首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 259 毫秒
1.
2.
The CpG island in the 5' region of the G6PD gene of man and mouse   总被引:1,自引:0,他引:1  
D Toniolo  M Filippi  R Dono  T Lettieri  G Martini 《Gene》1991,102(2):197-203
The nucleotide (nt) sequence of the entire CpG island in the 5' region of the human glucose-6-phosphate dehydrogenase-encoding gene (G6PD) and of the corresponding region in mouse was determined. In comparison to the human gene, the 5' region of the mouse G6PD gene has highly reduced G + C and CpG dinucleotide content, but maintains the functional features of a CpG island, as it is differentially methylated on the active vs. the inactive X chromosome. In addition to the expected conservation of exons, nt sequence comparison showed that several boxes are highly conserved between the two species in the 5' flanking DNA and in the first intron. Moreover, the conservation of the position of most CpG dinucleotides in the promoter region and in one of the upstream boxes, at about -900, gives support to the hypothesis that, in each island, specific CpGs play a major role in the regulation of gene expression.  相似文献   

3.
4.
5.
The 5' control region and first exon for human X-chromosome-linked phosphoglycerate kinase is contained in a G + C-rich island. We measured methylation at all HpaII sites in this 5' region of leukocyte DNA. By use of a blotting procedure that allows analysis of small DNA fragments, we found that the HpaII sites are entirely methylated when from an inactive X chromosome and entirely unmethylated when from an active one. In contrast, methylation of HpaII sites in more downstream regions of the gene is essentially the same in active and inactive X chromosomes.  相似文献   

6.
The DXS255 locus at Xp11.22 is highly polymorphic due to a 26-bp variable number of tandem repeats (VNTR) motif. In previous studies, one of the MspI sites flanking the VNTR manifested a correlation between methylation and X chromosome inactivation. Here we show, by DNA sequence analysis, that this MspI site is located within the CpG island at the 5' end of a LINE-1 element, which is 2.5 kb from the VNTR. The methylation status of the CpG island was assessed in Southern blotting experiments using the methylation-sensitive enzymes HpaII, HhaI, and BssHII. All these sites were completely methylated on active X chromosomes, consistent with previously reported findings of full methylation of LINE-1 elements throughout the genome. However, on inactive X chromosomes these sites were predominantly unmethylated, although patterns were found to be heterogeneous. The results suggest that LINE-1 elements on the inactive X chromosome are not suppressed by full methylation of their CpG islands. The differential methylation of the DXS255 CpG island provides the basis for a highly informative X inactivation analysis system.  相似文献   

7.
8.
CpG islands of the X chromosome are gene associated.   总被引:6,自引:0,他引:6       下载免费PDF全文
Unmethylated CpG rich islands are a feature of vertebrate DNA: they are associated with housekeeping and many tissue specific genes. CpG islands on the active X chromosome of mammals are also unmethylated. However, islands on the inactive X chromosome are heavily methylated. We have identified a CpG island in the 5' region of the G6PD gene, and two islands forty Kb 3' from the G6PD gene, on the human X chromosome. Expression of the G6PD gene is associated with concordant demethylation of all three CpG islands. We have shown that one of the two islands is in the promoter region of a housekeeping gene, GdX. In this paper we show that the second CpG island is also associated with a gene, P3. The P3 gene has no homology to previously described genes. It is a single copy, 4 kb gene, conserved in evolution, and it has the features of a housekeeping two genes is within the CpG island and that sequences in the islands have promoter function.  相似文献   

9.
It has been proposed that DNA methylation is involved in the mechanism of X inactivation, the process by which equivalence of levels of X-linked gene products is achieved in female (XX) and male (XY) mammals. In this study, Southern blots of female and male DNA digested with methylation-sensitive restriction endonucleases and hybridized to various portions of the cloned mouse hprt gene were compared, and sites within the mouse hprt gene were identified that are differentially methylated in female and male cells. The extent to which these sites are methylated when carried on the active and inactive X chromosomes was directly determined in a similar analysis of DNA from clonal cell lines established from a female embryo derived from a mating of two species of mouse, Mus musculus and Mus caroli. The results revealed two regions of differential methylation in the mouse hprt gene. One region, in the first intron of the gene, includes four sites that are completely unmethylated when carried on the active X and extensively methylated when carried on the inactive X. These same sites are extensively demethylated in hprt genes reactivated either spontaneously or after 5-azacytidine treatment. The second region includes several sites in the 3' 20kilobases of the gene extending from exon 3 to exon 9 that show the converse pattern; i.e., they are completely methylated when carried on the active X and completely unmethylated when carried on the inactive X. At least one of these sites does not become methylated after reactivation of the gene. The results of this study, together with the results of previous studies by others of the human hprt gene, indicate that these regions of differential methylation on the active and inactive X are conserved between mammalian species. Furthermore, the data described here are consistent with the idea that at least the sites in the 5' region of the gene play a role in the X inactivation phenomenon and regulation of expression of the mouse hprt gene.  相似文献   

10.
A 195-kb cosmid walk encompassing the human Xq28 color vision pigment genes   总被引:15,自引:0,他引:15  
R Feil  P Aubourg  R Heilig  J L Mandel 《Genomics》1990,6(2):367-373
By using cosmid walking, we have cloned a 195-kb region from chromosome band Xq28 that encompasses the red and green color pigment genes and 85 kb of flanking sequences. This has allowed us to confirm that the color pigment genes are within very homologous units arranged in tandem array. Each unit contains two BssHII sites and one NruI site that are frequently methylated in male leukocyte DNA. A NotI and an EagI site are present 6 kb upstream from the red pigment gene promoter; the NotI site was shown to be unmethylated in the active X chromosome in leukocytes and may represent a CpG island for the whole cluster. We have identified another CpG island, 61 kb 3' from the last green pigment gene, that is unmethylated in leukocytes on the active X chromosome, but methylated on the inactive X. This island is flanked by sequences conserved in evolution and may thus correspond to an expressed gene. We also describe an informative three-allele restriction fragment length polymorphism within the pigment gene cluster.  相似文献   

