderm induction and without a requirement for BMP antagonists. In vivo, it is difficult to dissociate the roles of FGF and WNT factors in mesoderm induction and neural patterning. We show that, in most cases, effects on neural crest formation were parallel to altered mesoderm or neural development. However, neural and neural crest patterning can be dissociated experimentally using different dominant-negative manipulations: while Nfz8 blocks both posterior neural plate formation and neural crest formation, dnFGFR4a blocks neural patterning without blocking neural crest formation. These results suggest that different signal transduction mechanisms may be used in neural crest induction, and anteroposterior neural patterning.  相似文献   

17.
Leucine-rich repeats and immunoglobulin-like domains 3 (Lrig3) was identified by microarray analysis among genes that show differential expression during gastrulation in Xenopus laevis. Lrig3 was expressed in the neural plate and neural crest (NC) at neurula stages, and in NC derivatives and other dorsal structures during tailbud stages. A prominent consequence of the morpholino-induced inhibition of Lrig3 expression was impaired NC formation, as revealed by the suppression of marker genes, including Slug, Sox9 and Foxd3. In the NC induction assay involving Chordin plus Wnt3a-injected animal caps, Lrig3 morpholino inhibited expression of Slug, Sox9 and Foxd3, but not of Pax3 and Zic1. In line with this, Lrig3 knockdown prevented NC marker induction by Pax3 and Zic1, suggesting that Lrig3 acts downstream of these two genes in NC formation. Injection of Lrig3 and Wnt3a led to low-level induction of NC markers and enhanced induction of Fgf3, Fgf4 and Fgf8 in animal caps, suggesting a positive role for Lrig3 in Wnt signaling. Lrig3 could attenuate Fgf signaling in animal caps, did interact with Fgf receptor 1 in cultured cells and, according to context, decreased or increased the induction of NC markers by Fgf. We suggest that Lrig3 functions in NC formation in Xenopus by modulating the Wnt and Fgf signaling pathways.  相似文献   

18.
The formation of functional neural circuits that process sensory information requires coordinated development of the central and peripheral nervous systems derived from neural plate and neural plate border cells, respectively. Neural plate, neural crest and rostral placodal cells are all specified at the late gastrula stage. How the early development of the central and peripheral nervous systems are coordinated remains, however, poorly understood. Previous results have provided evidence that at the late gastrula stage, graded Wnt signals impose rostrocaudal character on neural plate cells, and Bone Morphogenetic Protein (BMP) signals specify olfactory and lens placodal cells at rostral forebrain levels. By using in vitro assays of neural crest and placodal cell differentiation, we now provide evidence that Wnt signals impose caudal character on neural plate border cells at the late gastrula stage, and that under these conditions, BMP signals induce neural crest instead of rostral placodal cells. We also provide evidence that both caudal neural and caudal neural plate border cells become independent of further exposure to Wnt signals at the head fold stage. Thus, the status of Wnt signaling in ectodermal cells at the late gastrula stage regulates the rostrocaudal patterning of both neural plate and neural plate border, providing a coordinated spatial and temporal control of the early development of the central and peripheral nervous systems.  相似文献   

19.
Ablations of the Axin family genes demonstrated that they modulate Wnt signaling in key processes of mammalian development. The ubiquitously expressed Axin1 plays an important role in formation of the embryonic neural axis, while Axin2 is essential for craniofacial skeletogenesis. Although Axin2 is also highly expressed during early neural development, including the neural tube and neural crest, it is not essential for these processes, apparently due to functional redundancy with Axin1. To further investigate the role of Wnt signaling during early neural development, and its potential regulation by Axins, we developed a mouse model for conditional gene activation in the Axin2-expressing domains. We show that gene expression can be successfully targeted to the Axin2-expressing cells in a spatially and temporally specific fashion. High levels of Axin in this domain induce a region-specific effect on the patterning of neural tube. In the mutant embryos, only the development of midbrain is severely impaired even though the transgene is expressed throughout the neural tube. Axin apparently regulates beta-catenin in coordinating cell cycle progression, cell adhesion and survival of neuroepithelial precursors during development of ventricles. Our data support the conclusion that the development of embryonic neural axis is highly sensitive to the level of Wnt signaling.  相似文献   

20.
While most cranial ganglia contain neurons of either neural crest or placodal origin, neurons of the trigeminal ganglion derive from both populations. The Wnt signaling pathway is known to be required for the development of neural crest cells and for trigeminal ganglion formation, however, migrating neural crest cells do not express any known Wnt ligands. Here we demonstrate that Wise, a Wnt modulator expressed in the surface ectoderm overlying the trigeminal ganglion, play a role in promoting the assembly of placodal and neural crest cells. When overexpressed in chick, Wise causes delamination of ectodermal cells and attracts migrating neural crest cells. Overexpression of Wise is thus sufficient to ectopically induce ganglion-like structures consisting of both origins. The function of Wise is likely synergized with Wnt6, expressed in an overlapping manner with Wise in the surface ectoderm. Electroporation of morpholino antisense oligonucleotides against Wise and Wnt6 causes decrease in the contact of neural crest cells with the delaminated placode-derived cells. In addition, targeted deletion of Wise in mouse causes phenotypes that can be explained by a decrease in the contribution of neural crest cells to the ophthalmic lobe of the trigeminal ganglion. These data suggest that Wise is able to function cell non-autonomously on neural crest cells and promote trigeminal ganglion formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号