首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The effect of celecoxib on renal tubular cells is largely unexplored. In Madin Darby canine kidney (MDCK) cells, the effect of celecoxib on intracellular CaCa2+ concentration ([Ca2+]i) and proliferation was examined by using the Ca(2 +)-sensitive fluorescent dye fura-2 and the viability detecting fluorescent dye tetrazolium, respectively. Celecoxib (> or =1 micro M) caused an increase of [CaCa2+]i in a concentration-dependent manner. Celecoxib-induced [CaCa2+]i increase was partly reduced by removal of extracellular CaCa2+. Celecoxib-induced CaCa2+ influx was independently suggested by MnCa2+ influx-induced fura-2 fluorescence quench. In Ca(2 +)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2 +)-ATPase, caused a monophasic [CaCa2+]i increase, after which celecoxib only induced a tiny [CaCa2+]i increase; conversely, pretreatment with celecoxib completely inhibited thapsigargin-induced [CaCa2+]i increases. U73122, an inhibitor of phospholipase C, abolished ATP (but not celecoxib)-induced [CaCa2+]i increases. Overnight incubation with 1 or 10 micro M celecoxib decreased cell viability by 80% and 100%, respectively. These data indicate that celecoxib evokes a [CaCa2+]i increase in renal tubular cells by stimulating both extracellular CaCa2+ influx and intracellular CaCa2+ release and is highly toxic to renal tubular cells in vitro.  相似文献   

2.
The effect of ketoconazole on cytosolic free Ca2 + concentrations ([Ca2 +]i) and proliferation has not been explored in corneal cells. This study examined whether ketoconazole alters Ca2 + levels and causes cell death in SIRC rabbit corneal epithelial cells. [Ca2 +]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Ketoconazole at concentrations of 5 μ M and above increased [Ca2 +]i in a concentration-dependent manner. The Ca2 + signal was reduced partly by removing extracellular Ca2 +. The ketoconazole-induced Ca2 + influx was insensitive to L-type Ca2 + channel blockers and protein kinase C modulators. In Ca2 +-free medium, after pretreatment with 50 μ M ketoconazole, thapsigargin-(1 μ M)-induced [Ca2 +]i rises were abolished; conversely, thapsigargin pretreatment nearly abolished ketoconazole-induced [Ca2 +]i rises. Inhibition of phospholipase C with 2 μ M U73122 did not change ketoconazole-induced [Ca2 +]i rises. At concentrations between 5 and 100 μ M, ketoconazole killed cells in a concentration-dependent manner. The cytotoxic effect of 50 μ M ketoconazole was not reversed by prechelating cytosolic Ca2 + with BAPTA. In summary, in corneal cells, ketoconazole-induced [Ca2 +]i rises by causing Ca2 + release from the endoplasmic reticulum and Ca2 + influx from unknown pathways. Furthermore, the cytotoxicity induced by ketoconazole was not caused via a preceding [Ca2 +]i rise.  相似文献   

3.
The effect of the synthetic estrogen diethylstilbestrol (DES) on cytosolic free Ca2+ concentrations ([Ca2+]i) and cell viability was explored in Chinese hamster ovary (CHO-K1). [Ca2+]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. DES at concentrations ≥ 1∝ increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. In Ca2+-free medium, after pretreatment with 50∝ DES, 1∝ thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor)-induced [Ca2+]i rises were abolished. Conversely, thapsigargin pretreatment abolished DES-induced [Ca2+]i rises. Inhibition of phospholipase C with U73122 did not alter DES-induced [Ca2+]i rises. At a concentration of 5∝, DES increased cell viability. At concentrations of 100–200 μ M, DES decreased viability in a concentration-dependent manner. The effect of 5 and 100 μM DES on viability was partly reversed by prechelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′ -tetraacetic acid (BAPTA). DES-induced cell death was induced via apoptosis as demonstrated by propidium iodide staining. DES (100 μ M)-induced [Ca2+]i rises were largely inhibited by pretreatment with the estrogen receptor antagonist ICI-182,780 (100 μ M). ICI-182,780 did not affect 5 μ M DES-induced increase in viability but partly reversed 100 μ M DES-induced cell death. Collectively, in CHO-K1 cells, DES induced [Ca2+]i rises by stimulating estrogen receptors leading to Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca2+ influx. DES-caused cytotoxicity was mediated by an estrogen receptor- and Ca2+-dependent pathway.  相似文献   

