首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
M P Vazquez  M J Levin 《Gene》1999,239(2):217-225
TcP2beta ribosomal protein genes in Trypanosoma cruzi are encoded by four different loci, H6.4, H1.8, H1.5 and H1.3. All loci have a similar organization, except for H1.8 that harbors two TcP2beta genes arranged in tandem and separated by a short repetitive sequence, named SIRE (short interspersed repetitive element), which is also found upstream of the first gene of the tandem and downstream of the second. In this locus the trans-splicing signal of TcP2beta is located within the SIRE element, while in the other loci it is positioned within the first 50bases upstream of the AUG with an AG acceptor site at position -12 respective to the initiation codon. Transient transfection experiments were used to evaluate the efficiency of these two different trans-splicing regions to drive CAT activity. The region named HX1 located upstream the TcP2beta H1. 8 gene was clearly more efficient than the SIRE sequence contained in the region named HX2. Therefore, we decided to use the HX1 region to ameliorate the performance of the cryptic trans-splicing signal present in the T. cruzi expression vector pRIBOTEX (Martinez-Calvillo, S., López, I., Hernandez, H., 1997. pRIBOTEX expression vector: a pTEX derivative for a rapid selection of Trypanosoma cruzi transfectants. Gene 199, 71-76). By insertion of the region HX1 downstream of the ribosomal promoter of pRIBOTEX, we constructed pRHX1CAT40 that, in stable transfected cells, was able to drive CAT activity 2760 times more efficiently than the control plasmids. Based on this, a novel plasmid vector was conceived, named pTREX-n, which retains the neo gene of pRIBOTEX as a positive selectable marker and replaces the CAT-SV40 cassette in pRHX1CAT40 by a multiple cloning site.  相似文献   

4.
5.
6.
Chanda I  Pan A  Saha SK  Dutta C 《FEBS letters》2007,581(30):5751-5758
Comparative analyses of codon/amino acid usage in Leishmania major, Trypanosoma brucei and Trypanosoma cruzi reveal that gene expressivity and GC-bias play key roles in shaping the gene composition of all three parasites, and protein composition of L. major only. In T. brucei and T. cruzi, the major contributors to the variation in protein composition are hydropathy and/or aromaticity. Principle of Cost Minimization is followed by T. brucei, disregarded by T. cruzi and opposed by L. major. Slowly evolving highly expressed gene-products of L. major bear signatures of relatively AT-rich ancestor, while faster evolution under GC-bias has characterized the lowly expressed genes of the species by higher GC12-content.  相似文献   

7.
8.
9.
The tubulin genes of Trypanosoma cruzi   总被引:1,自引:0,他引:1  
The organization of the alpha- and beta-tubulin genes in the genome of Trypanosoma cruzi have been analysed by Southern blotting using tubulin probes derived from Trypanosoma brucei. The tubulin array appears to be more complex in this organism than in other members of the same family. Some tubulin genes are tightly clustered in an alternating (alpha-beta)n array with a basic repeat unit length of 4.3 kb. However, other pairs of alternating alpha- and beta-tubulin sequences appear to be physically separated from the basic group. This finding indicates that the tubulin gene cluster present in T. cruzi is less perfectly conserved than in T. brucei. T. (Herpetosoma) rangeli is similar to T. (Schizotrypanum) cruzi in its tubulin gene organization whereas most of these genes are tandemly clustered in the genome of T. (Trypanozoon) evansi, with a basic repeat unit length of 3.6 kb as previously described for T. (Trypanozoon) brucei. Two overlapping recombinant clones containing T. cruzi tubulin sequences have been isolated from a genomic cosmid library of T. cruzi epimastigotes using the T. brucei tubulin probes. Partial sequencing of the T. cruzi beta-tubulin gene has confirmed its identity and shows more than 70% homology with the sea urchin, chicken and T. b. rhodesiense beta-tubulin reported gene sequences. Analysis of tubulin gene organization through the parasite life cycle does not show evidence of major rearrangements within the repeat unit. Several T. cruzi strains and cloned lines whilst sharing the 4.3-kb tubulin repeat unit, exhibited very variable tubulin gene organization with tubulin probes. These striking differences in the organization of this structural gene among T. cruzi strains and cloned lines suggest that the heterogeneity previously reported in parasite populations may be related to a very dynamic, diploid genome.  相似文献   

10.
11.
In a 17-kb genomic fragment of Trypanosoma cruzi chromosome XX, we identified three tandemly linked genes coding for CX(2)CX(4)HX(4)C zinc finger proteins. We also showed that similar genes are present in T. brucei and Leishmania major, sharing three monophyletic groups among these trypanosomatids. In T. cruzi, TcZFP8 corresponds to a novel gene coding for a protein containing eight zinc finger motifs. Molecular cloning of this gene and heterologous expression as a fusion with a His-tag were performed in Escherichia coli. The purified recombinant protein was used to produce antibody in rabbits. Using Western blot analysis, we observed the presence of this protein in all three forms of the parasite: amastigote, trypomastigote and epimastigote. An analysis of cytoplasmic and nuclear cell extracts showed that this protein is present in nuclear extracts, and indirect immunofluorescence microscopy confirmed the nuclear localization of TcZFP8. Homologues of TcZFP8 in T. brucei are apparently absent, while one candidate in L. major was identified.  相似文献   

