首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 661 毫秒
1.
Amazon droughts have impacted regional ecosystem functioning as well as global carbon cycling. The severe dry‐season droughts in 2005 and 2010, driven by Atlantic sea surface temperature (SST) anomaly, have been widely investigated in terms of drought severity and impacts on ecosystems. Although the influence of Pacific SST anomaly on wet‐season precipitation has been well recognized, it remains uncertain to what extent the droughts driven by Pacific SST anomaly could affect forest greenness and photosynthesis in the Amazon. Here, we examined the monthly and annual dynamics of forest greenness and photosynthetic capacity when Amazon ecosystems experienced an extreme drought in 2015/2016 driven by a strong El Niño event. We found that the drought during August 2015–July 2016 was one of the two most severe meteorological droughts since 1901. Due to the enhanced solar radiation during this drought, overall forest greenness showed a small increase, and 21.6% of forests even greened up (greenness index anomaly ≥1 standard deviation). In contrast, solar‐induced chlorophyll fluorescence (SIF), an indicator of vegetation photosynthetic capacity, showed a significant decrease. Responses of forest greenness and photosynthesis decoupled during this drought, indicating that forest photosynthesis could still be suppressed regardless of the variation in canopy greenness. If future El Niño frequency increases as projected by earth system models, droughts would result in persistent reduction in Amazon forest productivity, substantial changes in tree composition, and considerable carbon emissions from Amazon.  相似文献   

2.
Hydraulic redistribution (HR), the nocturnal transport of moisture by plant roots from wetter to drier portions of the root zone, in general can buffer plants against seasonal water deficits. However, its role in longer droughts and its long-term ecological impact are not well understood. Based on numerical model experiments for the Amazon forest, this modeling study indicates that the impact of HR on plant growth differs between droughts of different time scales. While HR increases transpiration and plant growth during regular dry seasons, it reduces dry season transpiration and net primary productivity (NPP) under extreme droughts such as those during El Niño years in the Amazon forest. This occurs because, in places where soil water storage is not able to sustain the ecosystem through the dry season, the HR-induced acceleration of moisture depletion in the early stage of the dry season reduces water availability for the rest of the dry season and causes soil moisture to reach the wilting point earlier. This gets exacerbated during extreme droughts, which jeopardizes the growth of trees that are not in dry season dormancy, i.e., evergreen trees. As a result, the combination of drought and HR increases the percentage of drought deciduous trees at the expense of evergreen trees, and the fractional coverage of forest canopy is characterized by sudden drops following extreme droughts and slow recovery afterwards. The shift of the tropical forest towards more drought deciduous trees as a result of the combined effects of extreme drought and HR has important implications for how vegetation will respond to future climate changes.  相似文献   

3.
The changing Amazon forest   总被引:3,自引:0,他引:3  
Long-term monitoring of distributed, multiple plots is the key to quantify macroecological patterns and changes. Here we examine the evidence for concerted changes in the structure, dynamics and composition of old-growth Amazonian forests in the late twentieth century. In the 1980s and 1990s, mature forests gained biomass and underwent accelerated growth and dynamics, all consistent with a widespread, long-acting stimulation of growth. Because growth on average exceeded mortality, intact Amazonian forests have been a carbon sink. In the late twentieth century, biomass of trees of more than 10cm diameter increased by 0.62+/-0.23tCha-1yr-1 averaged across the basin. This implies a carbon sink in Neotropical old-growth forest of at least 0.49+/-0.18PgCyr-1. If other biomass and necromass components are also increased proportionally, then the old-growth forest sink here has been 0.79+/-0.29PgCyr-1, even before allowing for any gains in soil carbon stocks. This is approximately equal to the carbon emissions to the atmosphere by Amazon deforestation. There is also evidence for recent changes in Amazon biodiversity. In the future, the growth response of remaining old-growth mature Amazon forests will saturate, and these ecosystems may switch from sink to source driven by higher respiration (temperature), higher mortality (as outputs equilibrate to the growth inputs and periodic drought) or compositional change (disturbances). Any switch from carbon sink to source would have profound implications for global climate, biodiversity and human welfare, while the documented acceleration of tree growth and mortality may already be affecting the interactions among millions of species.  相似文献   

