首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.

Introduction

The effects of exercise on the heart and its resistance to disease are well-documented. Recent studies have identified that exercise-induced resistance to arrhythmia is due to the preservation of mitochondrial membrane potential.

Objectives

To identify novel metabolic changes that occur parallel to these mitochondrial alterations, we performed non-targeted metabolomics analysis on hearts from sedentary and exercise-trained rats challenged with isolated heart ischemia–reperfusion injury (I/R).

Methods

Eight-week old Sprague–Dawley rats were treadmill trained 5 days/week for 6 weeks (exercise duration and intensity progressively increased to 1 h at 30 m/min up a 10.5% incline, 75–80% VO2max). The recovery of pre-ischemic function for sedentary rat hearts was 28.8?±?5.4% (N?=?12) compared to exercise trained hearts, which recovered 51.9%?±?5.7 (N?=?14) (p?<?0.001).

Results

Non-targeted GC–MS metabolomics analysis of (1) sedentary rat hearts; (2) exercise-trained rat hearts; (3) sedentary rat hearts challenged with global ischemia–reperfusion (I/R) injury; and (4) exercise-trained rat hearts challenged with global I/R (10/group) revealed 15 statistically significant metabolites between groups by ANOVA using Metaboanalyst (p?<?0.001). Enrichment analysis of these metabolites for pathway-associated metabolic sets indicated a?>?10-fold enrichment for ammonia recycling and protein biosynthesis. Subsequent comparison of the sedentary hearts post-I/R and exercise-trained hearts post-I/R further identified significant differences in three metabolites (oleic acid, pantothenic acid, and campesterol) related to pantothenate and CoA biosynthesis (p?≤?1.24E?05, FDR?≤?5.07E?4).

Conclusions

These studies shed light on novel mechanisms in which exercise-induced cardioprotection occurs in I/R that complement both the mitochondrial stabilization and antioxidant mechanisms recently described. These findings also link protein synthesis and protein degradation (protein quality control mechanisms) with exercise-linked cardioprotection and mitochondrial susceptibility for the first time in cardiac I/R.
  相似文献   

2.
Glutathione reductase (GR; E.C. 1.6.4.2) is a flavoprotein that catalyzes the NADPH-dependent reduction of oxidized glutathione (GSSG). In this study we tested the effects of Al3+, Ba2+, Ca2+, Li+, Mn2+, Mo6+, Cd2+, Ni2+, and Zn2+ on purified bovine liver GR. In a range of 10?μM–10?mM concentrations, Al3+, Ba2+, Li+, Mn2+, and Mo6+, and Ca2+ at 5?μM–1.25?mM, had no effect on bovine liver GR. Cadmium (Cd2+), nickel (Ni2+), and zinc (Zn2+) showed inhibitory effects on this enzyme. The obtained IC50 values of Cd2+, Ni2+, and Zn2+ were 0.08, 0.8, and 1?mM, respectively. Cd2+ inhibition was non-competitive with respect to both GSSG (KiGSSG 0.221?±?0.02?mM) and NADPH (KiNADPH 0.113?±?0.008?mM). Ni2+ inhibition was non-competitive with respect to GSSG (KiGSSG 0.313?±?0.01?mM) and uncompetitive with respect to NADPH (KiNADPH 0.932?±?0.03?mM). The effect of Zn2+ on GR activity was consistent with a non-competitive inhibition pattern when the varied substrates were GSSG (KiGSSG 0.320?±?0.018?mM) and NADPH (KiNADPH 0.761?±?0.04?mM), respectively.  相似文献   