4.
Terfenadine, an antihistamine used for the treatment of allergic conditions, affected Ca2+-related physiological responses in various models. However, the effect of terfenadine on cytosolic free Ca2+ levels ([Ca2+]i) and its related physiology in renal tubular cells is unknown. This study examined whether terfenadine altered Ca2+ signaling and caused cytotoxicity in Madin–Darby canine kidney (MDCK) renal tubular cells. The Ca2+-sensitive fluorescent dye fura-2 was used to measure [Ca2+]i. Cell viability was measured by the fluorescent reagent 4-[3-[4-lodophenyl]-2-4(4-nitrophenyl)-2H-5-tetrazolio-1,3-benzene disulfonate] water soluble tetrazolium-1 (WST-1) assay. Terfenadine at concentrations of 100–1000?μM induced [Ca2+]i rises concentration dependently. The response was reduced by approximately 35% by removing extracellular Ca2+. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone (BHQ) partly inhibited terfenadine-evoked [Ca2+]i rises. Conversely, treatment with terfenadine abolished BHQ-evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 inhibited 95% of terfenadine-induced Ca2+ release. Terfenadine-induced Ca2+ entry was supported by Mn2+-caused quenching of fura-2 fluorescence. Terfenadine-induced Ca2+ entry was partly inhibited by an activator of protein kinase C (PKC), phorbol 12-myristate 13 acetate (PMA) and by three modulators of store-operated Ca2+ channels (nifedipine, econazole, and SKF96365). Terfenadine at 200–300?μM decreased cell viability, which was not reversed by pretreatment with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Together, in MDCK cells, terfenadine induced [Ca2+]i rises by evoking PLC-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via PKC-sensitive store-operated Ca2+ entry. Furthermore, terfenadine caused cell death that was not triggered by preceding [Ca2+]i rises.  相似文献   

5.
The effects of econazole, an antifungal drug applied for treatment of keratitis and mycotic corneal ulcer, on cytosolic-free Ca2+ concentrations ([Ca2+]i) and viability of corneal cells was examined by using SIRC rabbit corneal epithelial cells as model. [Ca2+]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Econazole at concentrations ≥ 1 µM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. The econazole-induced Ca(2+) influx was insensitive to L-type Ca2+ channel blockers and protein kinase C modulators. In Ca2+-free medium, after pretreatment with 20 µM econazole, [Ca2+]i rises induced by 1 µM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) were abolished. Conversely, thapsigargin pretreatment also abolished econazole-induced [Ca2+]i rises. Inhibition of phospholipase C with 2 µM U73122 did not change econazole-induced [Ca2+]i rises. At concentrations between 10 and 80 µM, econazole killed cells in a concentration-dependent manner. The cytotoxic effect of 20 µM econazole was not reversed by prechelating cytosolic Ca2+ with BAPTA. This shows that in SIRC cells econazole induces [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum and Ca2+ influx from unknown pathways. Econazole-caused cytotoxicity was independent from a preceding [Ca2+]i rise.  相似文献   

6.
The purpose of this study was to explore the effect of tamoxifen on cytosolic free Ca2+ concentrations ([Ca2+]i) and cell viability in OC2 human oral cancer cells. [Ca2+]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Tamoxifen at concentrations above 2 μM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. The tamoxifen-induced Ca2+ influx was sensitive to blockade of L-type Ca2+ channel blockers but insensitive to the estrogen receptor antagonist ICI 182,780 and protein kinase C modulators. In Ca2+-free medium, after pretreatment with 1 μM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), tamoxifen-induced [Ca2+]i rises were substantially inhibited; and conversely, tamoxifen pretreatment inhibited a part of thapsigargin-induced [Ca2+]i rises. Inhibition of phospholipase C with 2 μM U73122 did not change tamoxifen-induced [Ca2+]i rises. At concentrations between 10 and 50 μM tamoxifen killed cells in a concentration-dependent manner. The cytotoxic effect of 23 μM tamoxifen was not reversed by prechelating cytosolic Ca2+ with BAPTA. Collectively, in OC2 cells, tamoxifen induced [Ca2+]i rises, in a nongenomic manner, by causing Ca2+ release from the endoplasmic reticulum, and Ca2+ influx from L-type Ca2+ channels. Furthermore, tamoxifen-caused cytotoxicity was not via a preceding [Ca2+]i rise.  相似文献   