4.
Tropical forests are paramount in regulating the global carbon cycle due to the storage of large amounts of carbon in their biomass. Using repeat censuses of permanent plots located at 15 sites in the Andes Mountains of northwest Colombia, we evaluate: (1) the relationship between aboveground biomass (AGB) stocks, AGB dynamics (mortality, productivity, and net change), and changes in temperature across a ca. 3000-m elevational gradient (≈?16.1 °C); (2) how AGB mortality and AGB productivity interact to determine net AGB change; and (3) the extent to which either fine-grain (0.04-ha) or coarse-grain (1-ha) processes determine the AGB dynamics of these forests. We did not find a significant relationship between elevation/temperature and biomass stocks. The net AGB sequestered each year by these forests (2.21?±?0.51 Mg ha?1 year?1), equivalent to approximately 1.09% of initial AGB, was primarily determined by tree growth. Both forest structural properties and global warming influenced AGB mortality and net change. AGB productivity increases with greater inequality of tree sizes, a pattern characteristic of forest patches recovering from disturbances. Overall, we find that global warming is triggering directional changes in species composition by thermophilization via increased tree mortality of species in the lower portions of their thermal ranges and that the inclusion of small-scale forest structural changes can effectively account for endogenous processes such as changes in forest structure. The inclusion of fine-grain processes in assessments of AGB dynamics could provide additional insights about the effects that ongoing climate change has on the functioning of tropical montane forests.  相似文献   

5.
Elevated atmospheric carbon dioxide (eCO2) is predicted to increase growth rates of forest trees. The extent to which increased growth translates to changes in biomass is dependent on the turnover time of the carbon, and thus tree mortality rates. Size‐ or age‐dependent mortality combined with increased growth rates could result in either decreased carbon turnover from a speeding up of tree life cycles, or increased biomass from trees reaching larger sizes, respectively. However, most vegetation models currently lack any representation of size‐ or age‐dependent mortality and the effect of eCO2 on changes in biomass and carbon turnover times is thus a major source of uncertainty in predictions of future vegetation dynamics. Using a reduced‐complexity form of the vegetation demographic model the Functionally Assembled Terrestrial Ecosystem Simulator to simulate an idealised tropical forest, we find increases in biomass despite reductions in carbon turnover time in both size‐ and age‐dependent mortality scenarios in response to a hypothetical eCO2‐driven 25% increase in woody net primary productivity (wNPP). Carbon turnover times decreased by 9.6% in size‐dependent mortality scenarios due to a speeding up of tree life cycles, but also by 2.0% when mortality was age‐dependent, as larger crowns led to increased light competition. Increases in aboveground biomass (AGB) were much larger when mortality was age‐dependent (24.3%) compared with size‐dependent (13.4%) as trees reached larger sizes before death. In simulations with a constant background mortality rate, carbon turnover time decreased by 2.1% and AGB increased by 24.0%, however, absolute values of AGB and carbon turnover were higher than in either size‐ or age‐dependent mortality scenario. The extent to which AGB increases and carbon turnover decreases will thus depend on the mechanisms of large tree mortality: if increased size itself results in elevated mortality rates, then this could reduce by about half the increase in AGB relative to the increase in wNPP.  相似文献   

6.
Wood density (WD) is believed to be a key trait in driving growth strategies of tropical forest species, and as it entails the amount of mass per volume of wood, it also tends to correlate with forest carbon stocks. Yet there is relatively little information on how interspecific variation in WD correlates with biomass dynamics at the species and population level. We determined changes in biomass in permanent plots in a logged forest in Vietnam from 2004 to 2012, a period representing the last 8 years of a 30 years logging cycle. We measured diameter at breast height (DBH) and estimated aboveground biomass (AGB) growth, mortality, and net AGB increment (the difference between AGB gains and losses through growth and mortality) per species at the individual and population (i.e. corrected for species abundance) level, and correlated these with WD. At the population level, mean net AGB increment rates were 6.47 Mg ha?1 year?1 resulting from a mean AGB growth of 8.30 Mg ha?1 year?1, AGB recruitment of 0.67 Mg ha?1 year?1 and AGB losses through mortality of 2.50 Mg ha?1 year?1. Across species there was a negative relationship between WD and mortality rate, WD and DBH growth rate, and a positive relationship between WD and tree standing biomass. Standing biomass in turn was positively related to AGB growth, and net AGB increment both at the individual and population level. Our findings support the view that high wood density species contribute more to total biomass and indirectly to biomass increment than low wood density species in tropical forests. Maintaining high wood density species thus has potential to increase biomass recovery and carbon sequestration after logging.  相似文献   

