首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excitotoxicity, which is mediated via glutamate receptors, is also a phenomenon of the enteric nervous system. Whether enteric glial cells (EGCs), which resemble astrocytes of the central nervous system, express glutamate receptors and hence are involved in gut excitotoxicity is not yet known. To investigate glutamate receptor subunit expression in EGCs, primary EGC cultures of the myenteric plexus were analyzed by real-time PCR and Western blotting. These studies indeed showed that in EGC cultures, mRNA of the glutamate receptor subunits NR1, NR2A/B, GluR1, GluR3, and GluR5 and the protein bands of the glutamate receptor subunits NR2A/B, GluR1, GluR3, and GluR5 could be detected. Thus, in the enteric nervous system, glutamate receptor subunits are also expressed by EGCs, indicating that these cells might be involved in gut excitotoxicity.  相似文献   

2.
The neuronal transporter excitatory amino acid carrier 1 (EAAC1) is enriched in perisynaptic regions, where it may regulate synaptic spillover of glutamate. In this study we examined potential interactions between EAAC1 and ionotropic glutamate receptors. N-Methyl-D-aspartate (NMDA) receptor subunits NR1, NR2A, and NR2B, but not the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunit GluR2, were co-immunoprecipitated with EAAC1 from neuron-enriched hippocampal cultures. A similar interaction was observed in C6 glioma and human embryonic kidney cells after co-transfection with Myc epitope-tagged EAAC1 and NMDA receptor subunits. Co-transfection of C6 glioma with the combination of NR1 and NR2 subunits dramatically increased (approximately 3-fold) the amount of Myc-EAAC1 that can be labeled with a membrane-impermeable biotinylating reagent. In hippocampal cultures, brief (5 min), robust (100 microM NMDA, 10 microM glycine) activation of the NMDA receptor decreased biotinylated EAAC1 to approximately 50% of control levels. This effect was inhibited by an NMDA receptor antagonist, intracellular or extracellular calcium chelators, or hypertonic sucrose. Glutamate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid with cyclothiazide, and thapsigargin mimicked the effects of NMDA. These studies suggest that NMDA receptors interact with EAAC1, facilitate cell surface expression of EAAC1 under basal conditions, and control internalization of EAAC1 upon activation. This NMDA receptor-dependent regulation of EAAC1 provides a novel mechanism that may shape excitatory signaling during synaptic plasticity and/or excitotoxicity.  相似文献   

3.
Taste receptor cells are innervated by primary gustatory neurons that relay sensory information to the central nervous system. The transmitter(s) at synapses between taste receptor cells and primary afferent fibers is (are) not yet known. By analogy with other sensory organs, glutamate might a transmitter in taste buds. We examined the presence of AMPA and NMDA receptor subunits in rat gustatory primary neurons in the ganglion that innervates the anterior tongue (geniculate ganglion). AMPA and NMDA type subunits were immunohistochemically detected with antibodies against GluR1, GluR2, GluR2/3, GluR4 and NR1 subunits. Gustatory neurons were specifically identified by retrograde tracing with fluorogold from injections made into the anterior portion of the tongue. Most gustatory neurons in the geniculate ganglion were strongly immunoreactive for GluR2/3 (68%), GluR4 (78%) or NR1 (71%). GluR1 was seen in few cells (16%). We further examined if glutamate receptors were present in the peripheral terminals of primary gustatory neurons in taste buds. Many axonal varicosities in fungiform and vallate taste buds were immunoreactive for GluR2/3 but not for NR1. We conclude that gustatory neurons express glutamate receptors and that glutamate receptors of the AMPA type are likely targeted to synapses within taste buds.  相似文献   