7.
Abstract

Protriptyline, a tricyclic anti-depressant, is used primarily to treat the combination of symptoms of anxiety and depression. However, the effect of protriptyline on prostate caner is unknown. This study examined whether the anti-depressant protriptyline altered Ca2+ movement and cell viability in PC3 human prostate cancer cells. The Ca2+-sensitive fluorescent dye fura-2 was used to measure [Ca2+]i. Protriptyline evoked [Ca2+]i rises concentration-dependently. The response was reduced by removing extracellular Ca2+. Protriptyline-evoked Ca2+ entry was inhibited by store-operated channel inhibitors (nifedipine, econazole and SKF96365), protein kinase C activator (phorbol 12-myristate 13 acetate, PMA) and protein kinase C inhibitor (GF109203X). Treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydr-oquinone (BHQ) in Ca2+-free medium inhibited 60% of protriptyline-evoked [Ca2+]i rises. Conversely, treatment with protriptyline abolished BHQ-evoked [Ca2+]i rises. Inhibition of phospholipase C with U73122 suppressed 50% of protriptyline-evoked [Ca2+]i rises. At concentrations of 50–70?µM, protriptyline decreased cell viability in a concentration-dependent manner; which were not reversed by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Collectively, in PC3 cells, protriptyline evoked [Ca2+]i rises by inducing phospholipase C-associated Ca2+ release from the endoplasmic reticulum and other stores, and Ca2+ influx via protein kinase C-sensitive store-operated Ca2+ channels. Protriptyline caused cell death that was independent of [Ca2+]i rises.  相似文献   

8.
The effect of angiotensin 1–7 (Ang 1–7) on cytosolic Ca2+ concentrations ([Ca2+]i) in MDCK renal tubular cells was explored. The Ca2+-sensitive fluorescent dye fura-2 was applied to measure [Ca2+]i. Ang 1–7 at concentrations of 10–50 µM induced a [Ca2+]i rise in a concentration-dependent manner. The response was reduced partly by removing Ca2+. Ang 1–7 evoked store operated Ca2+ entry that was inhibited by La3+ and aristolochic acid. In the absence of extracellular Ca2+, incubation with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin prevented Ang 1–7 from releasing more Ca2+. Inhibition of phospholipase C with U73122 abolished Ang 1–7-induced [Ca2+]i rise. Ang 1–7-induced [Ca2+]i rise was abolished by the angiotensin type 1 receptor antagonist losartan, but was not affected by the angiotensin type 2 receptor antagonist PD 123,319. In sum, in MDCK cells, Ang 1–7 stimulated angiotensin type 1 receptors leading to a [Ca2+]i rise that was composed of phospholipase C-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via phospholipase A2-sensitive store-operated Ca2+ channels.  相似文献   

9.
Abstract

The effect of angiotensin II (Ang II) on cytosolic Ca2+ concentrations ([Ca2+]i) in MDCK renal tubular cells was explored. The Ca2+-sensitive fluorescent dye fura-2 was applied to measure [Ca2+]i. Ang II at concentrations of 5–40?µM induced a [Ca2+]i rise in a concentration-dependent manner. The response was reduced partly by removing Ca2+. Ang II evoked store-operated Ca2+ entry that was inhibited by La3+ and Gd3+. In the absence of extracellular Ca2+, incubation with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone (BHQ) or thapsigargin abolished Ang II-induced Ca2+ release. Inhibition of phospholipase C with U73122 abolished Ang II-induced [Ca2+]i rise. Three Ang II analogues [(ASN1,VAL5)-Ang II acetate, (SAR1,THR8)-Ang II acetate, (VAL5)-Ang II acetate] failed to induce a [Ca2+]i rise. Together, in MDCK cells, Ang II induced a [Ca2+]i rise via Ca2+ entry through store-operated Ca2+ channels and phospholipase C-dependent Ca2+ release from the endoplasmic reticulum. Moreover, Ang II’s amino acid sequence is important in its stimulatory effect on [Ca2+]i.  相似文献   