3.
Thioredoxin-1 maintains the cellular redox status and decreases the infarct size in ischemia/reperfusion injury. However, whether the increase of thioredoxin-1 expression or its lack of activity modifies the protection conferred by ischemic postconditioning has not been yet elucidated. The aim was to evaluate if the thioredoxin-1 overexpression enhances the posctconditioning protective effect, and whether the lack of the activity abolishes the reduction of the infarct size. Wild type mice hearts, transgenic mice hearts overexpressing thioredoxin-1, and a dominant negative mutant (C32S/C35S) of thioredoxin-1 were used. The hearts were subjected to 30 min of ischemia and 120 min of reperfusion (Langendorff) (I/R group) or to postconditioning protocol (PostC group). The infarct size in the Wt-PostC group decreased in comparison to the Wt-I/R group (54.6 ± 2.4 vs. 39.2 ± 2.1%, p < 0.05), but this protection was abolished in DN-Trx1-PostC group (49.7 ± 1.1%). The ischemia/reperfusion and postconditioning in mice overexpressing thioredoxin-1 reduced infarct size at the same magnitude (35.9 ± 2.1 and 38.4 ± 1.3%, p < 0.05 vs. Wt-I/R). In Wt-PostC, Trx1-I/R and Trx1- PostC, Akt and GSK3β phosphorylation increased compared to Wt-I/R, without changes in DN-Trx1 groups. In conclusion, given that the cardioprotection conferred by thioredoxin-1 overexpression and postconditioning, is accomplished through the activation of the Akt/GSK3β survival pathway, no synergic effect was evidenced. Thioredoxin-1 plays a key role in the postconditioning, given that when this protein is inactive the cardioprotective mechanism was abolished. Thus, diverse comorbidities or situations modifying the thioredoxin activity, could explain the absence of this strong mechanism of protection in different clinical situations.  相似文献   

4.
Glutathione belongs to a vital intra‐ and extra‐cellular protective antioxidant and is found almost exclusively in its reduced form. The ratio between its reduced and oxidized within cells is often used as a marker of cellular toxicity. The objectives of the study were to (i) determine both the reduced (GSH) and oxidized glutathione (GSSG) and cysteine (Cys) in the sperm of the Acipenser baerii and Acipenser ruthenus, as well as in Perca fluviatilis and Sander lucioperca, and (ii) to demonstrate the differences in concentration levels between representatives of acipenseriform and teleost species. High performance liquid chromatography with electrochemical detection was employed. The average content of the thiols determined in the sperm samples were as follows: Acipenser baerii (cysteine 55 ± 8 μg ml?1; GSH 126 ± 19 μg ml?1; GSSG 49 ± 7 μg ml?1), Acipenser ruthenus (cysteine 62 ± 9 μg ml?1; GSH 768 ± 115 μg ml?1; GSSG 180 ± 16 μg ml?1), Sander lucioperca (cysteine 251 ± 38 μg ml?1; GSH 185 ± 28 μg ml?1; GSSG 93 ± 14 μg ml?1), Perca fluviatilis (cysteine 281 ± 42 μg ml?1; GSH 496 ± 74 μg ml?1; GSSG 138 ± 21 μg ml?1). Based on the results obtained it can be concluded that this method is sensitive and selective for the determination of these compounds in real samples. Results revealed differences in cysteine content between species of the two systematic categories but also showed that ratios between GSH and GSSG can vary between species while potentially predict oxidative stress in fish sperm.  相似文献   

5.
Currently, controversial clinical data about the protective effects in the consumption of n‐3 polyunsaturated fatty acids (PUFAs) in ischaemic heart diseases exist. Improved myocardial resistance to ischaemia‐reperfusion (IR) injury results in non‐lethal myocardial infarction, which is a relevant factor in the myocardial function. We hypothesized that chronic supplementation with PUFAs reduced infarct size (IS) and induced an improvement on oxidative stress‐related parameters in IR model. Rats were supplemented with two doses of PUFAs D1 (n = 7) (0.6 g kg?1 d?1) and D2 (n = 7) (1.2 g kg?1 d?1) for 8 weeks. Control group (n = 7) received only standard diet. In ex vivo model, all rat hearts were subjected to 30 min of global ischaemia followed by 120 min of reperfusion. The IS and left ventricular function were assessed. Lipid peroxidation, reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio and antioxidant enzyme activity were measured in the whole heart. The results show a reduction in IS in a dose‐dependent manner with PUFAs D1 (30.6%) and D2 (48.5%) and higher values of left ventricular developed pressure, at the end of the reperfusion, for each dose, respectively (p < 0.05). The two PUFAs groups showed higher values of GSH/GSSG ratio and lipid peroxidation, and higher values of activity of antioxidant enzymes catalase, superoxide dismutase and glutathione peroxidase at basal condition (p < 0.05). At the end of reperfusion, the GSH/GSSG ratio and antioxidants enzyme activity did not show a significant drop in their values (p > 0.05). These findings suggested that the supplementation with PUFAs induces cardioprotection against IR injury, associated with reinforcement of the antioxidant defense system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
《Biomarkers》2013,18(3):238-242
Background: Pulmonary hypertension (PH) may be associated with subendocardial ischaemia. We investigated whether ischaemia-modified albumin (IMA), an established marker of ischaemia, is elevated in stable patients with PH.