7.
Global change includes multiple stressors to natural ecosystems ranging from direct climate and land‐use impacts to indirect degradation processes resulting from fire. Humid tropical forests are vulnerable to projected climate change and possible synergistic interactions with deforestation and fire, which may initiate a positive feedback to rising atmospheric CO2. Here, we present results from a multifactorial impact analysis that combined an ensemble of climate change models with feedbacks from deforestation and accidental fires to quantify changes in Amazon Basin carbon cycling. Using the LPJmL Dynamic Global Vegetation Model, we modelled spatio‐temporal changes in net biome production (NBP); the difference between carbon fluxes from fire, deforestation, soil respiration and net primary production. By 2050, deforestation and fire (with no CO2 increase or climate change) resulted in carbon losses of 7.4–20.3 Pg C with the range of uncertainty depending on socio‐economic storyline. During the same time period, interactions between climate and land use either compensated for carbon losses due to wetter climate and CO2 fertilization or exacerbated carbon losses from drought‐induced forest mortality (?20.1 to +4.3 Pg C). By the end of the 21st century, depending on climate projection and the rate of deforestation (including its interaction with fire), carbon stocks either increased (+12.6 Pg C) or decreased (?40.6 Pg C). The synergistic effect of deforestation and fire with climate change contributed up to 26–36 Pg C of the overall decrease in carbon stocks. Agreement between climate projections (n=9), not accounting for deforestation and fire, in 2050 and 2098 was relatively low for the directional change in basin‐wide NBP (19–37%) and aboveground live biomass (13–24%). The largest uncertainty resulted from climate projections, followed by implementation of ecosystem dynamics and deforestation. Our analysis partitions the drivers of tropical ecosystem change and is relevant for guiding mitigation and adaptation policy related to global change.  相似文献   

8.
Canada's boreal forests, which occupy approximately 30% of boreal forests worldwide, play an important role in the global carbon budget. However, there is little quantitative information available regarding the spatiotemporal changes in the drought-induced tree mortality of Canada's boreal forests overall and their associated impacts on biomass carbon dynamics. Here, we develop spatiotemporally explicit estimates of drought-induced tree mortality and corresponding biomass carbon sink capacity changes in Canada's boreal forests from 1970 to 2020. We show that the average annual tree mortality rate is approximately 2.7%. Approximately 43% of Canada's boreal forests have experienced significantly increasing tree mortality trends (71% of which are located in the western region of the country), and these trends have accelerated since 2002. This increase in tree mortality has resulted in significant biomass carbon losses at an approximate rate of 1.51 ± 0.29 MgC ha−1 year−1 (95% confidence interval) with an approximate total loss of 0.46 ± 0.09 PgC year−1 (95% confidence interval). Under the drought condition increases predicted for this century, the capacity of Canada's boreal forests to act as a carbon sink will be further reduced, potentially leading to a significant positive climate feedback effect.  相似文献   

