首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Mitochondrial production of reactive oxygen species (ROS) is widely reported as a central effector during TNF-induced necrosis. The effect of a family of mitochondria-targeted antioxidants on TNF-induced necrosis of L929 cells was studied. While the commonly used lipid-soluble antioxidant BHA effectively protected cells from TNF-induced necrosis, the mitochondria-targeted antioxidants MitoQ3, MitoQ5, MitoQ10 and MitoPBN had no effect on TNF-induced necrosis. Since BHA also acts as an uncoupler of mitochondrial membrane potential, two additional uncouplers were tested. FCCP and CCCP both provided dose-dependent inhibition of TNF-induced necrosis. In conclusion, the generation of mitochondrial ROS may not be necessary for TNF-induced necrosis. Instead, these results suggest alternative mitochondrial functions, such as a respiration-dependent process, are critical for necrotic death.  相似文献   

2.
Oxidative stress of mitochondrial origin, i.e. elevated mitochondrial superoxide production, belongs to major factors determining aging and oxidative-stress-related diseases. Antioxidants, such as the mitochondria-targeted coenzyme Q, MitoQ10, may prevent or cure these pathological conditions. To elucidate pro- and anti-oxidant action of MitoQ10, we studied its effects on HepG2 cell respiration, mitochondrial network morphology, and rates of superoxide release (above that neutralized by superoxide dismutase) to the mitochondrial matrix (Jm). MitoSOX Red fluorescence confocal microscopy monitoring of Jm rates showed pro-oxidant effects of 3.5-fold increased Jm with MitoQ10. MitoQ10 induced fission of the mitochondrial network which was recovered after 24 h. In rotenone-inhibited HepG2 cells (i.e., already under oxidative stress) MitoQ10 sharply decreased rotenone-induced Jm, but not together with the Complex II inhibitor thenoyltrifluoroacetone. Respiration of HepG2 cells and isolated rat liver mitochondria with MitoQ10 increased independently of rotenone. The increase was prevented by thenoyltrifluoroacetone. These results suggest that MitoQ10 accepts electrons prior to the rotenone-bound Q-site, and the Complex II reverse mode oxidizes MitoQ10H2 to regenerate MitoQ10. Consequently, MitoQ10 has a pro-oxidant role in intact cells, whereas it serves as an antioxidant when Complex I-derived superoxide generation is already elevated due to electron flow retardation. Moreover, unlike mitochondrial uncoupling, MitoQ10 exerted its antioxidant role when Complex I proton pumping was retarded by a hydrophobic amiloride, 5-(N-ethyl-N-isopropyl) amiloride. Consequently, MitoQ10 may be useful in the treatment of diseases originating from impairment of respiratory chain Complex I due to oxidatively damaged mitochondrial DNA, when its targeted delivery to pathogenic tissues is ensured.  相似文献   

3.
Effect of pyridoxine on tumor necrosis factor activitiesin vitro   总被引:1,自引:0,他引:1  
Clinical trials with tumor necrosis factor (TNF) as an antitumor agent have so far given rather disappointing results. In this study we show that the naturally occuring vitamin B6 compound, pyridoxine, enhances TNF-induced cytolysis of three subclones of a mouse fibrosarcoma cell line (WEHI 164). The degree of pyridoxine-induced enhancement of TNF cytotoxicity seems to be dependent on the cells sensitivity to TNF, as the enhancement was much more pronounced in the relatively TNF resistant subclone act-R(cl.12)-WEHI 164, than in the very TNF sensitive subclone WEHI 164 clone 13. Furthermore, our study shows that pyridoxine, in contrast to its enhancing effect on TNF-induced cytotoxicity, rather inhibits TNF-induced growth of human FS-4 fibroblasts. Pyridoxine also enhances lymphotoxin (LT)-induced tumor cell killing and inhibits LT-induced fibroblast growth. Pyridoxine is a relatively non-toxic agentin vivo. Our results suggest that a combination of TNF and pyridoxine may be more efficient than TNF alone, in the treatment of cancer patients.  相似文献   