10.
Abstract

Resveratrol is a natural compound that affects cellular Ca2+ homeostasis and viability in different cells. This study examined the effect of resveratrol on cytosolic free Ca2+ concentrations ([Ca2+]i) and viability in PC3 human prostate cancer cells. The Ca2+-sensitive fluorescent dye fura-2 was used to measure [Ca2+]i and WST-1 was used to measure viability. Resveratrol-evoked [Ca2+]i rises concentration-dependently. The response was reduced by removing extracellular Ca2+. Resveratrol-evoked Ca2+ entry was not inhibited by nifedipine, econazole, SKF96365 and the protein kinase C inhibitor GF109203X, but was nearly abolished by the protein kinase C activator phorbol 12-myristate 13 acetate. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone decreased resveratrol-evoked rise in [Ca2+]i. Conversely, treatment with resveratrol inhibited BHQ-evoked rise in [Ca2+]i. Inhibition of phospholipase C with U73122 did not alter resveratrol-evoked rise in [Ca2+]i. Previous studies showed that resveratrol between 10 and 100?µM induced cell death in various cancer cell types including PC3 cells. However, in this study, resveratrol (1–10?μM) increased cell viability, which was abolished by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid-acetoxymethyl ester (BAPTA/AM). Therefore, it is suggested that in PC3 cells, resveratrol had a dual effect on viability: at low concentrations (1–10?µM) it induced proliferation, whereas at higher concentrations it caused cell death. Collectively, our data suggest that in PC3 cells, resveratrol-induced rise in [Ca2+]i by evoking phospholipase C-independent Ca2+ release from the endoplasmic reticulum and Ca2+ entry, via protein kinase C-regulated mechanisms. Resveratrol at 1–10?µM also caused Ca2+-dependent cell proliferation.  相似文献   

11.
Abstract

Clotrimazole is an antimycotic imidazole derivative that interferes with cellular Ca2+ homeostasis. This study examined the effect of clotrimazole on cytosolic Ca2+ concentrations ([Ca2+]i) and viability in HA59T human hepatoma cells. The Ca2+-sensitive fluorescent dye fura-2 was applied to measure [Ca2+]i. Clotrimazole induced [Ca2+]i rises in a concentration-dependent manner. The response was reduced by removing extracellular Ca2+. Clotrimazole-evoked Ca2+ entry was suppressed by store-operated channel inhibitors (nifedipine, econazole and SK&F96365) and protein kinase C modulators (GF109203X and phorbol, 12-myristate, 13-acetate). In Ca2+-free medium, incubation with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone abolished clotrimazole-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 abolished clotrimazole-induced [Ca2+]i rise. At 10–40?µM, clotrimazole inhibited cell viability, which was not reversed by chelating cytosolic Ca2+. Clotrimazole at 10 and 30?µM also induced apoptosis. Collectively, in HA59T cells, clotrimazole-induced [Ca2+]i rises by evoking phospholipase C-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via store-operated Ca2+ channels. Clotrimazole also caused apoptosis.  相似文献   