4.
Humans and laboratory animals remain highly vulnerable to relapse to cocaine-seeking after prolonged periods of withdrawal from the drug. It has been hypothesized that this persistent cocaine relapse vulnerability involves drug-induced alterations in glutamatergic synapses within the mesolimbic dopamine reward system. Previous studies have shown that cocaine self-administration induces long-lasting neuroadaptations in glutamate neurons of the ventral tegmental area and nucleus accumbens. Here, we determined the effect of cocaine self-administration and subsequent withdrawal on glutamate receptor expression in the amygdala, a component of the mesolimbic dopamine system that is involved in cocaine seeking and craving induced by drug-associated cues. Rats were trained for 10 days to self-administer intravenous cocaine (6 h/day) or saline (a control condition) and were killed after one or 30 withdrawal days. Basolateral and central amygdala tissues were assayed for protein expression of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subunits (GluR1 and GluR2) and the NMDA receptor subunits (NR1, NR2A and NR2B). In the basolateral amygdala, GluR1 but not GluR2 levels were increased on days 1 and 30, NR2A levels were increased on day 1, and NR2B levels were decreased on day 30 of withdrawal from cocaine. In the central amygdala, GluR2 but not GluR1 levels were increased on days 1 and 30, NR1 levels were increased on day 30 and NR2A or NR2B levels were not altered after withdrawal from cocaine. These results indicate that cocaine self-administration and subsequent withdrawal induces long-lasting and differential neuroadaptations in basolateral and central amygdala glutamate receptors.  相似文献   

5.
Both tyrosine phosphorylation and calpain-mediated truncation of ionotropic glutamate receptors are important mechanisms for synaptic plasticity. Previous work from our laboratory has shown that calpain activation results in truncation of the C-terminal domains of several glutamate receptor subunits. To test whether and how tyrosine phosphorylation of glutamate ionotropic receptor subunits modulates calpain susceptibility, synaptic membranes were phosphorylated by Fyn or Src, two members of the Src family tyrosine kinases. Tyrosine phosphorylation of synaptic membranes by Src significantly reduced calpain-mediated truncation of both NR2A and NR2B subunits of NMDA receptors, but not of GluR1 subunits of AMPA receptors. In contrast, phosphorylation with Fyn significantly protected calpain-mediated truncation of GluR1 subunits of AMPA receptors, but enhanced calpain-mediated truncation of NR2A subunits of NMDA receptors. Similar results were observed with NR2A and NR2B C-terminal domain fusion proteins phosphorylated by Fyn or Src before incubation with calpain and calcium. In addition, phosphorylation of NR2A and NR2B C-terminal fusion proteins by Fyn or Src enhanced their binding to spectrin and PSD-95. Thus, tyrosine phosphorylation impairs or facilitates calpain-mediated truncation of glutamate receptor subunits, depending on which tyrosine kinase is activated. Such mechanisms could serve to regulate receptor integrity and location, in addition to modulating channel properties.  相似文献   

6.
Orexin is one of the orexigenic neuropeptides in the hypothalamus. Orexin neurons in the lateral hypothalamus (LH) project into the cerebral cortex and hippocampus in which the receptors are distributed in high concentrations. Therefore, to elucidate the actions of orexin in the cerebral cortex, we examined its effects on the mRNA expressions of N-methyl-d-aspartate (NMDA) receptor subunits (NR1, NR2A, NR2B) and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor subunits (GluR1, GluR2) following 6-day application of orexin-A or orexin-B to rat primary cortical neuron cultures. The mRNAs of NR1 and NR2A subunits were significantly decreased by orexin-A and orexin-B at concentrations over 0.1 μM and 0.01 μM, respectively. The mRNA expression of NR2B subunit was also significantly decreased by orexin-A and orexin-B only at the concentration of 1 μM. Moreover, orexin-A and orexin-B at concentrations over 0.01 μM significantly decreased the mRNA expressions of AMPA receptor subunits, GluR1 and GluR2. The present study demonstrated that orexins significantly suppressed RNA expressions of NMDA and AMPA receptor subunits in cortical neuron cultures, suggesting that orexin may regulate the higher functions of the cerebral cortex as well as be involved in energy regulation in the hypothalamus.  相似文献   