4.
Phospholipases generate important secondary messengers in several cellular processes, including cell death. Tumor necrosis factor (TNF) can induce two distinct modes of cell death, viz. necrosis and apoptosis. Here we demonstrate that phospholipase D (PLD) and cytosolic phospholipase A2 (cPLA2) are differentially activated during TNF-induced necrosis or apoptosis. Moreover, a comparative study using TNF and anti-Fas antibodies as cell death stimuli showed that PLD and cPLA2 are specifically activated by TNF. These results indicate that both the mode of cell death and the type of death stimulus determine the potential role of phospholipases as generators of secondary messengers. J. Cell. Biochem. 71:392–399, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
《BBA》2020,1861(8):148210
An increase in the production of reactive oxygen species (ROS) in mitochondria due to targeted delivery of redox active compounds may be useful in studies of modulation of cell functions by mitochondrial ROS. Recently, the mitochondria-targeted derivative of menadione (MitoK3) was synthesized. However, MitoK3 did not induce mitochondrial ROS production and lipid peroxidation while exerting significant cytotoxic action. Here we synthesized 1,4-naphthoquinone conjugated with alkyltriphenylphosphonium (SkQN) as a prototype of mitochondria-targeted prooxidant, and its redox properties, interactions with isolated mitochondria, yeast cells and various human cell lines were investigated. According to electrochemical measurements, SkQN was more active redox agent and, due to the absence of methyl group in the naphthoquinone ring, more reactive as electrophile than MitoK3. SkQN (but not MitoK3) stimulated hydrogen peroxide production in isolated mitochondria. At low concentrations, SkQN stimulated state 4 respiration in mitochondria, decreased membrane potential, and blocked ATP synthesis, being more efficient uncoupler of oxidative phosphorylation than MitoK3. In yeast cells, SkQN decreased cell viability and induced oxidative stress and mitochondrial fragmentation. SkQN killed various tumor cells much more efficiently than MitoK3. Since many tumors are characterized by increased oxidative stress, the use of new mitochondria-targeted prooxidants may be a promising strategy for anticancer therapy.  相似文献   

6.
Effects of the coenzyme Q analog (MitoQ10) carrying a positively charged decyltetraphenylphosphonium group on functional activity of phosphorylating liver mitochondria were studied. Using inhibitory analysis it was found that at micromolar concentrations this quinone is reduced by NADH-dependent DT-diaphorase. Under conditions of malate oxidation, MitoQ10 stimulates electron transfer from NADH to oxygen by shunting the block of rotenone-induced electron transport in Complex I. Steady-state mitochondrial respiration induced by rotenone and MitoQ10 (1 μM), as well as K3 shunt are both blocked by the DT-diaphorase inhibitor dicumarol, the Complex III inhibitor myxothiazole, and the cytochrome oxidase inhibitor cyanide. The electron transport chain induced in liver mitochondria by MitoQ10 in the presence of rotenone appears as follows: NADH → DT-diaphorase → MitoQ10 → Complex III → Complex IV → O2. Under conditions of malate (but not succinate) oxidation, MitoQ10 and high concentrations of vitamin K3 induce in mitochondria cyanide-resistant respiration and opening of the nonspecific pore eventually resulting in inhibition of oxidative phosphorylation. It is concluded that MitoQ10 should be regarded as an analog of hydrophilic quinones (vitamin K3, duroquinone, etc.) widely known as substrates for mitochondrial DT-diaphorase not interacting with CoQ10 rather than as a natural CoQ10 analog.  相似文献   