12.
Cytoplasmic calcium concentration ([Ca2+]i) and extracellular calcium (Ca2+o) influx has been studied in pollen tubes of Lilium longliflorum in which the processes of cell elongation and exocytosis have been uncoupled by use of Yariv phenylglycoside ((β-D-Glc)3). Growing pollen tubes were pressure injected with the ratio dye fura-2 dextran and imaged after application of (β-D-Glc)3, which binds arabinogalactan proteins (AGPs). Application of (β-D-Glc)3 inhibited growth but not secretion. Ratiometric imaging of [Ca2+]i revealed an initial spread in the locus of the apical [Ca2+]i gradient and substantial elevations in basal [Ca2+]i followed by the establishment of new regions of elevated [Ca2+]i on the flanks of the tip region. Areas of elevated [Ca2+]i corresponded to sites of pronounced exocytosis, as evidenced by the formation of wall ingrowths adjacent to the plasma membrane. Ca2+o influx at the tip of (β-D-Glc)3-treated pollen tubes was not significantly different to that of control tubes. Taken together these data indicate that regions of elevated [Ca2+]i, probably resulting from Ca2+o influx across the plasma membrane, stimulate exocytosis in pollen tubes independent of cell elongation.  相似文献   

13.
The calcium-sensitive fluorescent indicator fura-2 and a microscope equipped for rapidly changing excitation wavelengths were used to look at the effects of growth factors on cytosolic free calcium ([Ca2+]i,) in NRK-49F cells. In these cells bradykinin induced a rapid increase in [Ca2+]i, which generally decayed to near basal [Ca2+]i within 3 minutes. The initial rise in [Ca2+]i in response to bradykinin was relatively independent of extracellular calcium; however, the decay to basal [Ca2+]i was more rapid in the absence of extracellular calcium. Measurements made on individual cells showed a heterogeneity in the response to bradykinin. Epidermal growth factor (EGF) had no effect on [Ca2+]i in NRK-49F cells when added alone in the presence of extracellular calcium. Simultaneous addition of bradykinin and EGF produced a more prolonged increase in [Ca2+]i than bradykinin alone. The prolongation was dependent on the presence of extracellular calcium and did not occur in its absence. Transient increases in [Ca2+]i occurring after the initial peak were occasionally seen in these cells. Our results indicate that there is rapid interaction between the signaling mechanisms for bradykinin and EGF. When this occurs, one effect is the transport of calcium into the cell from the extracellular environment, causing a more prolonged rise in [Ca2+]i. This effect occurs within 1 minute after combined addition of bradykinin and EGF.  相似文献   

14.
The effect of hyposmotic and isosmotic cell swelling on the free intracellular calcium concentration ([Ca2+]i) in rat mammary acinar cells has been examined using the fura-2 dye technique. A hyposmotic shock (40% reduction) increased the [Ca2+]i in rat mammary acinar cells in a fashion which was transient; the [Ca2+]i returned to a value similar to that found under isomotic conditions within 180 sec. The increase in the [Ca2+]i was dependent upon the extent of the osmotic shock. The hyposmotically-activated increase in the [Ca2+]i could not be attributed to a reduction in extracellular Na+ or a change in the ionic strength of the incubation medium. Thapsigargin (1 M) enhanced the hyposmotically-activated increase in the [Ca2+]i. Isosmotic swelling of rat mammary acinar cells, using urea, had no significant effect on the [Ca2+]i. Similarly, a hyperosmotic shock did not affect the [Ca2+]i in rat mammary acinar cells. It appears that the effect of cell swelling on the [Ca2+]i in rat mammary acinar cells depends on how the cells are swollen (hyposmotic vs. isosmotic). This finding may have important physiological implications given that it is predicted that mammary cell volume will change in vivo under isomotic conditions.  相似文献   

15.
The effect of the natural product diindolylmethane on cytosolic Ca2+ concentrations ([Ca2+]i) and viability in PC3 human prostate cancer cells was explored. The Ca2+-sensitive fluorescent dye fura-2 was applied to measure [Ca2+]i. Diindolylmethane at concentrations of 20–50 µM induced [Ca2+]i rise in a concentration-dependent manner. The response was reduced partly by removing Ca2+. Diindolylmethane-evoked Ca2+ entry was suppressed by nifedipine, econazole, SK&F96365, protein kinase C modulators and aristolochic acid. In the absence of extracellular Ca2+, incubation with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) inhibited or abolished diindolylmethane-induced [Ca2+]i rise. Incubation with diindolylmethane also inhibited thapsigargin or BHQ-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 reduced diindolylmethane-induced [Ca2+]i rise. At concentrations of 50–100 µM, diindolylmethane killed cells in a concentration-dependent manner. This cytotoxic effect was not altered by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). Annexin V/PI staining data implicate that diindolylmethane (50 and 100 µM) induced apoptosis in a concentration-dependent manner. In conclusion, diindolylmethane induced a [Ca2+]i rise in PC3 cells by evoking phospholipase C-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via phospholipase A2-sensitive store-operated Ca2+ channels. Diindolylmethane caused cell death in which apoptosis may participate.  相似文献   