Methods: We studied 32 patients with PH and an equal number of age-matched normal volunteers. We assessed serum IMA levels with the albumin cobalt-binding test.

Results: Patients’ mean ± SD (range) pulmonary arterial pressure was 56?±?12 (33–73) mmHg and their exercise capacity was 394?±?145 (121–688) m in the 6-min walk test. IMA was 92?±?14 (69–115) U ml?1 in the patient group and 93?±?9.4 (76–122) U ml?1 in the control group with no significant difference between the two (p?=?0.85), although almost one-third of the patients had detectable troponin-I.

Conclusions: We conclude that IMA, a marker of ischaemia, does not differ in patients with advanced clinically stable PH compared with normal subjects.  相似文献   

7.
A mutant mouse expressing a gain-of-function of the AT1A angiotensin II receptor was engineered to study the consequences of a constitutive activation of this receptor on blood pressure (BP). Cardiovascular rhythms and spontaneous cardiac baroreflex sensitivity (BRS) were evaluated using telemetric BP recordings of five transgenic (AT1AMUT) and five wild (AT1AWT) mice. The circadian rhythms were described with the Chronos-Fit program. The gain of the transfer function between systolic BP (SBP) and pulse intervals used to estimate the spontaneous BRS (ms/mmHg) was calculated in the low frequency (0.15–0.60?Hz) band. Transgenic AT1AMUT exhibited higher BP and heart rate (HR) levels compared to controls (SBP AT1AMUT 134.6?±?5.9?mmHg vs. AT1AWT 110.5?±?5.9; p?<?0.05; HR AT1AMUT 531.0?±?14.9 vs. AT1AWT 454.8?±?5.4 beats/min; p?=?0.001). Spontaneous BRS was diminished in transgenic mice (AT1AMUT 1.23?±?0.17?ms/mmHg vs. AT1AWT 1.91?±?0.18?ms/mmHg; p?<?0.05). Motor activity did not differ between groups. These variables exhibited circadian changes, and the differences between the strains were maintained throughout the cycle. The highest values for BP, HR, and locomotor activity were observed at night. Spontaneous BRS varied in the opposite direction, with the lowest gain estimated when BP and HR were elevated (i.e., at night, when the animals were active). It is likely the BP elevation of the mutant mice results from the amplification of the effects of AngII at different sites. Future studies are necessary to explore whether AT1A receptor activation at the central nervous system level effectively contributed to the observed differences. (Author correspondence: )  相似文献   