9.
Biomass change of the world's forests is critical to the global carbon cycle. Despite storing nearly half of global forest carbon, the boreal biome of diverse forest types and ages is a poorly understood component of the carbon cycle. Using data from 871 permanent plots in the western boreal forest of Canada, we examined net annual aboveground biomass change (ΔAGB) of four major forest types between 1958 and 2011. We found that ΔAGB was higher for deciduous broadleaf (DEC) (1.44 Mg ha?1 year?1, 95% Bayesian confidence interval (CI), 1.22–1.68) and early‐successional coniferous forests (ESC) (1.42, CI, 1.30–1.56) than mixed forests (MIX) (0.80, CI, 0.50–1.11) and late‐successional coniferous (LSC) forests (0.62, CI, 0.39–0.88). ΔAGB declined with forest age as well as calendar year. After accounting for the effects of forest age, ΔAGB declined by 0.035, 0.021, 0.032 and 0.069 Mg ha?1 year?1 per calendar year in DEC, ESC, MIX and LSC forests, respectively. The ΔAGB declines resulted from increased tree mortality and reduced growth in all forest types except DEC, in which a large biomass loss from mortality was accompanied with a small increase in growth. With every degree of annual temperature increase, ΔAGB decreased by 1.00, 0.20, 0.55 and 1.07 Mg ha?1 year?1 in DEC, ESC, MIX and LSC forests, respectively. With every cm decrease of annual climatic moisture availability, ΔAGB decreased 0.030, 0.045 and 0.17 Mg ha?1 year?1 in ESC, MIX and LSC forests, but changed little in DEC forests. Our results suggest that persistent warming and decreasing water availability have profound negative effects on forest biomass in the boreal forests of western Canada. Furthermore, our results indicate that forest responses to climate change are strongly dependent on forest composition with late‐successional coniferous forests being most vulnerable to climate changes in terms of aboveground biomass.  相似文献   

10.
Extreme climatic events and land‐use change are known to influence strongly the current carbon cycle of Amazonia, and have the potential to cause significant global climate impacts. This review intends to evaluate the effects of both climate and anthropogenic perturbations on the carbon balance of the Brazilian Amazon and to understand how they interact with each other. By analysing the outputs of the Intergovernmental Panel for Climate Change (IPCC) Assessment Report 4 (AR4) model ensemble, we demonstrate that Amazonian temperatures and water stress are both likely to increase over the 21st Century. Curbing deforestation in the Brazilian Amazon by 62% in 2010 relative to the 1990s mean decreased the Brazilian Amazon's deforestation contribution to global land use carbon emissions from 17% in the 1990s and early 2000s to 9% by 2010. Carbon sources in Amazonia are likely to be dominated by climatic impacts allied with forest fires (48.3% relative contribution) during extreme droughts. The current net carbon sink (net biome productivity, NBP) of +0.16 (ranging from +0.11 to +0.21) Pg C year?1 in the Brazilian Amazon, equivalent to 13.3% of global carbon emissions from land‐use change for 2008, can be negated or reversed during drought years [NBP = ?0.06 (?0.31 to +0.01) Pg C year?1]. Therefore, reducing forest fires, in addition to reducing deforestation, would be an important measure for minimizing future emissions. Conversely, doubling the current area of secondary forests and avoiding additional removal of primary forests would help the Amazonian gross forest sink to offset approximately 42% of global land‐use change emissions. We conclude that a few strategic environmental policy measures are likely to strengthen the Amazonian net carbon sink with global implications. Moreover, these actions could increase the resilience of the net carbon sink to future increases in drought frequency.  相似文献   

11.
Severe droughts have been associated with regional-scale forest mortality worldwide. Climate change is expected to exacerbate regional mortality events; however, prediction remains difficult because the physiological mechanisms underlying drought survival and mortality are poorly understood. We developed a hydraulically based theory considering carbon balance and insect resistance that allowed development and examination of hypotheses regarding survival and mortality. Multiple mechanisms may cause mortality during drought. A common mechanism for plants with isohydric regulation of water status results from avoidance of drought-induced hydraulic failure via stomatal closure, resulting in carbon starvation and a cascade of downstream effects such as reduced resistance to biotic agents. Mortality by hydraulic failure per se may occur for isohydric seedlings or trees near their maximum height. Although anisohydric plants are relatively drought-tolerant, they are predisposed to hydraulic failure because they operate with narrower hydraulic safety margins during drought. Elevated temperatures should exacerbate carbon starvation and hydraulic failure. Biotic agents may amplify and be amplified by drought-induced plant stress. Wet multidecadal climate oscillations may increase plant susceptibility to drought-induced mortality by stimulating shifts in hydraulic architecture, effectively predisposing plants to water stress. Climate warming and increased frequency of extreme events will probably cause increased regional mortality episodes. Isohydric and anisohydric water potential regulation may partition species between survival and mortality, and, as such, incorporating this hydraulic framework may be effective for modeling plant survival and mortality under future climate conditions.  相似文献   