7.
Prolonged or excessive increase in the circulatory level of proinflammatory tumor necrosis factor (TNF) leads to abnormal activation and subsequent damage to endothelium. TNF at high concentrations causes apoptosis of endothelial cells. Previously, using mitochondria-targeted antioxidants of SkQ family, we have shown that apoptosis of endothelial cells is dependent on the production of reactive oxygen species (ROS) in mitochondria (mito-ROS). Now we have found that TNF at low concentrations does not cause cell death but activates caspase-3 and caspase-dependent increase in endothelial permeability in vitro. This effect is probably due to the cleavage of β-catenin–an adherent junction protein localized in the cytoplasm. We have also shown that extracellular matrix metalloprotease 9 (MMP9) VE-cadherin shedding plays a major role in the TNF-induced endothelial permeability. The mechanisms of the caspase-3 and MMP9 activation are probably not related to each other since caspase inhibition did not affect VE-cadherin cleavage and MMP9 inhibition had no effect on the caspase-3 activation. Mitochondria-targeted antioxidant SkQR1 inhibited TNF-induced increase in endothelial permeability. SkQR1 also inhibited caspase-3 activation, β-catenin cleavage, and MMP9-dependent VE-cadherin shedding. The data suggest that mito-ROS are involved in the increase in endothelial permeability due to the activation of both caspase-dependent cleavage of intracellular proteins and of MMP9-dependent cleavage of the transmembrane cell-to-cell contact proteins.  相似文献   

8.
Reactive oxygen species (ROS) have been implicated as mediators of tumor necrosis factor-alpha (TNF) -induced apoptosis. In addition to leading to cell death, ROS can also promote cell growth and/or survival. We investigated these two roles of ROS in TNF-induced endothelial cell apoptosis. Human umbilical vein endothelial cells (HUVECs) stimulated with TNF produced an intracellular burst of ROS. Adenoviral-mediated gene transfer of a dominant negative form of the small GTPase Rac1 (Rac1N17) partially suppressed the TNF-induced oxidative burst without affecting TNF-induced mitochondrial ROS production. HUVECs were protected from TNF-induced apoptosis. Expression of Rac1N17 blocked TNF-induced activation of nuclear factor-kappa B (NF-kappaB), increased activity of caspase-3, and markedly augmented endothelial cell susceptibility to TNF-induced apoptosis. Direct inhibition of NF-kappaB through adenoviral expression of the super repressor form of inhibitor of kappaBalpha (I-kappaB S32/36A) also increased susceptibility of HUVECs to TNF-induced apoptosis. Rotenone, a mitochondrial electron transport chain inhibitor, suppressed TNF-induced mitochondrial ROS production, proteolytic cleavage of procaspase-3, and apoptosis. These findings show that Rac1 is an important regulator of TNF-induced ROS production in endothelial cells. Moreover, they suggest that Rac1-dependent ROS, directly or indirectly, lead to protection against TNF-induced death, whereas mitochondrial-derived ROS promote TNF-induced apoptosis.  相似文献   

9.
The effect of commonly used food antioxidants on recombinant tumor necrosis factor alpha (rTNF-alpha)-induced cytotoxicity, growth enhancement and adhesion has been evaluated. Butylated hydroxyanisole (BHA) and 4-hydroxymethyl-2,6-di-t-butylphenol (HBP) were the only two of nine antioxidants that completely inhibited rTNF-alpha-induced cytotoxicity in L929 and WEHI 164 fibrosarcoma cells. Ethoxyquin, propyl gallate and butylated hydroquinone only partially inhibited rTNF-alpha-induced cytotoxicity, while the antioxidants butylated hydroxytoluene (BHT), alpha-tocopherol, ascorbic acid and thiodipropionic acid had minimal effects. The only difference between the molecular structure of the efficient HBP and the non-efficient BHT, is a hydroxymethyl group instead of a hydroxyl group on the phenolic ring. Neither BHA nor BHT inhibited the activation of NF kappa B after 10 or 60 min challenge with rTNF-alpha in L929 cells. BHA also inhibited rTNF-alpha-induced, but not rIL-1 beta-induced growth enhancement in FS-4 fibroblasts. Further, BHA blocked both rTNF-alpha-induced and rIL-1 beta-induced prostaglandin E2 synthesis in FS-4 fibroblasts. BHA inhibited the rTNF-alpha-induced release of arachidonic acid in both FS-4 and L929 cells, suggesting that BHA inhibits cellular phospholipase(s). Neither alpha-tocopherol nor BHA inhibited rTNF-alpha-induced adhesiveness of human endothelial cells. The results indicate that BHA is a specific and potent inhibitor of rTNF-alpha- and rTNF-beta-induced cytotoxicity, as well as of rTNF-alpha-induced growth enhancement.  相似文献   