8.
In stably-transfected human neuroblastoma SH-SY5Y cells, we have compared the effect of activating two isoforms of 445 and 365 amino acids of the human histamine H3 receptor (hH3R445 and hH3R365) on [35S]-GTPγS binding, forskolin-induced cAMP formation, depolarization-induced increase in the intracellular concentration of Ca2+ ions ([Ca2+]i) and depolarization-evoked [3?H]-dopamine release. Maximal specific binding (Bmax) of [3?H]-N-methyl-histamine to cell membranes was 953?±?204 and 555?±?140?fmol/mg protein for SH-SY5Y-hH3R445 and SH-SY5Y-hH3R365 cells, respectively, with similar dissociation constants (Kd, 0.86?nM and 0.81?nM). The mRNA of the hH3R365 isoform was 40.9?±?7.9% of the hH3R445 isoform. No differences in receptor affinity were found for the H3R ligands histamine, immepip, (R)(-)-α-methylhistamine (RAMH), A-331440, clobenpropit and ciproxifan. Both the stimulation of [35S]-GTPγS binding and the inhibition of forskolin-stimulated cAMP accumulation by the agonist RAMH were significantly larger in SH-SY5Y-hH3R445 cells ([35S]-GTPγS binding, 158.1?±?7.5% versus 136.5?±?3.6% for SH-SY5Y-hH3R365 cells; cAMP accumulation, ?74.0?±?4.9% versus ?43.5?±?5.3%), with no significant effect on agonist potency. In contrast, there were no differences in the efficacy and potency of RAMH to inhibit [3?H]-dopamine release evoked by 100?mM K+ (?18.9?±?3.0% and ?20.5?±?3.3%, for SH-SY5Y-hH3R445 and SH-SY5Y-hH3R365 cells), or the inhibition of depolarization-induced increase in [Ca2+]i (S2/S1 ratios: parental cells 0.967?±?0.069, SH-SY5Y-hH3R445 cells 0.639?±?0.049, SH-SY5Y-hH3R365 cells 0.737?±?0.045). These results indicate that in SH-SY5Y cells, hH3R445 and hH3R365 isoforms regulate in a differential manner the signaling pathways triggered by receptor activation.  相似文献   

9.
Touir  Ahlem  Boumiza  Soumaya  Nasr  Hela ben  Bchir  Sarra  Tabka  Zouhair  Norel  Xavier  Chahed  Karim 《Biochemical genetics》2021,59(6):1457-1486

The purpose of this study was to determine the impact of six PGHS-2 genetic variants on obesity development and microvascular dysfunction. The study included 305 Tunisian subjects (186 normal weights, 35 overweights and 84 obeses). PCR analyses were used for allelic discrimination between polymorphisms. Prostaglandin (PGE2, PGI2), leptin, and matrix metalloproteinase (MMP1, 2, 3, 9) levels were evaluated by ELISA. Fatty acid composition was performed by gas chromatography–mass spectrometry. Our results revealed that subjects carrying the PGHS-2 306CC (rs5277) and 8473CC (rs5275) genotypes present higher anthropometric values compared to wild-type genotypes (306GG, BMI (Kg/m2): 27.11?±?0.58; WC (cm): 93.09?±?1.58; 306CC, BMI: 33.83?±?2.46; WC: 109.93?±?5.41; 8473TT, BMI: 27.75?±?0.68; WC: 93.96?±?1.75; 8473CC, BMI: 33.72?±?2.2; WC: 117.89?±?2.94). A reduced microvascular reactivity and a higher PGE2 level were also found in individuals with the 306CC and 8473CC genotypes in comparison to 306GG and 8473TT carriers (306GG, Peak Ach-CVC (PU/mmHg): 0.46?±?0.03; PGE2 (pg/ml): 7933.1?±?702; 306CC, Peak Ach-CVC: 0.24?±?0.01; PGE2: 13,380.3?±?966.2; 8473TT, Peak Ach-CVC: 0.48?±?0.05; PGE2: 7086.41?±?700.31; 8473CC, Peak Ach-CVC: 0.23?±?0.01; PGE2: 13,175.7?±?1165.8). Fatty acid analysis showed a significant increase of palmitic acid (PA) (34.2?±?2.09 vs. 16.82%?±?1.76, P?<?0.001), stearic acid (SA) (25.76?±?3.29 vs. 9.05%?±?2.53, P?<?0.001), and linoleic acid (LA) (5.25?±?1.18 vs. 0.5%?±?0.09, P?<?0.001) levels in individuals carrying the PGHS-2 306CC genotype when compared to GG genotype individuals. Subjects with the 8473CC genotype showed also a significant increase of PA, SA ,and LA levels when compared to TT genotype carriers (PA: 38.02?±?1.51 vs. 12.65%?±?1.54, P?<?0.001; SA: 32.96?±?1.87 vs. 1.38%?±?0.56, P?<?0.001; LA: 26.84?±?2.09 vs. 3.7%?±?1.54, P?<?0.001). Logistic regression analysis revealed that PGHS-2 306CC and 8473CC variants are significantly associated with obesity status (OR 6.25, CI (1.8–21.6), P?=?0.004; OR 3.01, CI (1.13–8.52), P?=?0.03, respectively). Haplotypes containing the C306:T8473 (OR 2.91; P?=?0.01) and G306:C8473 (OR 5.25; P?=?0.002) combinations were associated with an enhanced risk for obesity development in the studied population. In conclusion, our results highlight that PGHS-2 306G/C and 8473T/C variants could be useful indicators of obesity development, inflammation, and microvascular dysfunction among Tunisians.