16.
The present experiments were undertaken to investigate whether the procedure of intracytoplasmic sperm injection (ICSI) is associated with changes in the intracellular free calcium concentration ([Ca2+]i). [Ca2+]i was measured, using the calcium-sensitive dye fura-2, during and after impalement of mouse oocytes with an ICSI pipette and injection of a small amount of medium alone or of medium containing a normal human spermatozoon. Forty-five oocytes were injected with medium. Two different responses were observed: 20 of these cells showed a large increase of [Ca2+]i upon impalement; the other 25 cells did not show any change of [Ca2+]i, neither in the acute period nor in a late period 4 hr after impalement. All the cells that responded with an increase of [Ca2+]i subsequently lysed within the first 30 min following impalement, while all the cells with no [Ca2+]i change remained intact. This observation suggests that only traumatic impalement is associated with an increase of [Ca2+]i. Thirty-one oocytes were successfully, i.e., without subsequent cell lysis, injected with a normal mouse or human spermatozoon. In none of these cells could any acute or late change of [Ca2+]i be observed. The experiments illustrate that successful performance of the ICSI procedure, i.e., ICSI not followed by cell lysis, is not associated with changes of [Ca2+]i in mouse oocytes. This suggests that the ICSI technique, by itself, does not help in activating the oocyte via manipulation-induced changes of [Ca2+]i. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Effect of the carcinogen thapsigargin on human prostate cancer cells is unclear. This study examined if thapsigargin altered basal [Ca2+]i levels in suspended PC3 human prostate cancer cells by using fura-2 as a Ca2+-sensitive fluorescent probe. Thapsigargin at concentrations between 10?nM and 10 µM increased [Ca2+]i in a concentration-dependent fashion. The Ca2+ signal was reduced partly by removing extracellular Ca2+ indicating that Ca2+ entry and release both contributed to the [Ca2+]i rise. This Ca2+ influx was inhibited by suppression of phospholipase A2, but not by inhibition of store-operated Ca2+ channels or by modulation of protein kinase C activity. In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-(t-butyl)-1,4-hydroquinone (BHQ) nearly abolished thapsigargin-induced Ca2+ release. Conversely, pretreatment with thapsigargin greatly reduced BHQ-induced [Ca2+]i rise, suggesting that thapsigargin released Ca2+ from the endoplasmic reticulum. Inhibition of phospholipase C did not change thapsigargin-induced [Ca2+]i rise. At concentrations of 1-10 µM, thapsigargin induced cell death that was partly reversed by chelation of Ca2+ with BAPTA/AM. Annexin V/propidium iodide staining data suggest that apoptosis was partly responsible for thapsigargin-induced cell death. Together, in PC3 human prostate cancer cells, thapsigargin induced [Ca2+]i rises by causing phospholipase C-independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via phospholipase A2-sensitive Ca2+ channels. Thapsigargin also induced cell death via Ca2+-dependent pathways and Ca2+-independent apoptotic pathways.  相似文献   