12.
Experiments employing free-air CO2 enrichment (FACE) facilities have indicated that elevated atmospheric carbon dioxide (eCO2) stimulates growth in diverse terrestrial ecosystems. Studies of the effects of eCO2 on wetland plants have indicated a similar response, but these studies were mostly performed in growth chambers. We conducted a 2-year FACE experiment [CO2 ≈ 582 µmol mol?1] in a marsh in Spain to test whether the common reed (Phragmites australis) responds to carbon enrichment, as previously reported in other macrophytes. More specifically, we tested the effect of eCO2 on P. australis growth, photosynthesis, transpiration, and biomass, its effect on modifying plant and soil ratios of carbon, nitrogen, and phosphorus, and whether the strong environmental variability of this wetland modulates these responses. Our findings show that effects of eCO2 in this wetland environment are more complex than previously believed, probably due to hydrological effects. The effects of eCO2 on reed plants were cumulative and manifested at the end of the growing season as increased 38–44% instantaneous transpiration efficiency (ratio of net photosynthesis to transpiration), which was dependent on plant age. However, this increase did not result in a significant increase in biomass, because of excessive root exudation of carbon. These observations contrast with previous observations of wetland plants to increased atmospheric CO2 in growth chambers and shed new light on the role of wetland plants as a carbon sink in the face of global climate change. The combined effects of water stress, eCO2, and soil carbon processes must be considered when assessing the function of wetlands as a carbon sink under global change scenarios.  相似文献   

13.

Assessing long-term changes in the biomass of old-growth forests with consideration of climate effects is essential for understanding forest ecosystem functions under a changing climate. Long-term biomass changes are the result of accumulated short-term changes, which can be affected by endogenous processes such as gap filling in small-scale canopy openings. Here, we used 26 years (1993–2019) of repeated tree census data in an old-growth, cool-temperate, mixed deciduous forest that contains three topographic units (riparian, denuded slope, and terrace) in northern Japan to document decadal changes in aboveground biomass (AGB) and their processes in relation to endogenous processes and climatic factors. AGB increased steadily over the 26 years in all topographic units, but different tree species contributed to the increase among the topographic units. AGB gain within each topographic unit exceeded AGB loss via tree mortality in most of the measurement periods despite substantial temporal variation in AGB loss. At the local scale, variations in AGB gain were partially explained by compensating growth of trees around canopy gaps. Climate affected the local-scale AGB gain: the gain was larger in the measurement periods with higher mean air temperature during the current summer but smaller in those with higher mean air temperature during the previous autumn, synchronously in all topographic units. The influences of decadal summer and autumn warming on AGB growth appeared to be counteracting, suggesting that the observed steady AGB increase in KRRF is not fully explained by the warming. Future studies should consider global and regional environmental factors such as elevated CO2 concentrations and nitrogen deposition, and include cool-temperate forests with a broader temperature range to improve our understanding on biomass accumulation in this type of forests under climate change.

  相似文献   

14.

Aims

Drought is a major growth limiting factor in the majority of terrestrial ecosystems and is expected to become more frequent in the future. Therefore, resolving the drought response of plants under changing climate conditions is crucial to our understanding of future ecosystem functioning. This study responds to the need for experimental research on the combined effects of warming, elevated CO2 and drought, and aims to determine whether the response to drought is altered under future climate conditions.

Methods

Two grassland species, Lolium perenne L. and Plantago lanceolata L., were grown in sunlit climate-controlled chambers. Four climates were simulated: (1) current climate, (2) current climate with drought, (3) a warmer climate with drought, and (4) a climate with combined warming, elevated CO2 and drought.