  相似文献   

10.
Ischemia/reperfusion (I/R) injury in cardiomyocytes is related to excess reactive oxygen species (ROS) generation and can be modulated by nitric oxide (NO). We have previously shown that grape seed proanthocyanidin extract (GSPE), a naturally occurring antioxidant, decreased ROS and may potentially stimulate NO production. In this study, we investigated whether GSPE administration at reperfusion was associated with cardioprotection and enhanced NO production in a cardiomyocyte I/R model. GSPE attenuated I/R‐induced cell death [18.0 ± 1.8% (GSPE, 50 µg/ml) vs. 42.3 ± 3.0% (I/R control), P < 0.001], restored contractility (6/6 vs. 0/6, respectively), and increased NO release. The NO synthase (NOS) inhibitor Nω‐nitro‐L‐arginine methyl ester (L‐NAME, 200 µM) significantly reduced GSPE‐induced NO release and its associated cardioprotection [32.7 ± 2.7% (GSPE + L‐NAME) vs. 18.0 ± 1.8% (GSPE alone), P < 0.01]. To determine whether GSPE induced NO production was mediated by the Akt‐eNOS pathway, we utilized the Akt inhibitor API‐2. API‐2 (10 µM) abrogated GSPE‐induced protection [44.3% ± 2.2% (GSPE + API‐2) vs. 27.0% ± 4.3% (GSPE alone), P < 0.01], attenuated the enhanced phosphorylation of Akt at Ser473 in GSPE‐treated cells and attenuated GSPE‐induced NO increases. Simultaneously blocking NOS activation (L‐NAME) and Akt (API‐2) resulted in decreased NO levels similar to using each inhibitor independently. These data suggest that in the context of GSPE stimulation, Akt may help activate eNOS, leading to protective levels of NO. GSPE offers an alternative approach to therapeutic cardioprotection against I/R injury and may offer unique opportunities to improve cardiovascular health by enhancing NO production and increasing Akt‐eNOS signaling. J. Cell. Biochem. 107: 697–705, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Gaeolaelaps aculeifer (Canestrini, 1883) is a soil-dwelling predatory mite with potential for use as a biological control agent of fungus gnats (Diptera: Sciaridae) in mushroom production. The life table, predation rate and population growth rate of G. aculeifer on a diet of larvae of the sciarid fly, Lycoriella auripila, at 23?±?1°C, 60?±?5% RH and a photoperiod of 0:24 (L:D)?h was investigated. The results revealed that the duration of egg, larva, protonymph, deutonymph, females and males of G. aculeifer were 3.8?±?0.1, 1.4?±?0.1, 3.9?±?0.1, 4.1?±?0.1, 67.7?±?2.8 and 60.3?±?3.1 days, respectively. Net reproductive rate (R0) was 54.8?±?7.1 offspring, intrinsic rate of increase (r) was 0.12?±?0.01 offspring day?1, finite rate of increase (λ) was 1.13?±?0.01 day?1and mean generation time (T) was 32.3?±?0.6 days. The predator consumed a mean of 0.08?±?0.05, 1.73?±?0.18, 3.16?±?0.28 and 75.9?±?7.1 third instar L. auripila larvae during the larval (1.3?±?0.1 days), protonymph (3.9?±?0.1 days), deutonymph (4.1?±?0.1 days) and adult (52.6?±?2.2 days) stages. Population parameters and consumption rates suggest that G. aculeifer has good potential as a biological control agent of L. auripila in mushroom production.  相似文献   