10.
The plasma jet has been proposed as a novel therapeutic method for cancer. Anticancer activity of plasma has been reported to involve mitochondrial dysfunction. However, what constituents generated by plasma is linked to this anticancer process and its mechanism of action remain unclear. Here, we report that the therapeutic effects of air plasma result from generation of reactive oxygen/nitrogen species (ROS/RNS) including H2O2, Ox, OH, •O2, NOx, leading to depolarization of mitochondrial membrane potential and mitochondrial ROS accumulation. Simultaneously, ROS/RNS activate c-Jun NH2-terminal kinase (JNK) and p38 kinase. As a consequence, treatment with air plasma jets induces apoptotic death in human cervical cancer HeLa cells. Pretreatment of the cells with antioxidants, JNK and p38 inhibitors, or JNK and p38 siRNA abrogates the depolarization of mitochondrial membrane potential and impairs the air plasma-induced apoptotic cell death, suggesting that the ROS/RNS generated by plasma trigger signaling pathways involving JNK and p38 and promote mitochondrial perturbation, leading to apoptosis. Therefore, administration of air plasma may be a feasible strategy to eliminate cancer cells.  相似文献   

11.
The cytotoxicity of aclarubicin (ACL) in A549 (human non-small lung), HepG2 (human hepatoma) and MCF-7 (human breast adenocarcinoma) cancer cell lines was evaluated and compared with that of doxorubicin (DOX). Changes in mitochondrial transmembrane potential (ΔΨm), and production of reactive oxygen species (ROS) of drug-treated cells were monitored. Moreover, morphological changes associated with apoptosis were examined using double staining with Hoechst 33258-propidium iodide (PI). The results showed that ACL was much more cytotoxic than DOX in all investigated cell lines. Furthermore, ACL induced a concentration- and time-dependent increase in ROS production and decrease in mitochondrial membrane potential. The drugs, especially ACL, also induced ROS mediated apoptosis and necrosis pathways in all cell lines depending on the length of the post-treatment time. All these processes were partially inhibited by the antioxidants: N-acetylcysteine (NAC) and α-tocopherol. Of both drugs, DOX caused considerably weaker depolarization of the mitochondrial membrane. Its 10-fold higher concentration, as compared to ACL, was required to induce a similar effect, in accordance with the highly distinct cytotoxicity of these drugs towards investigated cells. In conclusion, ROS production preceded a decrease in mitochondrial membrane potential, but only changes in ΔΨm were correlated with drug cytotoxicity in particular cell line. These results suggest that the impairment of ΔΨm and an increase in ROS level might be important mechanisms of ACL cytotoxicity in cancer cells in solid tumors.  相似文献   