Results

Warming did not alter the drought response, neither directly through photosynthesis nor indirectly through changes in water consumption. Also for combined warming and elevated CO2 there were no effects on the plant response to drought for any of the measured parameters. However, simultaneous warming and elevated CO2 mitigated the biomass response to drought through a positive pre-drought effect on photosynthesis and biomass response.

Conclusions

Our results indicate that a positive pre-drought effect of combined warming and elevated CO2 has the potential to compensate for drought-induced biomass losses under future climate conditions.  相似文献   

15.
The Amazon Basin experiences severe droughts that may become more common in the future. Little is known of the effects of such droughts on Amazon forest productivity and carbon allocation. We tested the prediction that severe drought decreases litterfall and wood production but potentially has multiple cancelling effects on belowground production within a 7-year partial throughfall exclusion experiment. We simulated an approximately 35-41% reduction in effective rainfall from 2000 through 2004 in a 1ha plot and compared forest response with a similar control plot. Wood production was the most sensitive component of above-ground net primary productivity (ANPP) to drought, declining by 13% the first year and up to 62% thereafter. Litterfall declined only in the third year of drought, with a maximum difference of 23% below the control plot. Soil CO2 efflux and its 14C signature showed no significant treatment response, suggesting similar amounts and sources of belowground production. ANPP was similar between plots in 2000 and declined to a low of 41% below the control plot during the subsequent treatment years, rebounding to only a 10% difference during the first post-treatment year. Live aboveground carbon declined by 32.5Mgha-1 through the effects of drought on ANPP and tree mortality. Results of this unreplicated, long-term, large-scale ecosystem manipulation experiment demonstrate that multi-year severe drought can substantially reduce Amazon forest carbon stocks.  相似文献   

16.
The response of wheat to the variables of climate change includes elevated CO2, high temperature, and drought which vary according to the levels of each variable and genotype. Independently, elevated CO2, high temperature, and terminal drought affect wheat biomass and grain yield, but the interactive effects of these three variables are not well known. The aim of this study was to determine the effects of elevated CO2 when combined with high temperature and terminal drought on the high‐yielding traits of restricted‐tillering and vigorous growth. It was hypothesized that elevated CO2 alone, rather than combined with high temperature, ameliorates the effects of terminal drought on wheat biomass and grain yield. It was also hypothesized that wheat genotypes with more sink capacity (e.g. high‐tillering capacity and leaf area) have more grain yield under combined elevated CO2, high temperature, and terminal drought. Two pairs of sister lines with contrasting tillering and vigorous growth were grown in poly‐tunnels in a four‐factor completely randomized split‐plot design with elevated CO2 (700 µL L?1), high day time temperature (3 °C above ambient), and drought (induced from anthesis) in all combinations to test whether elevated CO2 ameliorates the effects of high temperature and terminal drought on biomass accumulation and grain yield. For biomass and grain yield, only main effects for climate change variables were significant. Elevated CO2 significantly increased grain yield by 24–35% in all four lines and terminal drought significantly reduced grain yield by 16–17% in all four lines, while high temperature (3 °C above the ambient) had no significant effect. A trade‐off between yield components limited grain yield in lines with greater sink capacity (free‐tillering lines). This response suggests that any positive response to predicted changes in climate will not overcome the limitations imposed by the trade‐off in yield components.  相似文献   

17.
Forests of the European Union (EU) have been intensively managed for decades, and they have formed a significant sink for carbon dioxide (CO2) from the atmosphere over the past 50 years. The reasons for this behavior are multiple, among them are: forest aging, area expansion, increasing plant productivity due to environmental changes of many kinds, and, most importantly, the growth rates of European forest having been higher than harvest rates. EU countries have agreed to reduce total emissions of GHG by 20% in 2020 compared to 1990, excluding the forest sink. A relevant question for climate policy is: how long will the current sink of EU forests be maintained in the near future? And could it be affected by other mitigation measures such as bioenergy? In this article we assess tradeoffs of bioenergy use and carbon sequestration at large scale and describe results of the comparison of two advanced forest management models that are used to project CO2 emissions and removals from EU forests until 2030. EFISCEN, a detailed statistical matrix model and G4M, a geographically explicit economic forestry model, use scenarios of future harvest rates and forest growth information to estimate the future carbon balance of forest biomass. Two scenarios were assessed: the EU baseline scenario and the EU reference scenario (including additional bioenergy and climate policies). Our projections suggest a significant decline of the sink until 2030 in the baseline scenario of about 25–40% (or 65–125 Mt CO2) compared to the models’ 2010 estimate. Including additional bioenergy targets of EU member states has an effect on the development of this sink, which is not accounted in the EU emission reduction target. A sensitivity analysis was performed on the role of future wood demand and proved the importance of this driver for the future sink development.  相似文献   