12.
Redox signalling in mitochondria plays an important role in myocardial ischaemia/reperfusion (I/R) injury and in cardioprotection. Reactive oxygen and nitrogen species (ROS/RNS) modify cellular structures and functions by means of covalent changes in proteins including among others S‐nitros(yl)ation by nitric oxide (NO) and its derivatives, and S‐sulphydration by hydrogen sulphide (H2S). Many enzymes are involved in the mitochondrial formation and handling of ROS, NO and H2S under physiological and pathological conditions. In particular, the balance between formation and removal of reactive species is impaired during I/R favouring their accumulation. Therefore, various interventions aimed at decreasing mitochondrial ROS accumulation have been developed and have shown cardioprotective effects in experimental settings. However, ROS, NO and H2S play also a role in endogenous cardioprotection, as in the case of ischaemic pre‐conditioning, so that preventing their increase might hamper self‐defence mechanisms. The aim of the present review was to provide a critical analysis of formation and role of reactive species, NO and H2S in mitochondria, with a special emphasis on mechanisms of injury and protection that determine the fate of hearts subjected to I/R. The elucidation of the signalling pathways of ROS, NO and H2S is likely to reveal novel molecular targets for cardioprotection that could be modulated by pharmacological agents to prevent I/R injury.  相似文献   

13.
14.
Abstract

Most of the drugs binding to human serum albumin (HSA) are transported to various parts of the body. Here, we have studied the molecular interaction between HSA and synthesized uridine derivatives, 1-[(3R, 4S, 5?R)-2-methyl-3, 4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidine-2,4-dion.)(C-MU); [(2R,3R,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxy-4-methyl-tetrahydrofuran-2-yl] methyl methyl phosphochloridate (CM-MU) and [(2R,3S,4R,5R)-5-(2,4-dioxopyrimidin-1-yl)-2-methyl-3,4-dihydroxyoxolan-2-yl] methyl dihydrogen phosphate (P-MU). Cytotoxic studies of these synthesized compounds with mouse macrophages (RAW 246.7) and HeLa cells (human cervical cancer cells) and binding mechanism of these uridine derivatives with HSA were performed. Subsequently, fluorescence quenching was observed upon titration of uridine derivatives with HSA via static mode of quenching, and the binding constants (K2-C-MU = 4?±?0.03?×?104M?1, K5-CM-MU = 1.95?±?0.03?×?104 M?1 and K5-P-MU =1.56?±?0.03?×?104 M?1) were found to be in sync with the computational results. Further, molecular displacement and molecular docking data revealed that all the derivatives are binding in the subdomain IIA and IIB regions of HSA. The protein secondary structure of complexes was determined by circular dichroism, indicating partial unfolding of the protein upon addition of the uridine derivatives. Furthermore, atomic force microscopy data reveal the change in topology upon binding of 2-C-MU, 5-CM-MU and 5-P-MU with HSA, indicating change in the microenvironment around tryptophan region. Additionally, cytotoxicity studies on HeLa and Raw Cell lines suggested that these molecules have significant anti-proliferative and anti-inflammatory properties. Hence, the study may be of help for development of new drugs based on uridine derivatives which may be helpful for combating various potential diseases.

Communicated by Ramaswamy H. Sarma  相似文献   

15.
Inappropriate use of essential oils may entail risks to human health due to mutational events, carcinogenic effects, genetic damages and sensitizing effect caused by generation of reactive oxygen species. In order to detect radicals that are expected to form during their oxidation, we measured the electron spin resonance (ESR) spectra of a standard reaction mixture (I) containing 25?μM flavin mononucleotide, 0.018% several essential oils (or 0.015% geraniol), 1.9 M acetonitrile, 20?mM phosphate buffer (pH 7.4), 0.1 M α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) and 1.0?mM FeSO4(NH4)2SO4 irradiated with 436?nm visible light (7.8 J/cm2). The ESR peak heights of the standard reaction mixture (I) of the essential oils increased in the following order: tea tree?>?palmarosa?>geranium?>?clary sage?>?petitgrain?>?lavender?>?bergamot?>?frankincense?>?ravintsara?>?ylang ylang?>?lemongrass?>?niaouli?>?eucalyptus globulus?>?peppermint. The ESR peak height of the standard reaction mixture (I) of geraniol, a main component of palmarosa, was comparable to the one of palmarosa (97?±?19% of palmarosa). Furthermore, high performance liquid chromatography (HPLC)-ESR analyses of the standard reaction mixture (I) of palmarosa and geraniol gave the same peaks. The results suggest that the radicals formed in the standard reaction mixture (I) of palmarosa are derived from geraniol. HPLC-ESR-mass spectrometry analyses detected m/z 294 ions, 4-POBN/5-hydroxy-3-methyl-3-pentenyl radical adducts and m/z 320 ions, 4-POBN/C7O2H9 radical adducts in the standard reaction (I) of geraniol. The 5-hydroxy-3-methyl-3-pentenyl and C7O2H9 radicals may be implicated in the sensitizing effect of palmarosa.  相似文献   