12.
Erucylphosphohomocholine (ErPC3, Erufosine?) was reported previously to induce apoptosis in otherwise highly apoptosis-resistant malignant glioma cell lines while sparing their non-tumorigenic counterparts. We also previously found that the mitochondrial 18 kDa Translocator Protein (TSPO) is required for apoptosis induction by ErPC3. These previous studies also suggested involvement of reactive oxygen species (ROS). In the present study we further investigated the potential involvement of ROS generation, the participation of the mitochondrial respiration chain, and the role of the mitochondrial FOF1-ATP(synth)ase in the pro-apoptotic effects of ErPC3 on U87MG and U118MG human glioblastoma cell lines. For this purpose, cells were treated with the ROS chelator butylated hydroxyanisole (BHA), the mitochondrial respiration chain inhibitors rotenone, antimycin A, myxothiazol, and the uncoupler CCCP. Also oligomycin and piceatannol were studied as inhibitors of the FO and F1 subunits of the mitochondrial FOF1-ATP(synth)ase, respectively. BHA was able to attenuate apoptosis induction by ErPC3, including mitochondrial ROS generation as determined with cardiolipin oxidation, as well as collapse of the mitochondrial membrane potential (Δψm). Similarly, we found that oligomycin attenuated apoptosis and collapse of the Δψm, normally induced by ErPC3, including the accompanying reductions in cellular ATP levels. Other inhibitors of the mitochondrial respiration chain, as well as piceatannol, did not show such effects. Consequently, our findings strongly point to a role for the FO subunit of the mitochondrial FOF1-ATP(synth)ase in ErPC3-induced apoptosis and dissipation of Δψm as well as ROS generation by ErPC3 and TSPO.  相似文献   

13.
The mechanism of tumor necrosis factor (TNF)-induced nonapoptotic cell death is largely unknown, although the mechanism of TNF-induced apoptosis has been studied extensively. In wild-type mouse embryonic fibroblast cells under a caspase-inhibited condition, TNF effectively induced cell death that morphologically resembled necrosis. In this study, we utilized gene knockout mouse embryonic fibroblasts cells and found that tumor necrosis factor receptor (TNFR) I mediates TNF-induced necrotic cell death, and that RIP, FADD, and TRAF2 are critical components of the signaling cascade of this TNF-induced necrotic cell death. Inhibitors of NF-kappaB facilitated TNF-induced necrotic cell death, suggesting that NF-kappaB suppresses the necrotic cell death pathway. JNK, p38, and ERK activation seem not to be required for this type of cell death because mitogen-activated protein kinase inhibitors did not significantly affect TNF-induced necrotic cell death. In agreement with the previous reports that the reactive oxygen species (ROS) may play an important role in this type of cell death, the ROS scavenger butylated hydroxyanisole efficiently blocked TNF-induced necrotic cell death. Interestingly, during TNF-induced necrotic cell death, the cellular ROS level was significantly elevated in wild type, but not in RIP(-/-), TRAF2(-/-), and FADD(-/-) cells. These results suggest that RIP, TRAF2, and FADD are crucial in mediating ROS accumulation in TNF-induced necrotic cell death.  相似文献   

14.
Three members of the IAP family (X-linked inhibitor of apoptosis (XIAP), cellular inhibitor of apoptosis proteins-1/-2 (cIAP1 and cIAP2)) are potent suppressors of apoptosis. Recent studies have shown that cIAP1 and cIAP2, unlike XIAP, are not direct caspase inhibitors, but block apoptosis by functioning as E3 ligases for effector caspases and receptor-interacting protein 1 (RIP1). cIAP-mediated polyubiquitination of RIP1 allows it to bind to the pro-survival kinase transforming growth factor-β-activated kinase 1 (TAK1) which prevents it from activating caspase-8-dependent death, a process reverted by the de-ubiquitinase CYLD. RIP1 is also a regulator of necrosis, a caspase-independent type of cell death. Here, we show that cells depleted of the IAPs by treatment with the IAP antagonist BV6 are greatly sensitized to tumor necrosis factor (TNF)-induced necrosis, but not to necrotic death induced by anti-Fas, poly(I:C) oxidative stress. Specific targeting of the IAPs by RNAi revealed that repression of cIAP1 is responsible for the sensitization. Similarly, lowering TAK1 levels or inhibiting its kinase activity sensitized cells to TNF-induced necrosis, whereas repressing CYLD had the opposite effect. We show that this sensitization to death is accompanied by enhanced RIP1 kinase activity, increased recruitment of RIP1 to Fas-associated via death domain and RIP3 (which allows necrosome formation), and elevated RIP1 kinase-dependent accumulation of reactive oxygen species (ROS). In conclusion, our data indicate that cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent ROS production.  相似文献   