18.
As atmospheric CO2 levels rise, temperate and boreal forests in the Northern Hemisphere are gaining importance as carbon sinks. Quantification of that role, however, has been difficult due to the confounding effects of climate change. Recent large‐scale experiments with quaking aspen (Populus tremuloides), a dominant species in many northern forest ecosystems, indicate that elevated CO2 levels can enhance net primary production. Field studies also reveal that droughts contribute to extensive aspen mortality. To complement this work, we analyzed how the growth of wild aspen clones in Wisconsin has responded to historical shifts in CO2 and climate, accounting for age, genotype (microsatellite heterozygosity), and other factors. Aspen growth has increased an average of 53% over the past five decades, primarily in response to the 19.2% rise in ambient CO2 levels. CO2‐induced growth is particularly enhanced during periods of high moisture availability. The analysis accounts for the highly nonlinear changes in growth rate with age, and is unaffected by sex or location sampled. Growth also increases with individual heterozygosity, but this heterozygote advantage has not changed with rising levels of CO2 or moisture. Thus, increases in future growth predicted from previous large‐scale, common‐garden work are already evident in this abundant and ecologically important tree species. Owing to aspen's role as a foundation species in many North American forest ecosystems, CO2‐stimulated growth is likely to have repercussions for numerous associated species and ecosystem processes.  相似文献   

19.
Transpiration from the Amazon rainforest generates an essential water source at a global and local scale. However, changes in rainforest function with climate change can disrupt this process, causing significant reductions in precipitation across Amazonia, and potentially at a global scale. We report the only study of forest transpiration following a long‐term (>10 year) experimental drought treatment in Amazonian forest. After 15 years of receiving half the normal rainfall, drought‐related tree mortality caused total forest transpiration to decrease by 30%. However, the surviving droughted trees maintained or increased transpiration because of reduced competition for water and increased light availability, which is consistent with increased growth rates. Consequently, the amount of water supplied as rainfall reaching the soil and directly recycled as transpiration increased to 100%. This value was 25% greater than for adjacent nondroughted forest. If these drought conditions were accompanied by a modest increase in temperature (e.g., 1.5°C), water demand would exceed supply, making the forest more prone to increased tree mortality.  相似文献   

20.
Peatlands store 30% of the world’s terrestrial soil carbon (C) and those located at northern latitudes are expected to experience rapid climate warming. We monitored growing season carbon dioxide (CO2) fluxes across a factorial design of in situ water table (control, drought, and flooded plots) and soil warming (control vs. warming via open top chambers) treatments for 2 years in a rich fen located just outside the Bonanza Creek Experimental Forest in interior Alaska. The drought (lowered water table position) treatment was a weak sink or small source of atmospheric CO2 compared to the moderate atmospheric CO2 sink at our control. This change in net ecosystem exchange was due to lower gross primary production and light-saturated photosynthesis rather than increased ecosystem respiration. The flooded (raised water table position) treatment was a greater CO2 sink in 2006 due largely to increased early season gross primary production and higher light-saturated photosynthesis. Although flooding did not have substantial effects on rates of ecosystem respiration, this water table treatment had lower maximum respiration rates and a higher temperature sensitivity of ecosystem respiration than the control plot. Surface soil warming increased both ecosystem respiration and gross primary production by approximately 16% compared to control (ambient temperature) plots, with no net effect on net ecosystem exchange. Results from this rich fen manipulation suggest that fast responses to drought will include reduced ecosystem C storage driven by plant stress, whereas inundation will increase ecosystem C storage by stimulating plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号