12.
13.
The META1 gene of Leishmania is upregulated in metacyclic promastigotes and encodes a 12 kDa virulence-related protein, conserved in all Leishmania species analysed. In this study, the genomic region adjacent to the Leishmania amazonensis META1 gene was characterised and compared to the Leishmania major META1 locus as well as to syntenic loci identified in Trypanosoma brucei and Trypanosoma cruzi. Three new genes expressed with increased abundance of steady state mRNA in L. amazonensis promastigotes were identified, two of which are upregulated in stationary phase promastigotes, sharing the pattern of expression previously described for the META1 mRNA. One of these new genes, named META2, encodes a polypeptide of 444 amino acid residues with a repetitive structure showing three repeats of the META domain (defined as a small domain family found in the Leishmania META1 protein and in bacterial proteins hypothetically secreted and/or implicated in motility) and a carboxyl-terminal region similar to several putative calpain-like proteins of Trypanosoma and Leishmania.  相似文献   

14.
Evolution of codon usage and base contents in kinetoplastid protozoans   总被引:2,自引:0,他引:2  
In this study we analyze and compare the trends in codon usage in five representative species of kinetoplastid protozoans (Crithidia fasciculata, Leishmania donovani, L. major, Trypanosoma cruzi and T. brucei), with the purpose of investigating the processes underlying these trends. A principal component analysis shows that the G+C content at the third codon position represents the main source of codon-usage variation, both within species (among genes) and among species. The non- Trypanosoma species exhibit narrow distributions in codon usage, while both Trypanosoma species present large within-species heterogeneity. The three non-Trypanosoma species have very similar codon-usage preferences. These codon preferences are also shared by the highly expressed genes of T. cruzi and to a lesser degree by those of T. brucei. This leads to the conclusion that the codon preferences shared by these species are the ancestral ones in the kinetoplastids. On the other hand, the study of noncoding sequences shows that Trypanosoma species exhibit mutational biases toward A + T richness, while the non- Trypanosoma species present mutational pressure in the opposite direction. These data taken together allow us to infer the origin of the different codon-usage distributions observed in the five species studied. In C. fasciculata and Leishmania, both mutational biases and (translational) selection pull toward G + C richness, resulting in a narrow distribution. In Trypanosoma species the mutational pressure toward A + T richness produced a shift in their genomes that differentially affected coding and noncoding sequences. The effect of these pressures on the third codon position of genes seems to have been inversely proportional to the level of gene expression.   相似文献   

15.
16.
RNA interference (RNAi) is the technique of choice for down-regulating the gene function of suitable genes in African trypanosomes. A recent report by Subramanian and co-workers describes a high-throughput method for gene function discovery using RNAi in Trypanosoma brucei. The phenotype of most of the Open Reading Frames from chromosome 1 of T. brucei was analysed using a battery test of standard protocols. The authors propose that this technique could be used to mine the full genome of T. brucei and to reveal the core proteomic map of the other two major trypanosomatids, Trypanosoma cruzi and Leishmania major, despite the lack of a homologous mechanism of genetic silencing.  相似文献   

17.
The genome of Trypanosoma brucei carries over a hundred genes coding for different variants of the major surface glycoprotein. Activation of some of these genes is accompanied by a duplication and transposition of the gene (the basic copy) to another region in the genome where it is transcribed. We present here physical maps of the basic and transposition-activated genes for two surface glycoproteins of Trypanosoma brucei, stock 427. In both cases the transposed segment starts 1-2 kb in front of the coding region and ends within the 3'-terminal region of the gene. The DNA segments flanking both transposed genes are indistinguishable and share a 6-kb stretch upstream and a 8-kb stretch downstream of the transposed segment not cut by several restriction endonucleases. The 5' borders of the two transposed segments are homologous and contain sequences present in many copies in the genome. A different repeated sequence has previously been found at the 3' edge of the transposed segment. The replicative transposition may, therefore, involve a unidirectional gene conversion initiated by base pairing between the edges of the transposed sequence and a single expression site elsewhere in the genome.  相似文献   

18.
The glycosomes of trypanosomatids are essential organelles that are evolutionarily related to peroxisomes of other eukaryotes. The peroxisomal RING proteins-PEX2, PEX10 and PEX12-comprise a network of integral membrane proteins that function in the matrix protein import cycle. Here, we describe PEX10 and PEX12 in Trypanosoma brucei, Leishmania major, and Trypanosoma cruzi. We expressed GFP fusions of each T. brucei coding region in procyclic form T. brucei, where they localized to glycosomes and behaved as integral membrane proteins. Despite the weak transmembrane predictions for TbPEX12, protease protection assays demonstrated that both the N and C termini are cytosolic, similar to mammalian PEX12. GFP fusions of T. cruzi PEX10 and L. major PEX12 also localized to glycosomes in T. brucei indicating that glycosomal membrane protein targeting is conserved across trypanosomatids.  相似文献   

19.
Ubiquitin genes in trypanosomatidae   总被引:11,自引:0,他引:11  
  相似文献   

20.
This work reports the characterization of an arginine kinase in the unicellular parasitic flagellate Trypanosoma brucei, the etiological agent of human sleeping sickness and Nagana in livestock. The arginine kinase activity, detected in the soluble fraction obtained from procyclic forms, had a specific activity similar to that observed in Trypanosoma cruzi, about 0.2 micromol min(-1) mg(-1). Western blot analysis of T. brucei extracts revealed two bands of 40 and 45 kDa. The putative gene sequence of this enzyme had an open reading frame for a 356-amino acid polypeptide, one less than the equivalent enzyme of T. cruzi. The deduced amino acid sequence has an 82% identity with the arginine kinase of T. cruzi, and highest amino acid identities of both trypanosomatids sequences, about 70%, were with arginine kinases from the phylum Arthropoda. In addition, the amino acid sequence possesses the five arginine residues critical for interaction with ATP as well as two glutamic acids and one cysteine required for arginine binding. The finding in trypanosomatids of a new phosphagen biosynthetic pathway, which is not present in mammalian host tissues, suggests this enzyme as a possible target for chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号