7.
A neuro-glia interaction is part of gut inflammation and essential for the integrity of the bowel. A loss of enteric glia cells (EGCs) led to a fatal haemorrhagic jejuno-ileitis and death in a few days. Although a diminished EGC network is postulated in inflammatory bowel disease and enteric glia pathology is described in Chagas' disease the role of EGCs in the onset of these disease complexes is not definitely clear. Several lines of evidence implicate that the secretion of different factors by enteric glia may be the key for modulating gut homeostasis. As mucosal integrity might be important for remission in Crohn's disease and inflammation of the enteric nervous system is part of the pathology in Chagas' disease, the role of EGCs during gut inflammation could be part of the key to understand these diseases.  相似文献   

8.
Lee FJ  Xue S  Pei L  Vukusic B  Chéry N  Wang Y  Wang YT  Niznik HB  Yu XM  Liu F 《Cell》2002,111(2):219-230
Dopamine D1-like receptors, composed of D1 and D5 receptors, have been documented to modulate glutamate-mediated fast excitatory synaptic neurotransmission. Here, we report that dopamine D1 receptors modulate NMDA glutamate receptor-mediated functions through direct protein-protein interactions. Two regions in the D1 receptor carboxyl tail can directly and selectively couple to NMDA glutamate receptor subunits NR1-1a and NR2A. While one interaction is involved in the inhibition of NMDA receptor-gated currents, the other is implicated in the attenuation of NMDA receptor-mediated excitotoxicity through a PI-3 kinase-dependent pathway.  相似文献   

9.
Abstract: Brainstem nuclei serve a diverse array of functions in many of which ionotropic glutamate receptors are known to be involved. However, little detailed information is available on the expression of different glutamate receptor subunits in specific nuclei. We used RT‐PCR in mice to analyze the glutamate receptor subunit composition of the pre‐Bötzinger complex, the hypoglossal nucleus, the nucleus of the solitary tract, and the inferior olive. Analyzing 15 receptor subunits and five variants, we found all four α‐amino‐3‐hydroxy‐5‐methyl‐4‐propionic acid (AMPA) and six NMDA receptor (NR) subunits as well as three of five kainate (KA) receptors (GluR5, GluR6, and KA1) to be expressed in all nuclei. However, some distinct differences were observed: The inferior olive preferentially expresses flop variants of AMPA receptors, GluR7 is more abundant in the pre‐Bötzinger complex than in the other nuclei, and NR2C is most prominent in the nucleus of the solitary tract. In single hypoglossal motoneurons and interneurons of the pre‐Bötzinger complex investigation of GluR2 editing revealed strong expression of the GluR2‐R editing variant, suggesting low Ca2+ permeability of AMPA receptors. Thus, Ca2+ ‐permeable AMPA receptors are unlikely to be the cause for the reported selective vulnerability of hypoglossal motoneurons during excitotoxic events.  相似文献   

10.
The neural cell adhesion molecule (NCAM) and its associated glycan polysialic acid play important roles in the development of the nervous system and N-methyl-D-aspartate(NMDA)receptor-dependent synaptic plasticity in the adult. Here, we investigated the influence of polysialic acid on NMDA receptor activity. We found that glutamate-elicited NMDA receptor currents in cultured hippocampal neurons were reduced by approximately 30% with the application of polysialic acid or polysialylated NCAM but not by the sialic acid monomer, chondroitin sulfate, or non-polysialylated NCAM. Polysialic acid inhibited NMDA receptor currents elicited by 3 microm glutamate but not by 30 microm glutamate, suggesting that polysialic acid acts as a competitive antagonist, possibly at the glutamate binding site. The polysialic acid induced effects were mimicked and fully occluded by the NR2B subunit specific antagonist, ifenprodil. Recordings from single synaptosomal NMDA receptors reconstituted in lipid bilayers revealed that polysialic acid reduced open probability but not the conductance of NR2B-containing NMDA receptors in a polysialic acid and glutamate concentration-dependent manner. The activity of single NR2B-lacking synaptosomal NMDA receptors was not affected by polysialic acid. Application of polysialic acid to hippocampal cultures reduced excitotoxic cell death induced by low micromolar concentration of glutamate via activation of NR2B-containing NMDA receptors, whereas enzymatic removal of polysialic acid resulted in increased cell death that occluded glutamate-induced excitotoxicity. These observations indicate that the cell adhesion molecule-associated glycan polysialic acid is able to prevent excitotoxicity via inhibition of NR2B subunit-containing NMDA receptors.  相似文献   