16.
Context: Liposomes have been shown to improve human red blood cell (RBC) in vitro quality by minimizing membrane damage occurring during 42-d hypothermic storage. Small animal models are necessary to evaluate novel blood products and guide future clinical studies.

Objectives: The aim of this study was to assess the effect of liposome treatments on rat RBC hypothermic storage lesion (HSL) and to examine in vivo outcomes of transfusing liposome treated RBCs in a rat model.

Materials and methods: Unilamellar liposomes were synthesized which contained saturated (DPPC:CHOL, 7:3?mol%), unsaturated (DOPC:CHOL, 7:3?mol%), saturated charged (DPPC:CHOL:PS, 6:3:1?mol%), and unsaturated charged (DOPC:CHOL:PS, 6:3:1?mol%) phospholipids. After liposome treatment, rat RBC quality was assessed by percent hemolysis, deformability, aggregation, hematological indices, microvesiculation, and cholesterol/phospholipid concentrations. An anemic rat model of myocardial ischemia and reperfusion (I/R) was used to evaluate the outcomes of transfusing liposome-treated RBCs.

Results: All four liposome treatments resulted in significant decreases in hemolysis, with the most prominent effect seen with DOPC-liposomes (DOPC: 1.6?±?0.1% versus control: 3.1?±?0.2%, p?=?0.015). RBCs treated with uncharged liposomes had lower hemolysis compared with charged liposomes (3.4?±?0.2% versus 3.9?±?0.4%, p?=?0.010). The in vivo study showed no significant difference in the hemoglobin levels and infarct size (53.3?±?13.1% versus 45.3?±?8.4%, p?=?0.223) between liposome and control groups.

Discussion and conclusion: Liposome treatment improved in vitro quality of stored rat RBCs. However, the changes observed in vitro were not sufficient to improve the in vivo outcomes of myocardial I/R in anemic rats transfused with liposome-treated RBCs.  相似文献   


17.
The bioassay-guided fractionation of H. oblongifolium has led to the isolation of potent urease inhibitors 1–3. The structures were elucidated by NMR and mass spectroscopic techniques. Compound 2 showed a potent enzyme inhibition activity (IC50 20.96?±?0.93), which is comparatively higher than that for the standard thiourea (IC50 21.01?±?0.51 μM). Compounds 1 and 3 also showed a significant activity, with IC50 37.95?±?1.93 and 138.43?±?1.23 μM, respectively. The sub crude fractions (F1, F2, F3, and F4) were tested in vitro for their urease inhibition activity. Fractions F2 and F4 showed significant activity with IC50 140.37?±?1.93 and 167.43?±?3.03 μM, respectively.  相似文献   

18.
Kinetic characterization of lipase inhibition was performed by activity measurement and mass spectrometry (MS), for the first time with serine-protease inhibitor 3,4-dichloroisocoumarin (DCI). Inhibition of Streptomyces rimosus extracellular lipase (SrLip), a member of the SGNH superfamily, by means of DCI follows the mechanism of two-step irreversible inhibition. The dissociation constant of the noncovalent E?I complex and first-order rate constant for inactivation were determined by incubation (Ki* = 26.6?±?2.8 µM, k2 = 12.2?±?0.6 min–1) or progress curve (Ki* = 6.5?±?1.5 µM, k2 = 0.11?±?0.01 min–1) method. Half-times of reactivation for lipase inhibited with 10-fold molar excess of DCI were determined by activity measurement (t1/2 = 11.3?±?0.2?h), matrix-assisted laser desorption/ionization (MALDI, t1/2 = 13.5?±?0.4?h), and electro-spray ionization (ESI, t1/2 = 12.2?±?0.5?h) MS. The active SrLip concentration was determined by incubating the enzyme with near equimolar concentrations of DCI, followed by activity and MS measurement.  相似文献   