11.
12.
We have previously reported that expression of the G6PD locus is correlated with the methylation status of two islands of CpG dinucleotides which are 3' to the locus and in the 5' region of two adjacent genes of unknown function, P3 and GdX. We have now examined the methylation of a third CpG island in the promoter region of the G6PD gene itself in DNA from males, females and reactivants that express G6PD on the inactive X chromosome. Our results show that expression of the G6PD gene is associated with concordant demethylation of all three CpG islands in this 100-kb region of DNA.  相似文献   

13.
DNA methylation in states of cell physiology and pathology   总被引:11,自引:0,他引:11  
DNA methylation is one of epigenetic mechanisms regulating gene expression. The methylation pattern is determined during embryogenesis and passed over to differentiating cells and tissues. In a normal cell, a significant degree of methylation is characteristic for extragenic DNA (cytosine within the CG dinucleotide) while CpG islands located in gene promoters are unmethylated, except for inactive genes of the X chromosome and the genes subjected to genomic imprinting. The changes in the methylation pattern, which may appear as the organism age and in early stages of cancerogenesis, may lead to the silencing of over ninety endogenic genes. It has been found, that these disorders consist not only of the methylation of CpG islands, which are normally unmethylated, but also of the methylation of other dinucleotides, e.g. CpA. Such methylation has been observed in non-small cell lung cancer, in three regions of the exon 5 of the p53 gene (so-called "non-CpG" methylation). The knowledge of a normal methylation process and its aberrations appeared to be useful while searching for new markers enabling an early detection of cancer. With the application of the Real-Time PCR technique (using primers for methylated and unmethylated sequences) five new genes which are potential biomarkers of lung cancer have been presented.  相似文献   

14.
X chromosome dosage compensation in Marsupials is like that in eutherian mammals except that the paternal X chromosome is always inactive, and silence of this chromosome is not well maintained. We previously showed that the unstable inactivation of the paternal G6PD allele is associated with the lack of DNA methylation in the 5' CpG cluster. Even though this CpG island is unmethylated, the paternal allele (marked by an enzyme variant) is at least partially and often severely repressed in most tissues of the opossum, so that factors other than methylation must inactivate the locus. Here we report that when cell cultures are established from these tissues, the silent G6PD locus is depressed. Although often complete, the extent of derepression differs among tissues and within different cell types in the same tissue, and is not accompanied by obvious changes in the pattern of chromosome replication. Studies of the HPRT locus in these cells show that the paternal HPRT allele also derepresses in cultured cells. These observations suggest that without DNA methylation to maintain the silence of the locus, tissue or cell-specific factors act to repress the silent locus, but are unable to maintain inactivity through cell division, or are lost as cells proliferate in culture.  相似文献   

15.
16.
Maintenance of dosage compensation for housekeeping genes on the human X chromosome is mediated through differential methylation of clustered CpG nucleotides associated with these genes. To determine if methylation has a role in maintaining inactivity of X-linked genes which show tissue-specific expression, we examined the locus for blood clotting Factor IX. The analysis encompassed 91% of the HpaII and HhaI sites in the 41-kb region that includes the presumed promoter region, 5 kb of 5'- and 4 kb of 3'-flanking sequences. Although there are sex differences in methylation of the locus in leukocytes, the methylation pattern in liver, where the gene is expressed, is essentially the same for loci on the active and inactive X chromosome. The lack of differences in methylation of active and inactive genes makes it unlikely that methylation within the locus has a role in expression of the Factor IX gene. These findings, along with the absence of clustered CpG dinucleotides within the Factor IX locus, suggest that functional differences in DNA methylation related to X chromosome dosage compensation may be limited to CpG clusters. In any event, dosage compensation seems to be maintained regionally, rather than locus by locus.  相似文献   

17.
The gene MIC2 is located in the pseudoautosomal region at the ends of the short arms of the X and Y chromosomes. In females MIC2 escapes X inactivation. We have analyzed the methylation pattern of MIC2 on the active X, the inactive X chromosomes, and the Y chromosome. The 5' end of the gene contains a GC rich region which is unmethylated on the active X, the inactive X and on the Y. The body of the gene is characterized by variable methylation.  相似文献   

18.
Thirty-two probes for CpG islands of the distal long arm of the human X chromosome have been identified. From a genomic library of DNA of the hamster-human cell hybrid X3000.1 digested with the rare cutter restriction enzyme EagI, 53 different human clones have been isolated and characterized by methylation and sequence analysis. The characteristic pattern of DNA methylation of CpG islands at the 5' end of genes of the X chromosome has been used to distinguish between EagI sites in CpG islands versus isolated EagI sites. The sequence analysis has confirmed and completed the characterization showing that sequences at the 5' end of known genes were among the clones defined CpG islands and that the non-CpG islands clones were mostly repetitive sequences with a non-methylated or variably methylated EagI site. Thus, since clones corresponding to repetitive sequences can be easily identified by sequencing, such libraries are a very good source of CpG islands. The methylation analysis of 28 different new probes allows to state that demethylation of CpG islands of the active X and methylation of those on the inactive X chromosome are the general rule. Moreover, the finding, in all instances, of methylation differences between male and female DNA is in very strong support of the notion that most genes of the distal long arm of the X chromosome are subject to X inactivation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号