11.
Toluene is a commonly abused solvent found in many industrial and commercial products. The neurobiological effects of toluene remain unclear, but many of them, like those of ethanol, may be mediated by gamma-aminobutyric acid (GABA) and glutamate receptors. Chronic ethanol administration has been shown to alter levels of specific subunits for GABA type A (GABA(A)), N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. However, little is known about the effects of toluene on subunit levels of these receptors. To examine this, rats were exposed to toluene vapors (8000 ppm) or air for 10 days (30 min/day), and afterwards GABA(A) alpha1, NR1 and NR2B (NMDA) and GluR1 and GluR2/3 (AMPA) receptor subunit levels were determined in discrete brain regions of these animals by Western blotting. Toluene increased GABA(A) alpha1, NR1, NR2B and GluR2/3 subunits in the medial prefrontal cortex and decreased GABA(A) alpha1 and NR1 subunits in the substantia nigra compacta. Toluene inhalation produced modest increases in GABA(A) alpha1 subunits in the striatum, as well as slight decreases in this subunit in the ventral tegmental area. NR2B subunit levels were also slightly increased within the nucleus accumbens by toluene. These studies show that toluene differentially alters the levels of specific GABAergic and glutamatergic receptor subunits in a regionally selective manner.  相似文献   

12.
Emerging evidence suggests a role for glutamate and its receptors in the biology of cancer. This study was designed to systematically analyze the expression of ionotropic and metabotropic glutamate receptor subunits in various human cancer cell lines, compare expression levels to those in human brain tissue and, using electrophysiological techniques, explore whether cancer cells respond to glutamate receptor agonists and antagonists. Expression analysis of glutamate receptor subunits NR1-NR3B, GluR1-GluR7, KA1, KA2 and mGluR1-mGluR8 was performed by means of RT-PCR in human rhabdomyosarcoma/medulloblastoma (TE671), neuroblastoma (SK-NA-S), thyroid carcinoma (FTC 238), lung carcinoma (SK-LU-1), astrocytoma (MOGGCCM), multiple myeloma (RPMI 8226), glioma (U87-MG and U343), lung carcinoma (A549), colon adenocarcinoma (HT 29), T cell leukemia cells (Jurkat E6.1), breast carcinoma (T47D) and colon adenocarcinoma (LS180). Analysis revealed that all glutamate receptor subunits were differentially expressed in the tumor cell lines. For the majority of tumors, expression levels of NR2B, GluR4, GluR6 and KA2 were lower compared to human brain tissue. Confocal imaging revealed that selected glutamate receptor subunit proteins were expressed in tumor cells. By means of patch-clamp analysis, it was shown that A549 and TE671 cells depolarized in response to application of glutamate agonists and that this effect was reversed by glutamate receptor antagonists. This study reveals that glutamate receptor subunits are differentially expressed in human tumor cell lines at the mRNA and the protein level, and that their expression is associated with the formation of functional channels. The potential role of glutamate receptor antagonists in cancer therapy is a feasible goal to be explored in clinical trials.  相似文献   