19.
This study evaluated the potential use of several Thai seaweed species for ethanol production. The high biomass of the green algae Ulva intestinalis and Rhizoclonium riparium and the red algae Gracilaria salicornia and Gracilaria tenuistipitata in an earthen pond culture led us to select these species for our study. The seaweed species were analyzed for chemical composition, resulting in ash contents of 37.62?±?0.15 % and fiber of 11.93?±?0.16 %, with the highest values in R. riparium. Low lipid values were found in all species, with the highest value (p?<?0.05) in G. salicornia (1.69?±?0.07 %) and the lowest in R. riparium (0.28?±?0.01 %) and G. tenuistipitata (0.26?±?0.01 %). The highest carbohydrate contents were found in G. tenuistipitata (54.89 %), and the lowest were in R. riparium (29.53 %). G. tenuistipitata (8.58?±?0.36 %) and U. intestinalis (8.24?±?0.28 %) had higher sulfate contents compared with G. salicornia (4.69?±?0.04 %) and R. riparium (1.97?±?0.20 %). The monosugar algal tissue components were analyzed by HPLC; rhamnose, xylose, fucose, arabinose, mannose, glucose, and galactose were used as reference sugars. Total sugar was found to be highest in G. tenuistipitata (98.21 %). Arabinose, glucose, and galactose were the main sugar components in all species. Glucose obtained from G. tenuistipitata (6.55 %) and R. riparium (6.52 %) was higher than in G. salicornia (0.27 %) and U. intestinalis (2.78 %). G. tenuistipitata fermentation gave a higher yield of ethanol (4.17?×?10?3 g ethanol g?1 sugars; 139.12 μg ethanol g?1 glucose) than R. riparium (0.086?×?10?3 g ethanol g?1 sugars; 33.84 μg ethanol g?1 glucose), U. intestinalis (0.074?×?10?3 g ethanol g?1 sugars; 9.98 μg ethanol g?1 glucose), and G. salicornia (0.031?×?10?3 g ethanol g?1 sugars; 1.43 μg ethanol g?1 glucose).  相似文献   

20.
Synechococcus R-2 (PCC 1942) actively accumulates sulphate in the light and dark. Intracellular sulphate was 1.35 ± 0.23 mol m?3 (light) and 0.894 ± 0.152 mol m?3 (dark) under control conditions (BG-11 media: pHo, 7.5; [SO42?]o, 0.304 mol m?3). The sulphate transporter is different from that found in higher plants: it appears to be an ATP-driven pump transporting one SO42?/ATP [ΔμSO42?i,o=+ 27.7 ± 0.24 kJ mol?1 (light) and + 24 ± 0.34 kj mol?1 (dark)]. The rate of metabolism of SO42?at pHo, 7.5 was 150 ± 28 pmol m?2 s?1 (n = 185) in the light but only 12.8 ± 3.6 pmol m?2 s?1 (n = 61) in the dark. Light-driven sulphate uptake is partially inhibited by DCMU and chloramphenicol. Sulphate uptake is not linked to potassium, proton, sodium or chloride transport. The alga has a constitutive over-capacity for sulphate uptake [light (n= 105): Km= 0.3 ± 0.1 mmol m?3, Vmax, = 1.8 ± 0.6 nmol m?2 s?1; dark (n= 56): Km= 1.4 ± 0.4 mmol m?3, Vmax= 41 ± 22 pmol m?2 s?1]. Sulphite (SO32?) was a competitive inhibitor of sulphate uptake. Selenate (SeO42?) was an uncompetitive inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号