18.
The effect of extracellular calcium ([Ca2+] e ) on cytosolic calcium ([Ca2+] i ) was investigated in thick ascending limbs and collecting ducts from the rat kidney, using the fluorescent dye fura-2. In cortical collecting ducts, basolateral but not apical changes in [Ca2+] e were associated with parallel changes in [Ca2+] i . Basal [Ca2+] i was hardly modified by nifedipine and verapamil but was decreased by 60% by basolateral La3+. Increasing peritubular [Ca2+] e triggered Ca2+ release from intracellular stores. This effect was not reproduced by agonists of the renal Ca2+-receptor RaKCaR, e.g., Ba2+, Mg2+, Gd3+, and neomycin, but was reproduced by Ni2+. Ni2+-induced mobilization of intracellular Ca2+ was larger in the inner medullary collecting duct, a segment which poorly responds to increasing [Ca2+] e . In the cortical thick ascending limb, removing basolateral Ca2+ hardly altered [Ca2+] i but increasing [Ca2+] e or adding Ba2+, Mg2+, Gd3+ and neomycin released intracellular calcium. These data demonstrate that (1) basolateral influx of calcium occurs in cortical collecting ducts, under basal conditions; (2) this influx occurs through nonvoltage gated channels, permeable to Ba2+, insensitive to verapamil and nifedipine, and blocked by La3+; (3) increasing [Ca2+] e stimulates the influx and triggers intracellular calcium release, independently of the phospholipase C-coupled receptor RaKCaR; (4) RaKCaR is functionally expressed in thick ascending limbs; (5) another membrane receptor, sensitive to Ni2+ but not to Ca2+ is present in the collecting duct. Received: 12 July 1996/Revised: 28 October 1996  相似文献   

19.
Abstract— ATP-induced changes in the intracellular Ca2+concentration ([Ca2+]i) in neuroblastoma glioma hybrid NG108–15 cells were studied. Using the fluorescent Ca2+indicator fura-2, we have shown that the [Ca2+]i increased in response to ATP. ATP at 3 mM caused the greatest increase in [Caz+]i, whereas at higher concentrations of ATP the response became smaller. Two nonhydrolyzable ATP analogues, adenosine 5′-thiotriphosphate and 5′-adenylyl-β, γ-imidodiphosphate, could not trigger significant [Ca2+]i change, but they could block the ATP effect. Other adenine nucleotides, including ADP, AMP, α,β-methylene-ATP, β,γ-methylene-ATP, and 2-methylthio-ATP, as well as UTP and adenosine, all had no effect on [Ca2+]i at 3 mM. In the absence of extracellular Ca2+, the effect of ATP was inhibited totally, but could be restored by the addition of Ca2+ to the cells. Upon removal of Mg2+, the maximum increase in [Ca2+]i induced by ATP was enhanced by about 42%. Ca2+-channel blockers partially inhibited the ATP-induced [Ca2+]i rise. The ATP-induced [Ca2+]i rise was not affected by thapsigargin pretreatment, though such pretreatment blocked bradykinin-induced [Ca2+]i rise completely. No heterologous desensitization of [Ca2+]i rise was observed between ATP and bradykinin. The magnitude of the [Ca2+]i rise induced by ATP increased between 1.5 and 3.1 times when external Na+was replaced with Tris, N-methyl-d -glucamine, choline, or Li+. The addition of EGTA or verapamil to cells after their maximum response to ATP immediately lowered the [Ca2+]i to the basal level in Na+-containing or Na+-free Tris solution. Our results suggest that ATP stimulates Ca2+influx via at least two pathways: ion channels that are permeable to Ca2+ and Na+, and pores formed by ATP4-.  相似文献   

20.
Distortions in fura-2 recordings of intracellular free calcium concentration ([Ca2+]i transient elevations) were investigated by computer simulation of calcium diffusion and buffering in a spherical cell. The peak value of [Ca2+]i, averaged over the volume of the cell, was shown to depend linearly on the fura-2 concentration within a 0–50-µM range of the latter. The model predicts that fura-2 significantly decreases the peak amplitude of calcium transients if the indicator is used in a large concentration, the fixed endogenous buffer is slow, or/and the concentration of endogenous buffer in submembrane shells is low. Inclusion in our model of calibration equations for a fluorescent measurement-based [Ca2+]i calculation revealed more significant discrepancies between fura-2 recordings and actual [Ca2+]i, as compared with the discrepancies between theoretical [Ca2+]i in the presence of fura-2 and without the dye in the cell.Neirofiziologiya/Neurophysiology, Vol. 27, No. 4, pp. 288–298, July–August, 1995.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号