13.
The expression and distribution of AMPA, kainate and NMDA glutamate receptor subunits was studied in the goldfish retina. For the immunocytochemical localization of the AMPA receptor antisera against GluR2, GluR2/3 and GluR4 were used, and for in situ hybridization rat specific probes for GluR1 and GluR2 and goldfish specific probes for GluR3 and GluR4 were used. The localization of the low affinity kainate receptor and NMDA receptor was studied using antisera against GluR5-7 and NR1. All AMPA receptor subtypes were demonstrated to be present in the goldfish retina both by immunocytochemistry and in situ hybridization. In situ hybridization revealed expression of all AMPA receptors subunit at the inner border of the INL. Only GluR3 was also strongly expressed in the outer border of the INL. Some of the ganglion cells displayed a strong signal for GluR1, GluR3 and GluR4. GluR1-immunoreactivity was present in subsets of bipolar, amacrine, and ganglion cells. GluR2 and GluR2/3-immunoreactivity was mainly localized in the outer plexiform layer. GluR2 and GluR2/3-immunoreactivity are associated with the photoreceptor synaptic terminals. GluR4-immunoreactivity is present on Müller cells in the inner retina and on dendrites of bipolar cells in the OPL, whereas GluR5-7-immunoreactivity was prominently present on horizontal cell axon terminals. Finally, NR1-immunoreactivity was confined to amacrine cells, the inner plexiform layer and ganglion cells. This study shows that there is a strong heterogeneity of glutamate receptor subunit expression in the various layers of the retina. Of the AMPA receptor subunits GluR3 seems to be expressed the most widely in all layers with strong glutamatergic synaptic interactions whereas all the other subunits seem to have a more restricted expressed pattern.  相似文献   

14.
Characterisation of the expression of NMDA receptors in human astrocytes   总被引:1,自引:0,他引:1  
Lee MC  Ting KK  Adams S  Brew BJ  Chung R  Guillemin GJ 《PloS one》2010,5(11):e14123
Astrocytes have long been perceived only as structural and supporting cells within the central nervous system (CNS). However, the discovery that these glial cells may potentially express receptors capable of responding to endogenous neurotransmitters has resulted in the need to reassess astrocytic physiology. The aim of the current study was to characterise the expression of NMDA receptors (NMDARs) in primary human astrocytes, and investigate their response to physiological and excitotoxic concentrations of the known endogenous NMDAR agonists, glutamate and quinolinic acid (QUIN). Primary cultures of human astrocytes were used to examine expression of these receptors at the mRNA level using RT-PCR and qPCR, and at the protein level using immunocytochemistry. The functionality role of the receptors was assessed using intracellular calcium influx experiments and measuring extracellular lactate dehydrogenase (LDH) activity in primary cultures of human astrocytes treated with glutamate and QUIN. We found that all seven currently known NMDAR subunits (NR1, NR2A, NR2B, NR2C, NR2D, NR3A and NR3B) are expressed in astrocytes, but at different levels. Calcium influx studies revealed that both glutamate and QUIN could activate astrocytic NMDARs, which stimulates Ca2+ influx into the cell and can result in dysfunction and death of astrocytes. Our data also show that the NMDAR ion channel blockers, MK801, and memantine can attenuate glutamate and QUIN mediated cell excitotoxicity. This suggests that the mechanism of glutamate and QUIN gliotoxicity is at least partially mediated by excessive stimulation of NMDARs. The present study is the first to provide definitive evidence for the existence of functional NMDAR expression in human primary astrocytes. This discovery has significant implications for redefining the cellular interaction between glia and neurons in both physiological processes and pathological conditions.  相似文献   