15.
Increased serum level of tumor necrosis factor α (TNFα) causes endothelial dysfunction and leads to serious vascular pathologies. TNFα signaling is known to involve reactive oxygen species (ROS). Using mitochondria-targeted antioxidant SkQR1, we studied the role of mitochondrial ROS in TNFα-induced apoptosis of human endothelial cell line EAhy926. We found that 0.2 nM SkQR1 prevents TNFα-induced apoptosis. SkQR1 has no influence on TNFα-dependent proteolytic activation of caspase-8 and Bid, but it inhibits cytochrome c release from mitochondria and cleavage of caspase-3 and its substrate PARP. SkQ analogs lacking the antioxidant moieties do not prevent TNFα-induced apoptosis. The antiapoptotic action of SkQR1 may be related to other observations made in these experiments, namely SkQR1-induced increase in Bcl-2 and corresponding decrease in Bax as well as p53. These results indicate that mitochondrial ROS production is involved in TNFα-initiated endothelial cell death, and they suggest the potential of mitochondria-targeted antioxidants as vasoprotectors.  相似文献   

16.
Background Hyperhomocysteinaemia (HHC) is thought to be a risk factor for cardiovascular disease including heart failure. While numerous studies have analyzed the role of homocysteine (Hcy) in the vasculature, only a few studies investigated the role of Hcy in the heart. Therefore we have analyzed the effects of Hcy on isolated cardiomyocytes. Methods H9c2 cells (rat cardiomyoblast cells) and adult rat cardiomyocytes were incubated with Hcy and were analyzed for cell viability. Furthermore, we determined the effects of Hcy on intracellular mediators related to cell viability in cardiomyocytes, namely NOX2, reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨ m) and ATP concentrations. Results We found that incubation of H9c2 cells with 0.1 mM D,L-Hcy (= 60 μM l-Hcy) resulted in an increase of ΔΨ m as well as ATP concentrations. 1.1 mM d,l-Hcy (= 460 μM l-Hcy) induced reversible flip-flop of the plasma membrane phospholipids, but not apoptosis. Incubation with 2.73 mM d,l-Hcy (= 1.18 mM l-Hcy) induced apoptosis and necrosis. This loss of cell viability was accompanied by a thread-to-grain transition of the mitochondrial reticulum, ATP depletion and nuclear NOX2 expression coinciding with ROS production as evident from the presence of nitrotyrosin residues. Notably, only at this concentration we found a significant increase in S-adenosylhomocysteine which is considered the primary culprit in HHC. Conclusion We found concentration-dependent effects of Hcy in cardiomyocytes, varying from induction of reversible flip-flop of the plasma membrane phospholipids, to apoptosis and necrosis.  相似文献   

17.
Bioenergetic aspects of apoptosis, necrosis and mitoptosis   总被引:6,自引:2,他引:4  
In this review I summarize interrelations between bioenergetic processes and such programmed death phenomena as cell suicide (apoptosis and necrosis) and mitochondrial suicide (mitoptosis). The following conclusions are made. (I) ATP and rather often mitochondrial hyperpolarization (i.e. an increase in membrane potential, ΔΨ) are required for certain steps of apoptosis and necrosis. (II) Apoptosis, even if it is accompanied by ΔΨ and [ATP] increases at its early stage, finally results in a ΔΨ collapse and ATP decrease. (III) Moderate (about three-fold) lowering of [ATP] for short and long periods of time induces apoptosis and necrosis, respectively. In some types of apoptosis and necrosis, the cell death is mediated by a ΔΨ-dependent overproduction of ROS by the initial (Complex I) and the middle (Complex III) spans of the respiratory chain. ROS initiate mitoptosis which is postulated to rid the intracellular population of mitochondria from those that are ROS overproducing. Massive mitoptosis can result in cell death due to release to cytosol of the cell death proteins normally hidden in the mitochondrial intermembrane space.  相似文献   