15.
Two distinct classes of nociceptive primary afferents, peptidergic and non-peptidergic, respond similarly to acute noxious stimulation; however the peptidergic afferents are more likely to play a role in inflammatory pain, while the non-peptidergic afferents may be more characteristically involved in neuropathic pain. Using multiple immunofluorescence, we determined the proportions of neurons in the rat L4 dorsal root ganglion (DRG) that co-express AMPA or NMDA glutamate receptors and markers for the peptidergic and non-peptidergic classes of primary afferents, substance P and P2X(3), respectively. The fraction of DRG neurons immunostained for the NR1 subunit of the NMDA receptor (40%) was significantly higher than that of DRG neurons immunostained for the GluR2/3 (27%) or the GluR4 (34%) subunits of the AMPA receptor. Of all DRG neurons double-immunostained for glutamate receptor subunits and either marker for peptidergic and non-peptidergic afferents, a significantly larger proportion expressed GluR4 than GluR2/3 or NR1 and in a significantly larger proportion of P2X(3)- than SP-positive DRG neurons. These observations support the idea that nociceptors, involved primarily in the mediation of neuropathic pain, may be presynaptically modulated by GluR4-containing AMPA receptors.  相似文献   

16.
Under standard conditions, cultured ventral spinal neurons cluster AMPA- but not NMDA-type glutamate receptors at excitatory synapses on their dendritic shafts in spite of abundant expression of the ubiquitous NMDA receptor subunit NR1. We demonstrate here that the NMDA receptor subunits NR2A and NR2B are not routinely expressed in cultured spinal neurons and that transfection with NR2A or NR2B reconstitutes the synaptic targeting of NMDA receptors and confers on exogenous application of the immediate early gene product Narp the ability to cluster both AMPA and NMDA receptors. The use of dominant-negative mutants of GluR2 further showed that the synaptic targeting of NMDA receptors is dependent on the presence of synaptic AMPA receptors and that synaptic AMPA and NMDA receptors are linked by Stargazin and a MAGUK protein. This system of AMPA receptor-dependent synaptic NMDA receptor localization was preserved in hippocampal interneurons but reversed in hippocampal pyramidal neurons.  相似文献   

17.
Human midbrain‐derived neural progenitor cells (NPCs) may serve as a continuous source of dopaminergic neurons for the development of novel regenerative therapies in Parkinson’s disease. However, the molecular and functional characteristics of glutamate receptors in human NPCs are largely unknown. Here, we show that differentiated human mesencepahlic NPCs display a distinct pattern of glutamate receptors. In whole‐cell patch‐clamp recordings, l ‐glutamate and NMDA elicited currents in 93% of NPCs after 3 weeks of differentiation in vitro. The concentration‐response plots of differentiated NPCs yielded an EC50 of 2.2 μM for glutamate and an EC50 of 36 μM for NMDA. Glutamate‐induced currents were markedly inhibited by memantine in contrast to 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione (CNQX) suggesting a higher density of functional NMDA than alpha‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate (AMPA)/kainate receptors. NMDA‐evoked currents and calcium signals were blocked by the NR2B‐subunit specific antagonist ifenprodil indicating functional expression of NMDA receptors containing subunits NR1 and NR2B. In calcium imaging experiments, the blockade of voltage‐gated calcium channels by verapamil abolished AMPA‐induced calcium responses but only partially reduced NMDA‐evoked transients suggesting the expression of calcium‐impermeable, GluR2‐containing AMPA receptors. Quantitative real‐time PCR showed a predominant expression of subunits NR2A and NR2B (NMDA), GluR2 (AMPA), GluR7 (kainate), and mGluR3 (metabotropic glutamate receptor). Treatment of NPCs with 100 μM NMDA in vitro during proliferation (2 weeks) and differentiation (1 week) increased the amount of tyrosine hydroxylase‐immunopositive cells significantly, which was reversed by addition of memantine. These data suggest that NMDA receptors in differentiating human mesencephalic NPCs are important regulators of dopaminergic neurogenesis in vitro.  相似文献   

18.
Abstract: NMDA receptors and Ca2+/calmodulin-dependent kinase II (CaMKII) have been reported to be highly concentrated in the postsynaptic density (PSD). Although the possibility that CaMKII in PSD might be associated with specific proteins has been put forward, the protein or proteins determining the targeting of the kinase in PSD have not yet been identified. Here we report that CaMKII binds to NR2A and NR2B subunits of NMDA receptors in PSD isolated from cortex and hippocampus. The association of NMDA receptor subunits and CaMKII was assessed by immunoprecipitating PSD proteins with antibodies specific for NR2A/B and CaMKII: CaMKII coprecipitated with NR2A/B and NR1 but not with other glutamate ionotropic receptor subunits, such as GluR1 and GluR2-3. A direct association between CaMKII and NR2A/B subunits was further confirmed by overlay experiments using either 32P-autophosphorylated CaMKII or 32P-NR2A/B and by evaluating the formation of a CaMKII-NR2A/B complex by means of the cross-linker disuccimidyl suberate. These data demonstrate an association between the NMDA receptor complex and CaMKII in the postsynaptic compartment, suggesting that this colocalization may be relevant for synaptic plasticity.  相似文献   

19.
Overstimulation of the glutamatergic system (excitotoxicity) is involved in various acute and chronic brain diseases. Several studies support the hypothesis that guanosine-5′-monophosphate (GMP) can modulate glutamatergic neurotransmission. The aim of this study was to evaluate the effects of chronically administered GMP on brain cortical glutamatergic parameters in mice. Additionally, we investigated the neuroprotective potential of the GMP treatment submitting cortical brain slices to oxygen and glucose deprivation (OGD). Moreover, measurements of the cerebrospinal fluid (CSF) purine levels were performed after the treatment. Mice received an oral administration of saline or GMP during 3 weeks. GMP significantly decreases the cortical brain glutamate binding and uptake. Accordingly, GMP reduced the immunocontent of the glutamate receptors subunits, NR2A/B and GluR1 (NMDA and AMPA receptors, respectively) and glutamate transporters EAAC1 and GLT1. GMP treatment significantly reduced the immunocontent of PSD-95 while did not affect the content of Snap 25, GLAST and GFAP. Moreover, GMP treatment increased the resistance of neocortex to OGD insult. The chronic GMP administration increased the CSF levels of GMP and its metabolites. Altogether, these findings suggest a potential modulatory role of GMP on neocortex glutamatergic system by promoting functional and plastic changes associated to more resistance of mice neocortex against an in vitro excitotoxicity event.  相似文献   

20.
Unilateral hypoglossal nerve axotomy was used as a model to analyse immunohistochemically the expression of the GluR1, GluR2, GluR3, and GluR4 glutamate receptor subunits of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) subtype and the NR1 subunit of the N-methyl-D-aspartate (NMDA) subtype in the different morphofunctional hypoglossal pools from 1 to 45 days postaxotomy. Following hypoglossal nerve axotomy, the percentage of motoneurons that were GluR1-immunopositive and the labeling intensity for this subunit was increased in some hypoglossal pools. Immunolabeling for the GluR2 subunit was undetectable. These results contrast with the unchanged pattern for these two subunits after sciatic nerve axotomy previously described. Image analysis showed a significant decrease in the intensity of immunohistochemical labeling for the GluR2/3 and GluR4 subunits in motoneurons, although most motoneurons were still immunopositive for these 2 subunits after axotomy. The intensity of immunolabeling for the NR1 subunit was slightly decreased postlesion, whereas the percentage of NR1-immunopositive motoneurons increased. Immunoreactivity returned to basal levels 45 days postlesion. These findings show that in axotomized hypoglossal motoneurons, i) AMPA and NMDA receptor subunits are still expressed, ii) the composition of the ionotropic glutamate receptor subunit pool is subjected to continuous changes during the regeneration process, iii) AMPA receptors, if functional, would have physiological properties different to those in intact motoneurons, and iv) the various AMPA receptor subunits are differentially regulated. The present results also suggest a faster recovery of basal levels of immunoreactivity for caudally localised groups of motoneurons which could reflect a caudo-rostral sequential functional revovery in the hypoglossal nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号