18.
Role of oxidative stress and Na+,K+-ATPase in the cytotoxicity of hexachlorocyclohexane (HCH) on Ehrlich Ascites tumor (EAT) cells has been studied. HCH caused dose dependent cell death as measured by trypan blue exclusion and lactate dehydrogenase (LDH) leakage from the cells. HCH induced oxidative stress in EAT cells which was characterized by glutathione depletion, lipid peroxidation (LPO), reactive oxygen species (ROS) production and inhibition of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT). Protective effect of antioxidants on HCH induced oxidative stress was assessed, among the antioxidants used only quercetin inhibited HCH-induced LPO and ROS production as well as cell death whereas α -tocopherol, ascorbic acid and BHA inhibited LPO but not cell death. Inhibition of membrane bound Na+,K+-ATPase was a characteristic feature of HCH cytotoxicity in EAT cells. Experimental evidence indicates that HCH-induced cell death involves oxidative stress due to ROS production and membrane perturbation in EAT cells.  相似文献   

19.
Previous studies have demonstrated the essential role of TNF-induced reactive oxygen intermediates (ROI) in the necrosis of L929 cells. We investigated the molecular basis for the interaction of hyperthermia and TNF in these cells. Hyperthermia, both febrile (40.0-40.5 degrees C) and acute (41.5-41.8 degrees C), strongly potentiated TNF killing, and sensistization was significantly quenched by the antioxidant, BHA. The broad-spectrum caspase inhibitor, Z-VAD, has been shown to markedly increase the TNF sensitivity of L929 cells at 37 degrees C; we observed that hyperthermia would also enhance the sensitivity of L929 cells to TNF + Z- VAD and that BHA could significantly quench the response, as well. The basis for hyperthermic potentiation was unlikely thermally-increased sensitivity to ROI, as treatment with hydrogen peroxide for 24 h killed L929 cells essentially equivalently, whether incubated continuously at 37 degrees C or at 40.0-40.5 degrees C, or for 2 h at 41.5-41.8 degrees C. However, febrile and acute hyperthermia markedly increased TNF-induced production of ROI, with or without Z-VAD. Hyperthermia dramatically accelerated the onset of this production, as well as the onset of necrotic death, as determined by oxidation of dihydro-rhodamine and propidium iodide staining, respectively, both of which were significantly quenchable with BHA. We conclude that hyperthermia potentiates TNF-mediated killing in this cell model primarily by increasing the afferent, and not the efferent, phase of TNF-induced necrosis.  相似文献   

20.
Metaxin is required for tumor necrosis factor-induced cell death   总被引:4,自引:1,他引:3       下载免费PDF全文
We used retrovirus insertion-mediated random mutagenesis and tumor necrosis factor (TNF) selection to generate TNF-resistant lines from L929 cells. The metaxin gene, which encodes a protein located on the outer membrane of mitochondria, was identified to be the gene disrupted in one of the resistant lines. The requirement of metaxin in TNF-induced cell death of L929 was confirmed by the restoration of TNF sensitivity after ectopic reconstitution of metaxin expression. Analysis of the cell death induced by other stimuli revealed that metaxin deficiency-mediated death resistance was selective to certain stimuli. Studies using deletion mutants of metaxin showed that mitochondrial association of metaxin is required for the function of metaxin. Over-expression of truncated metaxin lacking the mitochondria anchoring sequence mimicked metaxin deficiency in wild-type cells. Interfering with metaxin prevented TNF-induced necrotic cell death in L929 cells and apoptosis in MCF-7 cells. Our work has thus defined a novel component in the death pathway used by TNF and some other death stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号